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Abstract In this study, we introduce a continuous MSEIHR model and explore its dynamic behavior and fundamental
properties. Using Lyapunov functions and the Routh-Hurwitz conditions, we perform a stability analysis of the model.
Our results confirm that when the basic reproduction ratio Ry < 1, the system is both globally and locally stable at the
disease-free equilibrium £, ;. Conversely, when Rg > 1, an endemic equilibrium Ee, emerges, and the system stabilizes at
this equilibrium. Additionally, we analyze the sensitivity of the MSEIHR model to identify the parameters with the most
substantial influence on Ry. Finally, we validate our theoretical findings with numerical simulations using MATLAB.
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1. Influenza (H5N1) Overview

Avian influenza (Al), caused by an Orthomyxoviridae RNA virus, is a respiratory disease that affects both birds
and mammals (see [1] for more details). The virus is classified into three primary types: A, B, and C, derived from
differences in two key proteins [4]. Among these, the (Al) virus type A is epidemiologically more significant and
dangerous, raising concerns due to its ecological and evolutionary implications across diverse bird and mammal
species. This virus frequently undergoes substantial changes in its immunological characteristics. According to
[5], type A avian influenza includes three subtypes AHS, AH9, and AH7, that can be transmitted to both birds and
humans. Human transmission occurs either through inhalation of airborne viral particles or contact with infected
surfaces. Symptoms in humans typically include fever, cough, chills, and headaches. Although the virus circulates
naturally in birds, and human infections usually results from exposure to infected excrement, often leading to severe
health outcomes.

In 1998, there were 16 reported human cases and three suspected ones [6]. More recently, [7] reports that
Indonesia reported 151 cases, leading to 52 deaths, while Vietnam confirmed 119 cases with 59 deaths. In Hong
Kong in 2004, the avian influenza virus was detected in migratory birds, though no infections were found in
local poultry, pet birds, or wild birds [8]. Further, in 2023, a man from Chile contracted the virus, despite having
no underlying conditions or recent travel history. WHO confirmed that a poultry farm worker in England tested
positive for the severe avian influenza AH5N1 virus in mid-May, followed by a second case in workers involved
in slaughter operations at the same farm. Concerns over the rapid global spread of avian influenza remain high.
Most studies on avian influenza complications have employed discrete-time models expressed through differential
equations. The severity of these complications varies, with some being manageable while others progressing to
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a critical, incurable stage. Our research is driven by the ongoing debate surrounding the origins of the virus and
availability of vaccines. Some theories suggest the virus is introduced via contaminated poultry imports, while
others implicate migratory birds as seasonal carriers. Typically, mathematical models in epidemiology divide the
population into distinct groups, each representing different health states related to the disease being studied. These
models evolve over time as the number of individuals in each group changes with their health status. This approach
is particularly important for diseases such as avian influenza, measles, chickenpox, rubella, and mumps, where
the duration of illness is relatively short. As a result, the impact of birth and death rates during the outbreak
is often considered negligible. One of the fundamental models used in epidemiology is the SIR model, which
categorizes the community into Susceptible, Infected, and Recovered/Immune subgroups. This model was first
introduced by Kermack and McKendrick in 1927 (see [15]) and has significantly influenced the study of disease
spread. Subsequent models, such as the Greenwood and Reed-Frost models, the SI model (where recovery is not
possible) [17], and more sophisticated SIR models, have expanded on this framework. Some models divide the
susceptible population into subgroups with various infection rates or consider varying severity levels of infection
[11]. Advanced models may also incorporate antiviral treatments and vaccination strategies [12, 13, 16]. Various
epidemiological models can be developed based on the categories considered, including the SIS model [19], which
expands the classical (SIS) epidemic model by evolving from a deterministic to a stochastic framework, formulating
it as a differential stochastic system (SDE) for the size of the infected population. The SIRS model [20] introduces
Lyapunov mapping for the well-known SIR, SIS and SIRS models, to demonstrate the global stability of these
models. The SEIR model [21] presents explicit Lyapunov mappings for SIR and SEIR models involving nonlinear
incidence. Finally, the MSEIR model [22] introduces a novel approach to address the asymptotic dynamics of
age-structured epidemic equations and explores their applications to the MSEIR models, among others.

In our study, we examine the following compartments within the MSEIHR model. The (M) class consists
of individuals with passive immunity, having acquired protective antibodies from their mothers. The (S) class
includes those who are susceptible to the disease but have not yet been exposed. The (E) class refers to individuals
who have been exposed but are not yet infectious. The (I) class represents infected individuals who are capable
of transmitting the disease. The (H) class is composed of hospitalized individuals, while the (R) class includes
those who have recovered and developed lasting immunity. To describe this model mathematically, we propose a
continuous mathematical model using differential equations. Initially, we will examine the local stability at both
disease-free and endemic equilibrium points. Since data collection often involves measurement and parameter
estimation, we will also conduct a sensitivity analysis to identify the parameters that significantly influence the
basic reproduction number, Ry.

The paper is structured as follows: Section 2 presents the formulation of the model and its basic properties. In
Section 3, we discuss the equilibrium points of the model. Section 4 analyzes the local stability of the equilibrium
points. In Section 5, we address the sensitivity analysis of the model parameters. Section 6 presents numerical
simulations that validate the theoretical findings. Finally, we conclude by summarizing and discussing the results.

2. A Classical MSEITHR Model and Basic Results
We introduce the MSEIHR model to represent the spread of HSN1 within a population, segmented into six

compartments: M, S, E, I, H, and R, where the total population size N = M + S+ E + I + H + R remains
constant over time.
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Figure 1. MSEIHR model
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We examine the following system of differential equations for the classical MSEIHR model:

DI _ v~ sia) - 6+ 5100

%ff) = bS(t) + M (1) — BEIHD —bS (1)

diit) = gSWEL _ (o 4 b4 0)E(1) M
%Ef) = aB(t) - (b+ \) I(t)

dzf) = M(t) = (u+b) H(1)

d%it) — WH(t) + 0B(t) — bR(?).

The initial states are represented by the nonnegative constants My, Sy, Eq, Iy, Hg, and Ry. The coefficients are
defined as follows: ¢ is the rate at which individuals leave the M group, ( the transmission rate from susceptible
to asymptomatic infected cases, b the natural death rate across all compartments, « the progression rate from
asymptomatic to symptomatic cases, A is the transmission rate from symptomatic individuals to hospitalized cases,
1 is the recovery rate of hospitalized cases, and 8 is the recovery rate of asymptomatic cases due to strong immunity.

The (M) compartment represents individuals with passive immunity from maternal antibodies. Its population
increases by bV (t) and decreases by bS(t), reflecting natural mortality, and by 0M (t) due to immunity loss. The
(S) compartment includes individuals susceptible to the disease but not yet exposed. It increases by bS(¢) and
0M (t) and decreases by Bw, representing exposure through contact, and by b for natural mortality. The (E)

compartment includes individuals exposed but non-infectious individuals. It increases by ﬂ% and decreases
by aE(t), 0E(t), and b. The (I) compartment represents infectious individuals, increasing by aF(t) and decreasing
by b and \I(t), which reflects recovery or hospitalization. The (H) compartment represents hospitalized individuals,
increasing by A\I(t) and decreasing by pH (t) and b. The (R) compartment represents recovered individuals with
lasting immunity, increasing by pH (¢) and 0 E(t) and decreasing by b.

Since the total population size N remains constant, a second set of variables is introduced to represent the
proportion of the population in each compartment:

m = M/N, s=S/N, e=E/N, i=1I/N, h=H/N and r = R/N.

Thus, model 1 can be reformulated as:

dn;ift) =b(1—s(t))— (b+0)m(t)
ds(t)
e bs(t) + dm(t) — Bs(t)e(t) — bs(t)
W) _ Bsttre(t) — (o + b+ et
aith @)
et ae(t) — (b+ N)i(t)
%gt) = Xi(t) — (u+b)h(t)
dr(t)
e wh(t) + fe(t) — br(t)
where the following initial values are assumed to belong in (0, 1)
m(0) = mo, €(0) = eq, s(0) = so, i(0) =g, h(0) = ho and r(0) = ro. 3)

Now, we demonstrate that all solutions of System 2 with nonnegative initial conditions remain nonnegative for
all time. This will be confirmed through the following lemma.
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Lemma 2.1 (Invariant Region)

The feasible region of System 2 is defined as 2 = {(m7 s,e,i,h,r) ERS : m+s+e+i+h+r= 1}.

Proof
First, we remark that we have

dm(t) ds(t) de(t) di(t) dh(t) dr(t)
dt+dt+dt+dt+dt+dt

=b(1—s(t)) — (b+0)m(t) + bs(t) + om(t) — Bs(t)e(t) — bs(t) + Bs(t)e(t)
—(a+b+0)e(t)+ ae(t) — (b+ N)i(t) + Ni(t) — (u+ b) h(t) + ph(t) + e(t) — br(t)
= b—b(m(t) + s(t) + e(t) +i(t) + h(t) + r(t)).

Thus, to get b — b(m(t) + s(t) + e(t) +i(t) + h(t) + r(t)) = 0, we must impose

m(t) + s(t) +e(t) +i(t) + h(t) +r(t) = 1.

Theorem 2.2 (Positivity)

O

If my, so, €o, io, ho and 7 are non-negative, the solutions (m(t), s(t), e(t),i(t), h(t),r(t)) of System 2 will stay

nonnegative for each ¢ > 0.

Proof
We have

— smit) - Bs(t)e(t) = om(t) - 3(1)s(1),
t

where 3(t) = Be(t). We next multiply the equation (4) by exp ( / 3(s) ds) to infer
0

dS(t)*eX t s)as) = [om — S * ex t s)as
S s ([ 300ds) = (o) = 30s(0)] <exp ([ 3()ds).

which yields that

ds(t

0 *exp /3 )ds) + 3(t)s(t) * exp /5 )ds) = dm(t) x exp /3 )ds).

Hence, we deduce

d
dt[ * exXp /3 ds = dm(t) * exp /3 ds

Next, we take the integral with respect to s from 0 to ¢, we get

) % exp /3 ds —8()+6*/ exp / 3(s ds

t
Multiply this relation by exp [ — / 3(s) ds], we get
0

s(t) — s(0) * exp [— /OtS(s) ds] = § x exp {— /(:3(3) ds} * /Ot m(w) [ exp (/OwS(s) ds)}dw.

4

&)

(6)

)

®)
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Thus, the solution s(t) is non-negative, since

s(t) = 5(0) * exp [_ /Ots(s) ds}

+5*exp</Otf)(s)ds)*/Otm(w)(exp(/OwS(s)ds)>dw20.

Similarly, from the other equations in System 2, we have m(t) > 0, e(¢) > 0, i(t) > 0, and r(¢) > 0 for all ¢ > 0.
Consequently, the solutions m(t), s(t), e(t), i(t), h(t), and r(t) of System 2 stay non-negative for ¢ > 0.
O

The first three relations in System 2 do not involve ¢, h, and r. Thus, the dynamics of System 2 is equivalent to

dm(t) B
S =01~ 5)— b+ Bym
dii(tt) = bs + 0m — ffse — bs = dm — PBse ©
de(t)
= = fBse — (a+ b+ H)e.

3. Analysis of Stability and Model Sensitivity

We distinguish two equilibrium points for this model: the disease-free equilibrium point and the disease-present
equilibrium point. To find these equilibria points, we set the right-hand side of equation (9) equal to 0. The disease-
free equilibrium, ng(O, 1,0), occurs when the virus is absent (m = e = 0). The disease-present equilibrium,
E;, = (m*, s*, e*), is reached when the disease is present (s # 0 and e # 0), where:

. Bb=bla+b+0) ., a+b+0 b B

- - - ) 8
™= TR S T B T B0+ arved

Tatbto

1)7 RO

Note that the number Ry indicates the expected number of new infections that a solitary infected person could
cause in a population of individuals who have not yet been infected. A high value of R suggests a higher potential
for an epidemic. We will now explore the local stability of ES and EZ,- We will start by analyzing the local stability
of the disease-free equilibrium E.

Theorem 3.1 (Illness-free equilibria)
The disease-free equilibrium ng (O, 1, O) of System 9 is asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof
First, the Jacobian at the point E ¢ is given by the matrix below
—(b+46) —b 0
J(Eer) = g —&7 —&
0 BE - BS _(a+b+0)

For the disease-free equilibrium, the Jacobian matrix is

“(b+8) b 0
J(E}) = 4 0 -
0 0 B—a—-b—2~0
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The J(EY;) eigenvalues are determined by det(J(Eg) — AI) = 0, and they are

—A—+A?2—-4B

A+ VA 4B
2 - 3

Alzﬂfafbfﬂ, )\2: 9

A3

where A = b+ 6 and B = bé. Therefore, if Ry < 1, the disease-free equilibrium is locally asymptotically stable
and, unstable when Ry > 1. ]

Next, we examine the local stability of the disease-present equilibrium. To do this, we impose the conditions:

dm(t) ds(t) de(t)

720, 7t =0 and =0.
From these, we find m* = 525 (1 — 7-). Substituting this into the second equation of System (9) yields
st = 1
Ry’
Additionally, the third equation of System 9 provides
o,

Consider the theorem below, regarding the local stability of the disease-present equilibrium.

Theorem 3.2 (Disease-present equilibrium)
If Ry > 1, the disease-present equilibrium E, is locally asymptotically stable and, unstable when Ry < 1.

Proof
Let £, (S*, E*,I") denote the disease-present equilibrium of Model 9, where S* # 0, E* # 0 and I* # 0. The
Jacobian at the point £, is the matrix below:

—(b+ ) —b 0
J(E},) = ) — 2% (R — 1) f}%
0 2(Ro—1) 4 —(a+b+0)

We find that the characteristic equation of J(E7,) is as as follows:

() =+ a1(® + az( + as,

where

5b Sb(a+b+0
a=bt 6+ 2 (Ry—1)>0, a2:§b(R0—1)+%

b1 (Ro—1)+6db>0,

and
a3 =0b(a+b+0)(Ry—1).

By utilizing the Routh-Hurwitz criterion, Model 9 is locally asymptotically stable for
a1 >0, a3 >0, a3 >0 and ajas > az.
Thus, the disease-present equilibrium EZ, of System 9 is locally asymptotically stable for Ry > 1. O
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4. Global Stability of the MSEIHR model
To attest to the global asymptotic stability of System 9, we employ Lyapunov function properties at both the
disease-present and the disease-free equilibriums. we first consider with the disease-free equilibrium ng.

Theorem 4.1 (Disease-free equilibrium)
The disease-free equilibria ng is asymptotically globally stable in €2 if Ry < 1, and unstable for Ry > 1.

Proof
Introduce Lyapunov map V : I' — R defined by V' (m, s, e) = e so that

F:{(m7s,e)€1" : m>0,s>0,e>0}.
Hence, the derivative of a Lyapunov map is given as follows:

dV(m,s,e) de

= (Ro(a+b+0)—(a+0+b)e=(a+0+b)(Ry—1)e.

dav av
Thus, we infer that g <0 <= Rp<1land o 0 <= e = 0.Byemploying LaSalle’s invariance principale,
it yields that ng is globally asymptotically stable in I', see for more details [23]. U
The final result here concerns the global stability of the disease-present equilibrium E7,.

Theorem 4.2 (Disease-present equilibrium)
The disease-present equilibrium £, is globally asymptotically stable if Ry > 1.

Proof
Take the Lyapunov map V' : I' — R given by

*

Vim,s) = nZ (m—m* In (%)) + 5" (s—s* In (%)),

I'={(m,s)eT:m>0,s5>0},

where

and

*

Vim,s) = nz (m—m* In (%)) + s* (8 —s"In (si*))

Then, the derivative of the mapping V is as follows:

dv(m,s) m* A [0(1—5) 7 . L [om

o *)2 — g* —m*
=—-m* (m TZ) + (ms* — sm™) 562 f + « T ]

mm 58S mm

—m*)? 1 1 1 1
=-m* (mmnji ) + (ms* —sm™)|s* (S—* - ;) +m* (m* - E)}
_ *(m—m*)Q - o [S50 5 m* m.
- mm* —l—(ms sm) ?(57* )+ m(m* 1)]
B . (m—m*)? s m*rs*d s m* , m
- mm* +ms[;_m}[s (si*_) ( *_)]
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So, we have
av(m,s) m*(1 — s) w2 ms* 2
dt - mm* (m_m) - ss* (8_8)
— — m*)2 _ o o*)2
:_(1 s)(m —m*)*  md(s—s) <0
m s
Additionally, we obtain
dV(m,s)

=0 < m=m" and s = s".
dt

Employing LaSalle’s principle, the disease-present equilibrium E7, is globally asymptotically stable in I'.

5. A MSEIHR Model Sensitivity

Sensitivity analysis is employed to assess the effectiveness of a model with respect to parameter values, helping us
identify which parameters significantly affect the reproduction number Ry. This is particularly important given the
potential errors in data collection and the assumptions made about parameter values. Using the method outlined by
Chitnis [3], we determine the forward sensitivity indices of Ry. Specifically, we define the sensitivity index as

6R0 n
THo = 220 5
" on * Ro
This represents the sensitivity of Ry, relating to the parameter n. Hence, we can write
6 R R « R 0 R b
Ry=—~_— Y30 =1 Y%0=__ Yo __ d TRo—___ =~
O a+b+6 P e a+b+60 ° a+b+6 an b a+b+6

From this analysis, we see that R is most sensitive to variation in 8. An increase in  will result in a proportional
increase in Ry, while a decrease in S will cause Ry to decrease proportionally. Conversely, parameters such as «,
b, and @ are inversely related to Ry. Thus, an increase in any of these coefficients will lead to a decrease in R.

Parameter Rates description index of sensitivity
I} Effective transmission 1
Q@ Transmission E to I —0.0833
0 Propagation E to H —0.25
b Natural death —0.6666

Table 1. Academic parameters for Model 2.1

6. Numerical Simulation and Interpretations

We present the numerical solutions of our model for various parameters, with a total population size of
M+ S+ E+ 1+ H+ R=30000.

We start by examining the disease-free equilibrium, using numerical simulation of System 1 to confirm our findings.
Specifically, by estimating the parameters as N = 30000, 5 = 0.05, « = 0.01, A = 0.09, § = 0.03, § = 0.09 and
b = 0.08, we find that the basic reproduction term is Ry = 0.3846 < 1. Under these conditions, the disease-free
equilibrium ng of System 1 is locally asymptotically stable. The following observations are derived from the
obtained figures (a)-(e), which use different initial values for the variables My, Sy and Ej, we obtained the
following remarks:
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The population with passive immunity decreases and tends to 0 (see Figure 2).

The susceptible population increases and approaches the total population size, Sy = 2.10* (see Figure 3).
The exposed cases number decreases to 0 (see Figure 4).

The number of symptomatic infected persons and carriers decreases to 0 (see Figure 5).

The hospitalized number decreases to 0 (see Figure 6).

The number of recovered cases initially increases, then decreases to 0 (see Figure 7).

Consequently, the solution curves converge to the equilibrium (0, Sp,0) when Ry < 1, indicating that the
proposed model is locally asymptotically stable.
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We now turn our attention to the endemic equilibrium point. Considering the parameters N = 30000, § = 0.09,
B=0.7,a=0.01, u=0.05, A =0.09, 0 = 0.03, b = 0.08 and with Ry = 5.3846 > 1, we find that the equilibrium
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eq’

point associated with the influenza (H5N1) disease, £, in System (1) is globally asymptotically stable. For this

scenario, we notice that

1. The population with passive immunity increases and tends to M* = 7.5¢ + 03 (Figure 8).

The susceptible individuals number increases and converges toward the value S* = 3.7e + 03 (Figure 9).
The number of exposed cases converges toward the value £* = 5.5¢ + 03 (Figure 10).

The infected individuals number converges toward I* = 5.5e¢ + 02 (Figure 11).

The hospitalized individuals number decreases and approaches the value H* = 2.5¢ 4 02 (Figure 12).

A T

The recovered individuals number decreases and tends toward the value R* = 2.4e + 03 (Figure 13).
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Epidemic models are crucial globally, as they enable health officials to understand disease transmission and
formulate strategies for controlling outbreaks. In our study, we designed an appropriate MSEIHR model for
influenza (H5N1) and identified the number, Ry, as a principal factor in understanding the disease’s spread.
Through stability analysis, we investigated the model to assess its local stability.
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