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Abstract This paper introduces CS-MSD, a cost-sensitive deviation minimization model designed to address a typical
issue of imbalanced datasets in binary classification, which is a major problem in machine learning tasks across various
areas. Imbalanced datasets, in which a single class significantly dominates the other, frequently generate biased models
that neglect the minority class, making them extremely important in practical sectors like health services and financial
services. The Traditional re-sampling techniques, including under-sampling and over-sampling, have associated limitations,
such as information loss and over-fitting. CS-MSD overcomes these limitations by combining external deviations with cost
sensitivity, which produces a perfect balance of minority and majority class costs. The model outperforms Decision Tree and
Radial SVM, achieving a Recall of 0.958 on the win dataset, alongside Specificity and G-mean metrics. With CPU and wall
times of 0.052 s and 0.054 s, respectively, CS-MSD also surpasses Random Forest and Bagging in computational efficiency,
making it ideal for time-sensitive tasks. Its combined flexibility and processing speed establish CS-MSD as a vital solution
for enhancing classification performance across diverse domains.
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1. Introduction

Binary classification is a key approach in machine learning (ML) that divides data into two separate groups based
on different characteristics and patterns [1, 2, 3]. The main task is to differentiate between two outcomes, often
referred to as positive and negative classes. Regardless of the algorithm used, the goal is to frequently adjust
model parameters to minimize the gap between predicted and actual outcomes. However, binary classification
faces substantial challenges when applied to imbalanced datasets, where class distributions are uneven. These
datasets create significant hurdles, leading to biased models that favor the majority class while overlooking
the minority class [4, 5, 6]. To mitigate this, techniques such as under-sampling and over-sampling have been
developed [7, 8, 9, 10, 11, 12, 13, 14]. Under-sampling reduces the size of the majority class to balance the datasets,
but this approach may result in the loss of important information and a bias toward the minority class. In contrast,
over-sampling increases the size of the minority class by replication or synthesis, which can lead to over-fitting and
reduced generalization. Additionally, cost-sensitive learning methods have gained prominence by accounting for
the varying costs of classification errors [15]. By minimizing the costs of specific misclassifications, these methods
improve sensitivity to errors in the minority class [16, 17].

The goal of this study is to explore cost-sensitive learning techniques through the application of mathematical
programming (MP) technique. Non-parametric discriminant approaches using linear programming have been

∗Correspondence to: Redouane Hakimi (Email: r.hakimi@insea.ac.ma). Institut National de Statistique et d’Economie Appliquée,
B.P.:6217 Rabat-Instituts Rabat, Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2026 International Academic Press



1100 CS-MSD FOR IMBALANCED DATASET

widely examined in the field of discriminant analysis. Glover [18, 38] compared these methods with traditional
linear discriminant techniques, demonstrating LP’s effectiveness in minimizing deviations beyond the two-group
boundary, suggesting it as a competitive alternative approach. In another study, [19] investigated the integration of
resampling methods into statistical discriminant MP models, highlighting their ability to improve classification
performance and address limitations of deterministic models. Moreover, [39] emphasized the critical role of
normalization in ensuring MP discriminant models do not yield functions with zero coefficients and constants.
Additionally, [40] discussed the use of an objective function in MP discriminant analysis to minimize deviations
and optimize classification accuracy within defined neighborhoods. This method, supported by constraints that
ensure correct classification both within and outside these neighborhoods, enhances overall classification accuracy.
While MP discriminant analysis techniques offer the advantage of building classification models based on variables
specific to each observation [20], they are particularly suited for small-scale datasets.

Our goal in investigating the concepts of cost sensitivity is to create a model called cost-sensitive deviation
minimization model (CS-MSD), which combines cost recognition with robust MP to successfully address diverse
imbalanced datasets. This study is vital in many sectors, including health and medicine, where it provides an
important role in job duties such as breast cancer classification. In this situation, correctly recognizing minority
cases is critical to avoiding harmful results. Furthermore, in physics, chemistry and biology, our goal is to provide
practical answers to real-world challenges, so pushing progress and stimulating innovation in these fields.

In the most crucial computations, CS-MSD performs well and strikes an efficient compromise between recall and
precision. CS-MSD offers a more balanced approach with competing outcomes, which correlates to the top model
in terms of sensitivity and specificity, even though alternative models can also obtain high AUCs. Furthermore, it
is notable for its high computation efficiency, superior design from models like RF and bagging with a very short
processing time. Strong results are consistently produced by CS-MSD across a variety of datasets, making it an
excellent choice for time-sensitive assignments involving imbalanced datasets.

The following is how the paper is organized: The literature on technical resampling and cost sensitivity is
reviewed in Section 2. We describe the sum of deviations model for binary classification that minimizes costs
in Section 3. In Section 4, the study’s methodology is described. In Section 5, the findings are addressed and
presented. The research’s conclusions are finally summed up in Section 6.

2. Related work

Resampling is an essential statistical technique used in binary classification to analyses samples and comprehend
the general properties of a datasets. This strategy extracts useful insights by generating fresh datasets from a
random selection of observations. Resampling techniques, notably under- and over-sampling, are critical for
correcting class imbalances in imbalanced datasets. These algorithms reorganize the data to better reflect all classes.
Furthermore, the idea of cost sensitivity is important in this context since it measures how weights influence
decision-making. This judgment is especially important when working with data having unequal distributions.
Overall, resampling and cost sensitivity combine to increase classification performance.

2.1. Resampling approach

Under-sampling is a frequent strategy in ML for dealing with datasets that are imbalanced. It seeks to balance
sample sizes by randomly deleting instances from the majority class; however, this might result in the loss of
critical information from the majority class, impeding optimization attempts. Several under-sampling strategies
have been proposed, including KNN_Near [7], KNN_Order [8] and KNN_Ru [11]. Empirical investigations have
demonstrated that KNN_Near, which employs a k-nearest neighbors technique, performs well. KNN_Order uses
neighbor counts to balance datasets.

Furthermore, KNN_Ru is more effective than other approaches because it incorporates random sub-sampling and
k-nearest neighbor analysis, which helps retain critical points close to the majority class. Random under-sampling
has advantages, but it can also miss important information that is necessary for the induction process [21]. While the
Scala under-sampling library [22] offers a comprehensive solution for managing imbalanced datasets, addressing
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class distribution imbalances and challenges associated with skewed data, remainder balancing methods employ
heuristics to address these issues.

On the other hand, oversampling is another popular ML technique for dealing with imbalanced datasets. The
aim is to make synthetic samples in order to reduce class imbalance and increase minority class. When trying to
handle imbalanced datasets in the context of classification, various over-sampling techniques are used.

A notable contribution to the field of imbalanced data management is presented in [23], which conducts
a comprehensive comparative evaluation of 66 oversampling methods. The study innovatively employs two
distinct ranking techniques - Borda Count and Kruskal-Wallis test - to systematically assess method effectiveness.
Their analysis reveals that MCT, Polynom-fit-SMOTE, and CBSO emerge as consistently superior performers,
demonstrating better results than traditional SMOTE across multiple datasets and classifiers. This work makes
two key contributions: first, it highlights the critical role of ranking methodology selection when evaluating
imbalance-handling techniques; second, it provides practical, evidence-based guidance for practitioners in selecting
appropriate data management approaches.

SMOTE is a well-known method that helps reduce over-fitting. The main idea behind SMOTE [24, 25] is to
generate synthetic samples for the minority class by interpolating between neighboring minority class instances.
However, one limitation of SMOTE is that it treats all minority class samples equally, ignoring variations in
difficulty or distribution. SMOTE-D [10] improves on this by consistently creating synthetic items for the minority
class while removing random samples. Another method, SWIM [14], utilizes the distribution of the majority class
to generate synthetic, comparable instances, enhancing the classifier’s effectiveness for the minority class.

Recent work [26] proposes SMOTE-DB-FSVM, an enhanced approach for diabetes detection in imbalanced
datasets that refines traditional SMOTE by first applying density-based filtering and confidence scoring to minority
class instances, reducing noisy synthetic data generation. The confidence scores are then integrated into a Density-
Based Fuzzy SVM (DB-FSVM) optimization, prioritizing reliable synthetic samples, while a genetic algorithm
optimizes the SVM kernel parameters for improved classification performance. This method addresses SMOTE’s
noise limitations by selectively generating higher-quality synthetic samples.

In other studies investigating ML approaches to address class imbalance in diabetes prediction using large-scale
health datasets, [27] examined algorithmic solutions and data augmentation techniques (including oversampling,
undersampling, and hybrid methods) applied to the BRFSS dataset, where diabetic cases constitute a significant
minority. Their work demonstrates that strategic dataset balancing prior to model training enhances sensitivity to
the minority class, yielding more clinically reliable predictions.

2.2. Cost-sensitivity technique

Recent interest has surged in developing ML models adept at capturing complex variable interplay while
considering associated expenditures. Cost-sensitive learning, a subset of ML, directly incorporates relative
misclassification costs, preventing biased models, especially crucial in medical diagnoses for misclassification.

Incorporating cost considerations into the feature selection process represents a significant advancement in
improving the capabilities of ML algorithms [28]. Yotsawat proposed a novel framework called cost-sensitive
extreme gradient boosting, specifically designed to tackle class imbalance in bankruptcy prediction models. This
approach proves to be superior to other ensemble methods in identifying bankruptcy cases in real datasets [17].
The ICET method optimizes cost-sensitive classification decisions [29] by using a genetic algorithm that balances
testing costs and classification errors through decision trees, allowing for effective resource allocation with
conditional costs. A novel method in Support Vector Machines additionally addresses asymmetric misclassification
costs [30] by limiting the number of features chosen while establishing upper bounds on false positive and
negative rates. In terms of the main costs related to inductive concept learning are misclassification errors, testing
costs, undesirable results and computational costs, which include size complexity [31]. Cost-sensitive training of
individual base classifiers is optional when using a novel model for credit card fraud detection which includes
cost-sensitive learning into a meta-learning ensemble [32]. Cost-sensitive logistic regression provides as the meta-
learner in this model, which uses decision trees, multi-layer neurons and k-nearest neighbors as baseline learners.

A cost-sensitive Long Short-Term Memory (CSLSTM) model is proposed for pressurizer water level prediction
in marine PWRs [33] to deal with the issues of class imbalance and temporal correlation shifts in time-series data.

Stat., Optim. Inf. Comput. Vol. 15, February 2026



1102 CS-MSD FOR IMBALANCED DATASET

Compared with standard LSTM and SVR models, this model handles better because it uses a unique cost-sensitive
factor to weight training examples according to their temporal position and fluctuation level.

To address the challenges associated with present classification-based approaches, "cost-sensitive three-way
class-specific" attribute reduction suggests a monotonous result cost for three-way decisions in a decision-theoretic
rough set framework [34]. Algorithms based on addition-deletion and deletion strategies are developed to construct
class-specific minimum cost reducts. Experiments on eight UCI datasets demonstrate the monotonicity of the
proposed result cost and reveal that class-specific reducts outperform classification-based reducts in terms of
misclassification and test costs. This approach underscores the value of tailoring attribute reduction to individual
decision classes for improved cost-sensitive decision-making.

To enhance market power abuse identification in the Chinese electricity market, the KNBN-CSSVM-DBTC
algorithm is proposed, effectively addressing data imbalance and high dimensionality issues [35]. This method
integrates K-Nearest Bound Neighbor support vector pre-selection, a cost-sensitive SVM and a distance-based
parameter optimization technique. Evaluations on constructed and real-world datasets demonstrate superior speed
and recall compared to standard SVM approaches, achieving over 95% recall in most scenarios. Such efficiency
facilitates real-time monitoring and proactive interventions against market manipulation.

An approach is introduced that integrates cost sensitivity directly into the learning process of four common ML
algorithms by modifying their objective functions, thereby avoiding data manipulation and preserving the original
data distribution [36]. Experiments on four medical datasets demonstrate the effectiveness of this cost-sensitive
method, particularly in improving the prediction of the minority class compared to standard algorithms. This
contribution aligns with our research on cost-sensitive learning by showcasing the practical benefits of algorithmic
modifications to address class imbalance. While our work emphasizes mitigating majority-class bias through
integrated cost-sensitive error minimization within the objective function, their approach provides a comparative
perspective on balancing computational efficiency and performance improvements. The simplicity of implementing
standard algorithms and datasets is a notable strength, though the reliance on a heuristic class weighting scheme
remains a limitation. Exploring advanced weighting strategies could further enhance predictive performance.

The challenge of early dementia detection is addressed through the prediction of Subjective Cognitive Decline
(SCD) using the imbalanced BRFSS dataset [37]. Their work contributes significantly to the field of MP, focusing
on cost sensitivity in imbalanced datasets by combining data-resampling techniques (e.g., SMOTE-NC, ADASYN)
with cost-sensitive training methods and ensemble learning. This approach results in a notable improvement in
sensitivity (58% compared to a 3% baseline), highlighting the potential of using simpler, population-level data for
early risk identification.

By fusing a strong mathematical optimization framework with cost-sensitive principles, the suggested CS-
MSD model expands on previous developments. In contrast to ensemble-based methods [17, 32], CS-MSD
directly optimizes misclassification costs to reduce majority-class bias, guaranteeing better minority class detection
performance. Its versatility and scalability are further demonstrated by its use in a variety of fields, such as industrial
systems, finance and health. Although current approaches [33, 35] are effective in particular situations, CS-MSD’s
focus on computational efficiency and generalizability makes it a flexible option for imbalanced datasets.

The CS-MSD addresses a number of costs concurrently, such as misclassification and computation time, while
ICET uses evolutionary algorithms to optimize decision trees and CSLSTM adds unique cost-sensitive balancing
to time-series data. Given the mathematical decision strategy, CS-MSD may provide more thorough and flexible
solutions for a variety of fields.

3. Proposed model

The classification method can be formulated using MP with a matrix X ∈ Rn×r, represented as X =


X1

X2

...
Xn

,

where n = nB + nG indicates the total number of observations, with nB corresponding to the observations
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identified as "bad" and nG those identified as "good". The dataset’s observations are denoted by a row vector
Xi = (xi1, . . . , xir) ∈ Rr. The acronym r represents the number of variables (features).

A scalar b, referred to as the intercept or bias term, is established as a threshold to distinguish the majority class
GG from the minority class GB . In cases where the problem is linearly separable, the classes GG and GB do not
overlap, meaning that each observation Xi belongs exclusively to either GG or GB .

Mathematically, the objective of an MP model is to determine the values for b and non-zero W that satisfy:

r∑
j=1

xij .wj < b ∀i ∈ GB

r∑
j=1

xij .wj ≥ b ∀i ∈ GG

(1)

Where W =

w1

...
wr

 is a vector of real numbers in Rr, representing the weights assigned to each feature. The

goal is to identify the optimal values for W and b that effectively distinguish between the classes while minimizing
classification errors.

We provide an extensive description of the terminology used in the mathematical model:

• Matrix representation: The dataset is represented by the matrix:

X =


x11 x12 . . . x1r

x21 x22 . . . x2r

...
...

. . .
...

xn1 xn2 . . . xnr


of dimensions (n× r), where:

– n is the total number of observations, where n = nB + nG.
– nB represents the number of observations classified as "bad."
– nG represents the number of observations classified as "good."
– r is the total number of features (variables).

The matrix X could alternatively be represented as:

X = (X1, X2, . . . , Xn)
t

where the symbol t denotes the transpose operation. Transposing a matrix swaps its rows and columns, each
row vector Xi represents an observation consisting of r features:

Xi = (xi1, xi2, . . . , xir).

Here, xij refers to the value of the j-th feature for the i-th observation, with j ∈ {1, . . . , r} and i ∈
{1, 2, . . . , n}.

• Intercept term: The scalar b is the intercept or bias term of the model. It helps define the decision boundary
separating the "good" class from the "bad" class.

• Weight vector: The weight vector W consists of coefficients assigned to each feature.
• Class groups: The sets GG and GB represent the "good" and "bad" classes, respectively.

The goal is to find the optimal values of W and b that best distinguish the classes. The weight vector affects
the decision boundary and its values are changed for reducing classification errors.
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3.1. Model (MSD) for Minimizing the Sum of Deviations

Researchers [18] introduced deviation variables into the MP model to account for allowable margins of error,
denoted by ϵ̃i and ϵi. When a "bad" observation Xi is misclassified, ϵi indicates its distance from the boundary b.
Similarly, when a "good" observation Xi is misclassified, ϵ̃i measures the distance from b. These deviation terms
are referred to as external deviations in [19].

To prevent trivial solutions (S) Eq. 2, we use Glover’s [41] normalization approach and introduce the constraint
Eq. 3. The sum over j from 1 to r of the product of nB and the sum of xij for indices i belonging to the good class
GG, minus nG times the sum of xij for indices i in the bad class GB , all multiplied by wj , equals 1.

S = {wj = 0 ∀j, ϵ̃i = ϵi = 0 ∀i, b = 0} (2)

r∑
j=1

nB ×
nG∑
i=1

i∈GG

xij − nG ×
nB∑
i=1

i∈GB

xij

× wj = 1 (3)

The MSD model is expressed as follows:



Min
nG∑
i=1

ε̃i +

nB∑
i=1

εi

S.T:
r∑

j=1

xij .wj < b+ εi ∀i ∈ GB

r∑
j=1

xij .wj ≥ b− ε̃i ∀i ∈ GG

r∑
j=1

(nB .

nG∑
i=1

i∈GG

xij − nG.

nB∑
i=1

i∈GB

xij).wj = 1

b ∈ R, wj ∈ R, ∀j
εi, ε̃i ≥ 0, ∀i

(4)

3.2. CS-MSD Model

In this section, we introduce the CS-MSD model, an innovative approach that first calculates the cost values for
both good and bad groups, then integrates these values into the objective function of the standard MSD model.
To achieve this, we assign cost values CB and CG to the GB and GG classes, respectively. The cost associated
with the majority class is calculated as CG = n

2·nG
, where n represents the total number of samples in the dataset,

nG denotes the number of samples in the majority class and the denominator’s 2 corresponds to the number of
classes [42]. For the minority class, we normalize costs so that they sum to one, which implies CB = 1− CG.
This relationship guarantees an inverse proportionality between the class costs: as CG decreases for the majority
class, CB correspondingly increases for the minority class [43]. This cost structure intentionally imposes stronger
penalties for misclassifying minority class observations.

The model can manage to adjust for minority class costs in comparison to majority class costs because of
this balanced structure. In order to take these modifications into consideration, the MSD expression in Eq. 4 is
reformulated as CS-MSD (Eq 5).
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

Min
nB∑
i=1

i∈GB

CB .εi +

nG∑
i=1

i∈GG

CG.ε̃i

S.T:
r∑

j=1

xij .wj < b+ εi ∀i ∈ GB

r∑
j=1

xij .wj ≥ b− ε̃i ∀i ∈ GG

r∑
j=1

(nB .

nG∑
i=1

i∈GG

xij − nG.

nB∑
i=1

i∈GB

xij).wj = 1

b ∈ R, wj ∈ R, ∀j
εi, ε̃i ≥ 0, ∀i

(5)

Analysis of the CS-MSD Model:

1. Objective Function:
The objective function is derived by minimizing the expected risk, incorporating the cost-sensitive terms CB

and CG:
R = CB · P(FN) + CG · P(FP)

Where P(FN) and P(FP) represent the probabilities of false negatives and false positives, respectively. This
formulation aligns with Bayes-optimal prediction, as established in [43]. Based on this, the objective function
is expressed as follows:

Min
nB∑
i=1

i∈GB

CB · εi +
nG∑
i=1

i∈GG

CG · ε̃i

This function represents the comprehensive costs associated with the misclassification of "bad" and "good"
observations. Here, εi represents the error terms for observations in the bad class GB , while ε̃i pertains to
the good class GG. The values CB and CG represent the costs linked to the misclassification of minority and
majority classes, respectively.

2. Constraints:
CS-MSD includes three essential constraints:

(a) The first constraints is:
r∑

j=1

xij · wj − εi < b ∀i ∈ GB

By adjusting for the error, this constraint guarantees that the weighted sum of features for the bad
instances is less than a constant b. By linking the model’s output to the predetermined threshold b, it
enables a controlled assessment of misclassifications.

(b) The second constraint is:
r∑

j=1

xij · wj + ε̃i ≥ b ∀i ∈ GG

Similar to the first, this constraint applies to good instances. It guarantees that the weighted sum, now
including the positive error ε̃i, great or equal the same constant b. This equivalency across classes
ensures that the model treats both classifications equitably in relation to the decision threshold.
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(c) The third constraint is:

r∑
j=1

nB ·
nG∑
i=1

i∈GG

xij − nG ·
nB∑
i=1

i∈GB

xij

 · wj = 1

represents a constraint in an optimization framework where nB and nG are constants associated
with different groups within the dataset, specifically the GB and GG classes, respectively. The term∑nG

i=1
i∈GG

xij captures contributions from the good class, while
∑nB

i=1
i∈GB

xij represents those from the bad

class.
The multiplication by wj , a weighting factor, indicates that each summation component j has a
unique relevance or influence on the overall equation. By imposing a specific relationship between the
weighted contributions from both groups and requiring the total sum to equal 1, this constraint guides
the optimization process to produce meaningful and non-trivial solutions. Consequently, it provides
information about the connections being studied and ensures that the final model incorporates important
datasets features.

The objective of the CS-MSD model is to reduce the errors associated with misclassifications in a binary
classification context. Ensuring applicable solutions and addressing imbalanced datasets requires regulating
minority and majority classes, thereby enhancing classification performance without compromising overall
precision. Differing from SMOTE’s resampling or boosting’s [44] weight adjustments, we explicitly minimize
misclassification cost through optimization constraints.

4. Experimental setup

To ensure that the characteristics of the data are clearly understood, we provide thorough explanations of the
data 4.1 used in this section. We also present the classifiers 4.2 used in this study and describe the evaluation
metrics 4.3 used to evaluate the models’ performance.

4.1. Datasets

As indicated in Table 1, we examine the details of six imbalanced datasets that were downloaded from the UCI
repository [45]. Each dataset shows a unique scenario with distinct levels of class imbalance. A key measure of
distinction between the majority and minority classes within each dataset is the imbalance ratio (IR=nB

nG
). This

IR provides essential details about the level of class imbalance. The number of observations in the minority class
divided by the number of observations in the majority class is the way it is defined.

Table 1. Summary of the datasets

Dataset Abbreviation Subject Area Feature Type Instances Features IR Minority percentage

Wine Wine Physics and Chemistry Integer, Real 178 13 0,496 33, 10%
Wisconsin Breast Cancer WBC Health and Medicine Integer 699 09 0,526 34, 50%
Yeast Yeast Biology Real 1484 08 0,453 31, 20%
Auction Verification Auction Computer Science Integer 2043 07 0,147 12, 80%
Obesity Obesity Health and Medicine Integer 2111 16 0,148 12, 90%
Predict students dropout P.Student Academic Integer, Real 4424 36 0,473 32, 10%

The CS-MSD model is designed specifically for binary classification, so we applied targeted preprocessing steps
to enhance its integration within our experimental framework. To achieve this, we used the one-class-versus-rest
(OvR) technique, which allows the model to handle binary distinctions effectively. By using OvR, we separate one
class from all others, which simplifies the binary classification process.
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4.2. Classification models

A comparative analysis is used to evaluate our proposed CS-MSD model to other known ML models. Each model
is executed with specific packages and optimized using appropriate hyper-parameters, as shown in Table 2.

To rigorously evaluate each model, a 5-fold cross-validation approach is applied, splitting the dataset into five
equal parts. In each iteration, one segment serves as the test set while the others are used for training.

Table 2. Mapping of model name abbreviations and hyper-parameters

Model Name Abbreviation Hyper-parameter Python Package

XGBoost [46] XGB max_depth (Max tree depth),scale_pos_weight, * xgboost
Light GBM [47] LGBM max_depth,class_weight, * lightgbm
Gradient Boosting [48] GB max_depth, n_estimators,class_weight, * sklearn.ensemble
Random Forest [25, 49] RF max_depth,class_weight, * sklearn.ensemble
Decision Tree [50] DT max_depth,class_weight, * sklearn.tree
Bagging [51] Bagg max_depth, n_estimators,class_weight, * sklearn.ensemble
Linear SVM [52] SVML kernel=linear,class_weight, * sklearn.svm
Radial SVM [52] SVMR kernel=rbf,class_weight, * sklearn.svm
Logistic Regression [9] LR class_weight, * sklearn.linear_model

*:Other default parameters.

The objective is to assess and compare the performance and applicability of these models to the CS-MSD model
in two scenarios 5.1. The CS-MSD model, given in Section 3, optimizes weights and intercepts to effectively
separate classes. It is solved using the Gurobi Optimizer, version 10. The values are then used in a function that
determines classification binary probabilities.

This function initially calculates logits as a linear mixture of input features and their weights, plus a bias term.
The logits are transformed to probabilities using the sigmoid function, resulting a 2D array of probabilities for
classes 0 and 1. To assign class labels, a threshold based on the mean of the positive class probabilities is employed.

4.3. Performance evaluation metrics

In ML, algorithm performance evaluation usually depends on a confusion matrix. This matrix arranges the results
of predictions by showing the actual class values in its rows and the predicted class values in its columns. In a
binary classification context, as illustrated in Table 3 below, the confusion matrix defines four key categories: True
Negatives (TN), False Positives (FP), False Negatives (FN) and True Positives (TP).

In classification, TN represents cases where negative examples are correctly classified, while FP indicates
negative examples that are incorrectly classified as positive. Conversely, FN signifies positive examples that are
incorrectly identified as negative, whereas TP represents positive examples that are correctly classified.

Table 3. Confusion matrix

Predicted Negative Predicted Positive

Actual Negative TN FP
Actual Positive FN TP

A classification model’s performance is assessed using a variety of indicators. Specificity (Eq. 6), commonly
known as the true negative rate, assesses the fraction of accurately detected negative cases among all negative
instances.In contrast, recall (Eq. 7), also known as sensitivity or the true positive rate (TPR), assesses the model’s
capacity to recognize all positive cases. The F1_score (Eq. 9) provides a consistent evaluation of a classifier’s
performance by taking the harmonic mean of precision (Eq. 8) and recall. The F1-score balances precision with
recall, making it a widely used for classification tasks, particularly in circumstances with class imbalance.
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The Geometric mean, referred to as G-mean (Eq. 10), evaluates both sensitivity and specificity simultaneously,
making it ideal for imbalanced classification situations. This metric estimates a classifier’s effectiveness based
on its ability to successfully classify both positive and negative observations while minimizing any effects of class
imbalance. However, it is essential to recognize that accuracy (Eq. 11) may not be an adequate metric for evaluating
models trained on imbalanced data. It may return high values even if all samples are classified as the majority class,
as indicated in [53].

Another widely used measure in classification modeling is the area under the curve (AUC) , which serves as
a key assessment tool in this field (Eq. 12). A higher AUC score on a range of 0 to 1, indicates higher model
performance, Where 0.5 denotes a random event and values nearing 1 denote excellent performance.

Specificity(Spec) =
TN

TN + FP
(6)

Recall(Sens) =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1_score = 2× Precision× Sens

Precision+ Sens
(9)

G-mean =
√

Spec × Sens (10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

AUC =

∫ 1

0

TPR(FPR) d(FPR) (12)

where:

FPR = 1− Specificity = FP
FP+TN (False Positive Rate)

Both wall time and CPU time must be simultaneously evaluated in order to evaluate a computing model’s
performance. When assessing computing model performance, wall time: measures the actual elapsed time for a
task, including all delays (Input/Output, sleep(), other processes), is a crucial measure to take into account. On
the other hand, CPU time measures actual processor usage, divided into user-level execution and kernel-level
operations.

The hardware configuration utilized for this study comprises an Intel® Core™ i5-4330M CPU, operating at 2.80
GHz with 2 physical cores,4 logical processors and 8.00 GB of RAM, enabling effective multitasking through
hyper-threading technology.

5. Design process and experimental results

5.1. Design process

As shown in Fig. 1, all six datasets follow the same preprocessing steps in our pipeline. The pipeline automatically
separates features from targets, processing numeric features through mean imputation and standardization
(StandardScaler) while categorical features preprocessing use the mode imputation and one-hot encoding,
integrated via ColumnTransformer with preserved feature names. Highly correlated features (absolute correlation
> 0.98) are removed to reduce preprocessing use the multicollinearity before reconstructing each dataset by
merging processed features with their respective targets.
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Figure 1. Unified data preparation workflow.

Two subsets of the preprocessed datasets are now created: a training and a testing set. Twenty percent of the
data is kept for testing, with the remaining 80% used for training. The 80%-20% splitting method is a prominent
methodology in ML research, striking a compromise between reliable evaluation and powerful training. Despite
its widespread use and being a heuristic guideline this ratio is not always optimum. The "Pareto principle" [54]
generally supports the 80:20 division.
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Figure 2. A flowchart of a cost-sensitive classification model for imbalanced data.

Table 4. Optimal hyper-parameters for models.

Model Hyper-parameters Values

XGB max_depth=6, scale_pos_weight=nG

nB
, learning_rate=0.1

LGBM max_depth=7, class_weight=’balanced’, learning_rate=0.05
GB n_estimators=100, learning_rate=0.1, init=DT
RF max_depth=10, class_weight=’balanced’, n_estimators=200
DT max_depth=5, class_weight=’balanced’
Bagg estimator=DT, n_estimators=50, bootstrap_features=True
SVML probability=True„ Kernel=linear, class_weight=’balanced’
SVMR probability=True, Kernel=rbf, class_weight=’balanced’
LR class_weight=’balanced’, max_iter = 1000, solver=’liblinear’
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We applied the ML models described in Table 2 to both the training and testing subsets, as illustrated in
Fig. 2. This method enables a consistent comparison of models, allowing us to assess their strengths and flaws
using performance measurements. Each model executed a training subset to learn the basic patterns before being
evaluated on a testing subset to determine its ability to it extended to new data.

After evaluating multiple configurations through grid search cross-validation, we identified the optimal hyper-
parameters for each model (Table 4). These values balance performance and computational efficiency while
addressing class imbalance through parameters like class_weight and scale_pos_weight.

Following splitting the data for our model setup (Fig. 3), we also divided the training set into two groups: a GG

group with a goal value of "1" and a GB group with a desired value of "0." The CS-MSD model’s training and
evaluation came next.

Figure 3. The flowchart representing our approach CS-MSD.
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The Gurobi solver configuration presented in Table 5 represents a carefully tuned setup for solving the CS-MSD
model. This configuration balances computational efficiency with solution quality while addressing the specific
challenges of the optimization problem.

Table 5. Gurobi solver parameters for CS-MSD

Parameter Value Type Description

OutputFlag False Boolean Suppresses solver output messages (quiet
mode).

NonConvex 2 Integer Enables non-convex quadratic constraint
handling (required for bilinear terms).

TimeLimit 300 (s) Integer Maximum runtime before stopping.
MIPGap 0.01 (1%) Double Relative optimality gap tolerance for MIP

models.
Threads 4 Integer Number of CPU threads for parallel

computation.
NumericFocus 1 Integer Reduces numerical instability risks

(1=moderate focus).

5.2. Results and discussion

In this research, we compared the performance of our model, CS-MSD, with several well-known models across six
different datasets. We employed key metrics, such as specificity, recall, F1_score, AUC, G-mean and computing
time, to evaluate the model’s effectiveness in accurately detecting both positive and negative cases in each dataset.
The Table 6 compares the performance of various classifiers models, including XGB, Bagg, GB, LGBM, LR,
SVM, RF, DT and CS-MSD, across six datasets (Wine, BCW, Yeast, Auction, Obesity, P. Student). Metrics such as
specificity, recall, F1-score, AUC, G-mean, CPU time and wall time are used to evaluate the models’ effectiveness
in handling classification tasks.

Table 6. Results comparison.

Metrics Datasets
Wine BCW Yeast Auction Obesity P.Student

X
G

B

specificity 0,766 0,924 0,609 0,921 0,923 0,711
Recall 0,941 0,929 0,747 0,914 0,924 0,852
F1_score 0,948 0,979 0,821 0,977 0,982 0,898
AUC 0,962 0,973 0,817 0,979 0,977 0,892
G-mean 0,883 0,944 0,706 0,947 0,952 0,809
CPU time 0.359 s 0.156 s 0.266 s 0.359 s 0.391 s 0.875 s
Wall time 0.371 s 0.182 s 0.276 s 0.361 s 0.419 s 0.882 s

B
ag

g

specificity 0,766 0,881 0,587 0,903 0,847 0,665
Recall 0,942 0,929 0,694 0,934 0,937 0,882
F1_score 0,948 0,973 0,784 0,986 0,983 0,903
AUC 0,973 0,974 0,796 0,982 0,979 0,905
G-mean 0,884 0,934 0,669 0,949 0,922 0,797
CPU time 1,61 s 2,73 s 2,45 s 1,91 s 2 s 2,38 s
Wall time 1,75 s 2,83 s 2,74 s 1,95 s 2,55 s 10 s

Continued on next page
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Table 6 – continued from previous page

Metrics Datasets
Wine BCW Yeast Auction Obesity P.Student

G
B

specificity 0,766 0,882 0,587 0,903 0,847 0,665
Recall 0,942 0,929 0,694 0,934 0,937 0,883
F1_score 0,948 0,973 0,7884 0,986 0,983 0,903
AUC 0,973 0,974 0,796 0,982 0,979 0,905
G-mean 0,882 0,934 0,669 0,949 0,922 0,797
CPU time 0.375 s 0.578 s 0.859 s 0.484 s 0.359 s 2,27 s
Wall time 2,65 s 8,66 s 21,6 s 8,84 s 10,9 s 51,6 s

L
G

B
M

specificity 0,766 0,862 0,642 0,923 0,865 0,711
Recall 0,942 0,929 0,694 0,931 0,926 0,812
F1_score 0,948 0,968 0,794 0,986 0,979 0,876
AUC 0,967 0,974 0,808 0,981 0,977 0,885
G-mean 0,882 0,924 0,698 0,956 0,926 0,791
CPU time 0.062 s 0.046 s 0.062 s 0.109 s 0.141 s 0.125 s
Wall time 0.071 s 0.057 s 0.066 s 0.206 s 0.224 s 0.198 s

L
R

specificity 0,766 0,883 0,036 0,627 0,921 0,753
Recall 0,897 0,918 0,926 0,592 0,894 0,819
F1_score 0,926 0,968 0,811 0,755 0,966 0,887
AUC 0,957 0,977 0,671 0,732 0,967 0,909
G-mean 0,862 0,929 0,569 0,638 0,937 0,816
CPU time 0.172 s 0.188 s 0.172 s 0.219 s 0.219 s 0.453 s
Wall time 0.280 s 0.266 s 0.198 s 0.267 s 0.316 s 1,59 s

SV
M

L

specificity 0,923 0,883 0,742 0,627 0,902 0,785
Recall 0,942 0,918 0,525 0,641 0,891 0,796
F1_score 0,992 0,968 0,693 0,791 0,964 0,882
AUC 0,982 0,978 0,727 0,786 0,968 0,905
G-mean 0,963 0,929 0,653 0,664 0,926 0,824
CPU time 0.125 s 0.062 s 0.219 s 1,39 s 0.188 s 76 s
Wall time 0.198 s 0.068 s 0.232 s 1,42 s 0.194 s 79 s

SV
M

R

specificity 0,661 0,883 0,753 0,592 0,921 0,671
Recall 0,811 0,918 0,568 0,581 0,853 0,899
F1_score 0,879 0,968 0,729 0,746 0,943 0,788
AUC 0,943 0,975 0,774 0,726 0,966 0,556
G-mean 0,818 0,929 0,683 0,617 0,914 0,786
CPU time 0.031 s 0.078 s 0.422 s 1,03 s 0.266 s 7,19 s
Wall time 0.037 s 0.089 s 0.435 s 1,14 s 0.284 s 7,23 s

R
F

specificity 0,766 0,911 0,587 0,679 0,884 0,668
Recall 0,941 0,929 0,742 0,941 0,929 0,874
F1_score 0,948 0,979 0,814 0,971 0,982 0,911
AUC 0,981 0,972 0,819 0,978 0,979 0,905
G-mean 0,991 0,944 0,691 0,831 0,936 0,796
CPU time 3,88 s 8,08 s 5,14 s 5,14 s 5,53 s 10,9 s
Wall time 4,78 s 8,16 s 5,92 s 5,22 s 5,64 s 12,9 s

Continued on next page
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Table 6 – continued from previous page

Metrics Datasets
Wine BCW Yeast Auction Obesity P.Student

D
T

specificity 0,689 0,861 0,764 0,886 0,847 0,707
Recall 0,941 0,918 0,534 0,941 0,921 0,811
F1_score 0,929 0,962 0,705 0,987 0,978 0,874
AUC 0,865 0,936 0,746 0,963 0,937 0,856
G-mean 0,837 0,919 0,668 0,943 0,916 0,788
CPU time 0.234 s 0.312 s 0.203 s 0.156 s 0.219 s 0.438 s
Wall time 0.311 s 0.397 s 0.324 s 0.305 s 0.373 s 4,69 s

C
S-

M
SD

specificity 0,751 0,959 0,613 0,566 1 0,811
Recall 0,958 0,913 0,507 0,731 0,856 0,861
F1_score 0,921 0,944 0,603 0,814 0,922 0,882
AUC 0,854 0,936 0,751 0,849 0,928 0,835
G-mean 0,848 0,936 0,658 0,843 0,925 0,835
CPU time 0.052 s 0.048 s 0.064 s 0.135 s 0.121 s 0.123 s
Wall time 0.054 s 0.059 s 0.069 s 0.272 s 0.209 s 0.174 s

Models like XGB and GB consistently deliver high recall and AUC scores across datasets, indicating their strong
capability in correctly identifying positive instances, particularly in imbalanced datasets like BCW and Obesity.
However, these models tend to have longer CPU and wall times, making them less computationally efficient
compared to faster models like LR and LGBM. SVM and RF also show good overall classification performance,
particularly in terms of specificity and F1-score, but suffer from relatively longer computational times for more
complex datasets.

When it comes to reaching the right equilibrium between the efficiency and performance over various datasets,
the CS-MSD model presents significant strengths. With best results in many datasets and the excellent classification
of negative class, it stands out especially in terms of specificity. Also, it shows how well it can correctly recognize
positive observations by achieving the highest recall performance in wine dataset. This approach is effective for
real-life scenarios since it provides competitive speed, generally ranking against the fastest in both CPU and wall
time.

Other models like XGB, RF and SVML generally rule in metrics like F1score and AUC, showing better
classification performance under many dataset, even though CS-MSD outperforms on certain data. A few models,
for example, typically provide high area-under-curve outcomes or high harmonic mean precision-recall balances.

A significant advantage of LGBM is its speed; it can handle some datasets far faster than others, which may be
useful in situations where time is of the pure factor. For the P.Student dataset, the analysis reveals that LGBM offers
competitive scores with a specificity of 0.711 and a recall of 0.812, while LR stands out with a good specificity and
a solid AUC of 0.909. SVML presents a balanced performance across metrics. Conversely, SVMR shows the lowest
specificity but maintains a high recall, indicating a tendency to capture positive instances at the cost of increased
false positives. Finally, RF ranks highly with a specificity of 0.668, a strong recall and the highest F1_score (0.911),
while DT demonstrates reasonable predictive capabilities. CS-MSD performs well, outperforming other models in
specificity and G-mean in particular while maintaining notably faster execution times.

CS-MSD can be a good choice because of its combination of computing speed and efficiency in essential real-
time fields, even though it is not definitely the most effective option in each field. When the objective is to optimize
for speed and particular scenarios or to maximize particular metrics of performance will ultimately figure out which
approach is appropriate.

Fig. 4 illustrates that our model, CS-MSD, has a balanced yet distinctive shape on the radar graph, with wide
coverage across each of the five metrics. Despite not perfectly symmetrical like some top models (e.g., RF or
XGB), its large shape shows constant, solid performance with no major weaknesses. The model succeeds very well
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Figure 4. Model performance comparison on Wine dataset.

in Recall, that’s reference an important improvement in its competences, while maintaining favorable results in
other metrics like F1-score and G-mean. This balanced but not perfect symmetry indicates that CS-MSD aims for
regular overall success.

The size and shape of CS-MSD’s radar plot are especially useful for recognize because they clearly demonstrate
the strategic trade-offs. The vast region contained by its geometric shapes demonstrates its overall capacity, but
the little declines in Specificity (0.751) and AUC (0.854) demonstrate where it compromises Recall. CS-MSD’s
middle-level asymmetry makes it a realistic technique for high-sensitivity applications that require true positives
while maintaining stability, unlike other models such as SVMR and RF.

6. Conclusions

This study highlights the vital role of binary classification in dealing with challenges related to imbalanced datasets.
Asymmetry in the distribution of classes often results in skewed models that prioritize the majority class over the
minority class. To deal with this issue, various approaches, especially cost-sensitive learning techniques, have
been explored in the context of MP. This study is focused on cost-sensitive learning methods that employ MP
fundamentals to build the CS-MSD model. By integrating cost sensitivity and MP, CS-MSD successfully tackles
the complex issues presented by imbalanced datasets across various areas. The empirical examination shows that
CS-MSD outperforms other approaches in Recall and F1-score metrics. CS-MSD always ranks excellently in
comparison evaluations, showing its reliability. Future investigations will focus on advancing the CS-MSD model
across three key areas: scalability, interpretability, and real-world robustness. The framework will be expanded to
handle large-scale, high-dimensional datasets, optimizing computational efficiency while rigorously benchmarking
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performance against modern scalability solutions. Interpretability will be enhanced through domain-specific feature
weight analysis, particularly in critical applications such as medical diagnostics and fraud detection, to ensure
actionable insights for practitioners. Additionally, the model’s robustness will be rigorously tested on real-world
banking and healthcare datasets, with a focus on addressing class imbalance through hybrid techniques like
SMOTE-enhanced cost-sensitive learning.
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