
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, December 2025, pp 3144–3161.
Published online in International Academic Press (www.IAPress.org)

OGA-Apriori: An Optimized Genetic Algorithm Approach for Enhanced
Frequent Itemset Mining

BARIK Meryem*, TOULAOUI Abdelfattah, HAFIDI Imad, ROCHD Yassir

Laboratory of Process Engineering, Computer Science and Mathematics (LIPIM),
University Sultan Moulay Slimane Khouribga, Morocco

Abstract Frequent Itemset Mining (FIM) can be broadly categorized into two approaches: exact and metaheuristic-based
methods. Exact approaches, such as the classical Apriori algorithm, are highly effective for small to medium-sized datasets.
However, these methods face significant temporal complexity when applied to large-scale datasets. However, while capable
of addressing larger datasets, metaheuristic-based approaches often struggle with precision. To overcome these challenges,
researchers have explored hybrid methods that integrate the recursive properties of the Apriori algorithm with various
metaheuristic algorithms, including Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). This integration
has led to the development of two prominent techniques: GA-Apriori and PSO-Apriori. Empirical evaluations across diverse
datasets have consistently shown that these hybrid techniques outperform the traditional Apriori algorithm in both runtime
and solution quality. Building upon this foundation, this study introduces an enhanced version of the GA-Apriori algorithm,
Optimized GA-Apriori (OGA-Apriori), to improve runtime efficiency and solution accuracy. Comprehensive evaluations
on multiple datasets demonstrate that the proposed OGA-Apriori approach achieves superior performance compared to the
original GA-Apriori in both runtime and solution effectiveness.

Keywords Data Mining, Frequent Itemsets Mining, Apriori Algorithm, Genetic Algorithm, Particle Swarm Optimization,
Metaheuristic.

DOI: 10.19139/soic-2310-5070-2320

1. Introduction

Frequent Itemset Mining (FIM) approaches can be broadly categorized into exact methods and metaheuristic-based
methods. Exact approaches include algorithms such as Apriori [1], FP-Growth [2], DIC [3], and AIS [4]. These
algorithms aim to extract all frequent itemsets from a database, but their execution time significantly increases
due to multiple scans of the entire transactional dataset. The performance of exact algorithms deteriorates with the
growth in database size, the number of items and transactions, and the exponential increase in generated candidate
itemsets, rendering them inefficient and impractical for large-scale datasets.

To address the performance limitations of exact methods, metaheuristic-based approaches have been proposed,
such as those employing genetic algorithms (GA) [5, 6] and swarm intelligence techniques [7, 8]. Meta-heuristic-
based methods aim to extract a subset of frequent itemsets within a shorter execution time. However, these
approaches cannot guarantee the discovery of all possible frequent itemsets in the database. As a result, the quality
of the solutions produced by metaheuristic-based approaches is generally inferior to the optimal solutions provided
by exact methods, which enumerate all frequent itemsets.

The efficiency of metaheuristic-based FIM methods depends on the strategy used for randomized exploration
of the itemset search space. A critical limitation in the literature is the insufficient utilization of the inherent

∗Correspondence to: BARIK Meryem (Email: meryem.barik@usms.ac.ma). Laboratory of Process Engineering, Computer Science and
Mathematics (LIPIM), University Sultan Moulay Slimane Khouribga, Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2025 International Academic Press

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3145

properties of the FIM solution space to improve the search process. One of the most significant properties, which
is fundamental to the Apriori algorithm, is the recursive nature of frequent itemsets. This property ensures that if
an itemset of size k is frequent, all its sub-itemsets of size s={1,...,k-1} are also frequent. Although this recursive
property is central to exact methods, it is often overlooked in metaheuristic-based approaches.

However, several metaheuristic-based FIM methods in the literature incorporate this recursive property to
enhance search efficiency. Notable examples include GA-Apriori [9, 10, 11] and PSO-Apriori [10, 11], which
leverage genetic algorithms and particle swarm optimization, respectively. These approaches build upon their
predecessors, GAFIM [5] and PSOFIM [8], by introducing novel search space intensification and diversification
operators. For example, GA-Apriori employs advanced crossover and mutation operators, while PSO-Apriori uses
refined particle positioning and velocity adjustments. Both techniques incorporate the recursive property of frequent
itemsets to improve performance and solution quality.

Despite the advancements introduced by GA-Apriori, there remains room for further optimization, particularly
in addressing issues related to runtime efficiency and solution quality. This study proposes an enhanced algorithm,
OGA-Apriori (Optimized GA-Apriori), which builds upon GA-Apriori by introducing improved genetic operators
and search strategies. These enhancements aim to exploit the recursive property of frequent itemsets more
effectively and balance search space exploration and exploitation. Experimental evaluations on diverse datasets
demonstrate that OGA-Apriori consistently outperforms GA-Apriori regarding both runtime and solution quality,
thereby advancing the state-of-the-art in metaheuristic-based FIM methods.

The structure of this paper is as follows: Section 2 reviews related work, Section 3 introduces the proposed
approach, Section 4 presents experimental results, Section 5 introduced Statistical assessment, and Section 6
concludes the study.

2. Background and retaled work

2.1. Frequent Pattern Mining

Frequent Itemset Mining (FIM) is an essential part of Data Mining. FIM’s goal is to discover all the frequent
itemset from a massive dataset, i.e., if an itemset or several itemsets occurs/seem several times in a Data, they are
interesting, this is according to a minimum frequency threshold given by a user. This activity was developed in
the early 1990s by Agrawal et al. [1] to identify frequently co-occurring items in market basket analysis. In this
section, formal definitions associated with this task are explained.

2.1.1. Pattern A pattern is a collection of elements, events, or things that often appear in a database. Formally,
a pattern P in a database D is defined as a subset of elements P ⊆ {i1,..., in} ∈ D that explain important data
characteristics.

2.1.2. Support In database D, the set of transactions that contain a pattern x is called its coverage. The support of
a pattern x, denoted sprt(x, D) is the number of transactions that contain x, i.e., the cardinal of its coverage.

sprt(x,D)abs = |tk ∈ D/x ⊆ tk| (1)

The equation gives the absolute value of the support (a positive integer less than or equal to the size of the database),
which can also be expressed in relative terms, i.e., by a real number between zero and one, representing a percentage
by dividing it by the size of the data set as shown in the formula below.

sprt(x,D)abs =
|tk ∈ D/x ⊆ tk|

|D|
(2)

In order to lighten the writing, we simply note it sprt(x) without any abs sub-mention or reference to a transaction
base that will be understood from the context.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3146 OPTIMIZED GA-APRIORI

2.1.3. Frequent Pattern A pattern X is frequent if and only if its support exceeds a minimal threshold s specified
in advance. Formally, X is frequent in D relative to the threshold s if and only if: sprt(X) > s.
The problem of pattern mining consists in enumerating the set FD(s) of all frequent patterns derived from A present
in the transaction base D with respect to the minimal threshold of support s. To simplify the notation, this last set
will, from now on, be noted as F for short.

FD(s) = x ∈ /sprt(x) ≥ s (3)

2.2. Related work on metaheuristic-based FIM methods

2.2.1. Exact methods This led to the development of numerous exact algorithms beyond the foundational Apriori.
Early approaches include AIS [1], DHP (Dynamic Hashing and Pruning) [12], and DIC (Dynamic Itemset
Counting) [3], all of which were based on or inspired by the principles established by Apriori. Additionally,
FPGrowth, introduced by Han.et.al. [2], leverages a compact data structure known as the FP-Tree (Frequent Pattern
Tree), a prefix-tree-like structure enhanced with support information to minimize database scans. During its mining
process, FPGrowth identifies patterns along each path from the root to a node and records items along with their
support counts.

Subsequent advances have focused on improving efficiency and scalability. Eclat (Equivalence Class Clustering
and bottom-up Lattice Traversal) [13] employs a vertical data layout, associating each itemset with a set of
transaction IDs (TIDs). By intersecting these TID sets, Eclat efficiently calculates the support of candidate itemsets,
thereby reducing memory overhead compared to algorithms that directly materialize Apriori. CHARM (Closed
Association Rule Mining) [14] extends vertical mining by efficiently discovering closed itemsets. It optimizes the
search space through the use of “diffsets,” which store differences between TID sets, significantly speeding up the
search for frequent patterns. PrePost [15] introduces a unique “preorder” and “postorder” coding strategy within
a pattern-growth framework, limiting the generation of redundant candidates. Nevertheless, when dealing with
extremely large databases, these exact methods can become prohibitively expensive in both time and space. The
exponential expansion of data from various sources has produced vast datasets [16], underscoring the need for
more efficient solutions.

To address this challenge, recent research has turned toward distributed and parallel algorithms, capitalizing
on frameworks such as Apache Hadoop and Spark. On Hadoop, notable contributions include a parallel
implementation of PrePost [17], an enhanced Apriori algorithm that exploits a hybrid row-/column-oriented layout
[18], and a performance-improved variant of PrePost [19]. A comprehensive survey of scalable frequent-itemset
algorithms for big data on both Hadoop and Spark is provided in [20]. Leveraging Spark’s in-memory processing,
researchers have proposed a Spark-native parallel PrePost algorithm [21] and an efficient distributed FIM
algorithm tailored to big-data workloads [22]. These studies collectively highlight the importance of scalability
and demonstrate that careful data layout, in-memory computation, and parallel pattern-growth strategies can
substantially reduce execution time while maintaining exactness in frequent itemset mining.

2.2.2. Metaheuristic-based methods In metaheuristic-based intelligence approaches, we distinguish between
genetic algorithms and swarm-based methodologies.

For genetic algorithm-based methods, we have GAR [23], which is the first genetic algorithm-based technique
for mining association rules and frequent itemsets. A known drawback of GAR is its inefficient individual
representation, where individuals are encoded by the number of items they contain, causing variable-length
chromosomes that hinder the efficiency of crossover and mutation operators. Two subsequent methods, AGA
[24] and ARMGA [25], differ primarily in their genetic operators: ARMGA employs a two-point crossover,
whereas AGA uses a simple crossover. Another alternative is G3PARM [26], which uses grammar-guided genetic
programming (G3P) to reduce the likelihood of generating incorrect itemsets.

The GAFIM algorithm, introduced by [5], stands out for its deletion and decomposition mechanism that splits
infrequent itemsets into pairs of frequent itemsets. More recently, [11] proposed the GA-GD approach, which is a
new framework of the GA-Apriori [10, 9]. This approach integrates the recursive property of the Apriori algorithm
(i.e., the downward closure principle) with genetic operators such as crossover, mutation, and selection to enhance

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3147

the exploration of larger frequent itemsets while pruning non-promising candidates. Although GA-Apriori retains
the fundamental genetic operators typical of frequent itemset mining (FIM) techniques, it differs from GAFIM in
its initialization strategy, as well as in the specific design of its crossover, mutation, and selection operators. The
general workflow of GA-Apriori is illustrated in Figure 1.

Recent findings show that swarm intelligence techniques—including ACO (Ant Colony Optimization), PSO
(Particle Swarm Optimization) and Bee-based algorithms—offer promising solutions for data mining tasks such
as feature selection, clustering, and frequent itemset mining (FIM) [27]. Although approaches like ACO-based
FIM [28] (for example, HUIM-ACS) can be effective, they often face runtime efficiency challenges. Meanwhile,
PSO-FIM [8] and its variants aim to balance intensification and diversity in their searches. Bee-based FIM methods
explore neighborhoods through dance tables and communication between bees, while BATFIM [29] uses the bat
meta-heuristic, reportedly outperforming other evolutionary and swarm-based FIM algorithms.

Complementing these developments, [30] present a comprehensive Review of Heuristic Algorithms for the
Frequent-Itemset-Mining Problem , and subsequently introduce a dedicated Heuristic Algorithm for Extracting
Frequent Patterns in Transactional Databases [31], both of which demonstrate the continued relevance of heuristic
search strategies alongside evolutionary and swarm-based methods.

More recently, PSO-GD [11] and BSO-GD [11] have incorporated the recursive Apriori principle to enhance
the position updates of particles and bees, respectively. PSO-GD [11], in particular, constitutes a new framework
of the PSO-Apriori [10] approach, leveraging the synergy between swarm intelligence and the downward-closure
property. Meanwhile, studies continue to emphasize the superior runtime efficiency and solution consistency of
both genetic algorithms and PSO-based methods over other bioinspired approaches, although their randomized
search mechanisms can occasionally result in suboptimal accuracy under certain conditions.

Apart from FIM, feature selection in classification can benefit from association rule mining, as shown in a
network intrusion detection system [32]. Using fuzzy ARTMAP and a gravitational search-optimized neural
network, the approach reduces duplicate input, leading to improved detection rates, lower false alarms, and
significant computational savings (over 8.4%). This integration of association rule mining for feature selection
underscores the broad applicability of bioinspired and evolutionary methods in data mining.

Figure 1. Genetic algorithm workflow.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3148 OPTIMIZED GA-APRIORI

3. Proposed approach

The proposed approach OGA-Apriori, illustrated in the Figure 2, is an improvement of the GA-Apriori [9, 10]
approach existing in the literature. The primary distinction between GA-Apriori and OGA-Apriori lies in how
they initialize their populations of candidate itemsets. GA-Apriori typically starts with a random popSize set
of 1-itemsets, which can include many low-support or marginal itemsets that slow convergence. This random
selection forces the algorithm to expend computational effort eliminating non-promising candidates over multiple
iterations. In contrast, OGA-Apriori (Optimized GA-Apriori) replaces this random initialization with a support-
based selection of 1-itemsets: it calculates the support of all possible 1-itemsets, ranks them in descending order,
and retains only the top popSize. By beginning with itemsets that already demonstrate relatively high support, OGA-
Apriori focuses its genetic search on more promising regions of the solution space right from the outset, leading
to faster convergence and reduced overhead. Despite this modified initialization step, OGA-Apriori preserves
the fundamental evolutionary operators—crossover, mutation, and selection—of GA-Apriori, thereby retaining the
benefits of genetic optimization while mitigating the drawbacks of a randomly seeded population.

Figure 2. Optimized Genetic algorithm workflow

Algorithm 1 outlines the main steps of the OGA-Apriori method. Given a transactional database D as input—
used to compute the support of generated itemsets—and a user-defined minimum support threshold minSup, OGA-
Apriori proceeds as follows. First, it identifies frequent 1-itemsets by invoking the FindFrequentOneItemset()
function, which computes and sorts all single items by their support in descending order, then retains only the
top popSize items as the initial population. These frequent 1-itemsets are also added to the global set of frequent
itemsets, denoted by F .

Next, the algorithm applies the Crossover operator to each pair of parent itemsets in the current population,
appending any resulting itemsets to a temporary population. Subsequently, it employs the Mutation operator to
transform any infrequent itemsets into frequent ones, adding newly discovered frequent itemsets to F . Afterward,
the Selection procedure is executed, which filters and ranks the itemsets, preserving only the top popSize frequent
itemsets to serve as the new population in the subsequent iteration.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3149

This iterative process of crossover, mutation, and selection—supported by the Apriori-based pruning of
infrequent subsets—continues until the current population becomes empty. At that point, OGA-Apriori terminates,
having collected a comprehensive set F of frequent itemsets.

Algorithm 1 OGA-Apriori

Input: Transactional database D, minimum support minSup, population size popSize.
Output: Set F of frequent itemsets.
F ← ∅
population← FINDFREQUENTONEITEMSET(D, minSup, popSize)
F ← F ∪ population
while population is not empty do

tempPop← CROSSOVER(population)
newPop← MUTATION(tempPop, D, minSup)
F ← F ∪ (frequent itemsets from newPop)
population← SELECTION(newPop, popSize)

end while
return F

In what follows, we describe in detail the process of our approach.

3.1. Population Initialization:

Let I be the universal set of items in the dataset D. For each item x ∈ I, define the support function as

support(x) =

∣∣{ t ∈ D : x ∈ t}
∣∣

|D|
,

where each t is a transaction in D. Let minSup be the minimum support threshold. We call x frequent if
support(x) ≥ minSup.

1. Compute All 1-Itemsets. Construct the set of singleton itemsets {{x} : x ∈ I} and calculate support(x) for
all x.

2. Prune Infrequent Items. Remove each item x for which support(x) < minSup.
3. Sort and Retain Top popSize. Sort the remaining items in descending order of support(x). Let popSize be a

positive integer. The initial population is then the top popSize frequent singleton itemsets.

By selecting only the most frequent items at the outset, OGA-Apriori restricts the genetic search to a more
promising subset of items, thereby accelerating convergence compared to random initialization approaches.

Example:
Let I = { a, b, c, d} and suppose the dataset D yields the following support values:

support(a) = 0.4, support(b) = 0.5, support(c) = 0.1, support(d) = 0.3.

Given minSup = 0.3, the frequent items are

{ a, b, d}, since support(a) ≥ 0.3, support(b) ≥ 0.3, support(d) ≥ 0.3.

If we set popSize = 2, we retain only the top two items by descending support:

b (support(b) = 0.5), a (support(a) = 0.4).

Hence, the initial population is
{ {a}, {b}}.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3150 OPTIMIZED GA-APRIORI

Representing these as 4-bit vectors (xa, xb, xc, xd), where xx = 1 if item x is present and 0 otherwise, we obtain:

{a} −→ (1, 0, 0, 0), {b} −→ (0, 1, 0, 0).

All other items ({c} and {d}) are excluded from the initial population because either their support is below
minSup or they do not rank within the top popSize.

3.2. Crossover

Let I = {x1, x2, . . . , xn} be the universal set of items in a dataset D. Represent each itemset of size k as a binary
vector

c = (c1, c2, . . . , cn),

where

ci =

{
1, if xi ∈ itemset,
0, otherwise.

Suppose we have two parents of size (k − 1),

p1 = (p1,1, p1,2, . . . , p1,n), p2 = (p2,1, p2,2, . . . , p2,n),

each of which is assumed to be frequent under the Apriori downward-closure property. We seek to produce two
child vectors c1 and c2 of size k using the following crossover steps:

1. Parent Selection: Identify the two most frequent (k − 1)-itemsets p1 and p2 in the current population. This
selection can be based on support, fitness, or another metric.

2. Initial Copy:
c1 ← p1, c2 ← p2.

i.e., c1 initially replicates p1, and c2 initially replicates p2.
3. Selective Insertion: Let e1 be the most frequent item index such that

p2,e1 = 1 and p1,e1 = 0.

Then set
c1,e1 = 1 (i.e., insert xe1 into child 1).

Similarly, let e2 be the most frequent item index such that

p1,e2 = 1 and p2,e2 = 0.

Then set
c2,e2 = 1 (i.e., insert xe2 into child 2).

By selecting frequent items e1 and e2 for insertion, we generate potentially larger frequent itemsets (of size k)
in line with the Apriori heuristic.

Example:
Consider a dataset D of four items { a, b, c, d}. Define the corresponding 4-bit vector (p1, p2, p3, p4) in the order

(a, b, c, d). Suppose the two most frequent parents of size (k − 1) = 2 are

p1 = (1, 1, 0, 0) ←→ {a, b},

p2 = (0, 0, 1, 1) ←→ {c, d}.

Let us choose:
e1 = c (index 3), e2 = a (index 1),

based on their respective support or frequency in the parents.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3151

1. Initial Copy:
c1 ← p1 = (1, 1, 0, 0), c2 ← p2 = (0, 0, 1, 1).

2. Selective Insertion:
• Since p2,3 = 1 and p1,3 = 0, set c1,3 = 1, making

c1 = (1, 1, 1, 0) ←→ { a, b, c}.

• Since p1,1 = 1 and p2,1 = 0, set c2,1 = 1, making

c2 = (1, 0, 1, 1) ←→ { a, c, d}.

Hence, the two child itemsets of size k = 3 are

c1 = {a, b, c} and c2 = {a, c, d}.

This procedure illustrates how the crossover operator extends frequent (k − 1)-itemsets to generate candidate
k-itemsets, while adhering to the Apriori principle (downward closure) by focusing on items shown to be frequent
in at least one parent.

3.3. Mutation

Let I = {x1, x2, . . . , xn} be the universal set of items in the dataset D. Suppose we represent any k-itemset as an
n-dimensional binary vector

m = (m1,m2, . . . ,mn),

where

mi =

{
1, if xi ∈ itemset,
0, otherwise.

Goal: Given an infrequent k-itemset m, we aim to transform it into a frequent k-itemset (if possible) by selectively
flipping bits in m.

1. Identify Infrequent Itemsets.
• After crossover, gather all newly generated itemsets {m1,m2, . . .} of size k.
• For each mi, check if mi is infrequent, i.e.

support(mi) < minSup.

• If mi is frequent, no mutation is applied.

2. Bit-Flipping Mutation.
• Let m = (m1,m2, . . . ,mn) be an infrequent k-itemset.
• Select two indices e1 and e2 such that

me1 = 1 and me2 = 0.

• Swap their bit values:
me1 ← 0, me2 ← 1.

• In effect, item xe1 is removed from m, and item xe2 is added.

3. Check Support.
• Recompute or update support(m).
• If m is still infrequent and a maximum number of bit-flips is not reached, repeat the bit-flipping step.
• If m becomes frequent, the mutation step terminates for that itemset.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3152 OPTIMIZED GA-APRIORI

This mutation strategy attempts to replace items contributing little to support with those that might improve support,
with the goal of producing a frequent k-itemset.

Example:
Let I = { a, b, c, d}, and index each item in a 4-bit vector as (m1,m2,m3,m4) corresponding to (a, b, c, d).

Consider an infrequent itemset m = (1, 0, 1, 0), representing {a, c}. Suppose we identify:

e1 = 1 (item a, m1 = 1), e2 = 2 (item b, m2 = 0).

1. Before Mutation:
m = (1, 0, 1, 0) ←→ { a, c}.

Assume {a, c} is infrequent.
2. Bit Flip:

m1 ← 0 (remove a), m2 ← 1 (add b).

Hence,
m = (0, 1, 1, 0) ←→ { b, c}.

3. Check Support:

• If {b, c} is now frequent, mutation stops immediately.
• Otherwise, the process may repeat with different bit-flips until m becomes frequent (or a mutation limit

is reached).

This example illustrates how Mutation attempts to salvage an infrequent itemset by strategically swapping bits to
replace unhelpful items with potentially more frequent ones.

3.4. Selection

After crossover and mutation, let
C = {C1, C2, . . . , Cm}

be the set of newly generated k-itemsets. We define the following steps to select the best frequent itemsets from C
and retain them for the next iteration.

1. Filtering by Frequency: Let minSup be the minimum support threshold. We form the subset F ⊆ C of
frequent itemsets as

F =
{
Ci ∈ C : support(Ci) ≥ minSup

}
.

Itemsets not meeting this condition are discarded.
2. Fitness Computation: For each frequent itemset Ci ∈ F , define the fitness score

φ(Ci) = support(Ci).

The fitness function directly uses the support value, ensuring that itemsets with higher support are favored.
3. Retain Top popSize: Let F be sorted in descending order by φ(·). If we denote popSize by p, then the new

population Pnext is defined as the top p itemsets in F :

Pnext = arg topC∈F
(
φ(C), p

)
.

Hence, we select exactly the p frequent itemsets with the highest support values.
4. Goal: By choosing the best frequent itemsets and discarding weaker ones, the algorithm ensures that the

most promising solutions form the new population, to be evolved in subsequent iterations.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3153

3.5. Time and Space Complexity of OGA-Apriori

The overall running time of OGA-Apriori is dominated by the repeated evaluation of candidate itemsets against
the database in each genetic generation. Let |D| be the number of transactions, m the average transaction
length, p the population size, and G the number of generations until convergence. The initial scan to find all
frequent 1-itemsets takes O(|D| ·m). Each generation then performs O(p) crossover operations (negligible) and
O(p) support-counting “mutations,” each of which—using a straightforward scan—costs O(|D| ·m). Thus one
generation costs O(p · |D| ·m), and over G generations the worst-case time complexity is O(G · p · |D| ·m). In
practice, G is bounded by the point at which no new frequent itemsets are discovered, but in the worst case it may
grow until all possible combinations are explored.

In terms of space, OGA-Apriori must store the transactional database (O(|D| ·m)), the evolving population of
up to p candidate itemsets (O(p · L), with L the maximum itemset length), and the set F of all discovered frequent
itemsets (which in the worst case could be exponential in the number of distinct items, although genetic pruning
usually keeps it much smaller). Aside from the database itself, the in-memory footprint scales linearly with the
population size and average itemset length.

4. Experimental results

Several experiments have been performed to evaluate the OGA-Apriori algorithm. The algorithms have been
implemented in Python and the experiments were performed under Windows 10 using a laptop equipped with
an Intel I5 processor and 8 GB of memory. In the next part, we compare the performance of the OGA-
Apriori algorithm with that of the GA-Apriori algorithm, using real instances of databases frequently used for
benchmarking FIM search.

4.1. Description of datasets

To evaluate the performance of our proposed method, we conducted experiments on well-known benchmark
datasets commonly used in the field of data mining and frequent pattern extraction. These datasets were obtained
from an open-source data mining library† and include diverse characteristics in terms of the number of transactions,
the number of items and the average transaction size. The details of the datasets are summarized in Table 1.

Table 1. Data instances description

Instance name N. of transactions N. of items Avg. size of transactions
Chess 3 196 75 37
Mushrooms 8 416 119 23
c20d10k 10 000 192 20
c73d10k 10 000 1 592 73
connect 67 557 129 43
accidents 340 183 468 33.8
RecordLink 574 913 29 10
kddcup99 1 000 000 135 16
PAMAP 1 000 000 141 23.93
PowerC 1 040 000 140 7

The selected datasets cover a wide range of application domains, ensuring a comprehensive evaluation of our
approach. For instance, the Mushrooms dataset contains information about different mushroom species and their

†https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Stat., Optim. Inf. Comput. Vol. 14, December 2025

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

3154 OPTIMIZED GA-APRIORI

attributes, while Chess and Connect are structured datasets commonly used in game-related analysis. The Accidents
dataset, which records road accidents, provides a real-world scenario with a large number of transactions and high-
dimensional itemsets.

Additionally, we included large-scale datasets such as KDDCup99, PAMAP, RecordLink, and PowerC, which
consist of millions of transactions and varying itemset sizes, allowing us to assess the scalability of our method.
The c20d10k and c73d10k datasets, known for their high item dimensionality, present additional challenges related
to data sparsity and computational efficiency.

By testing these diverse datasets, we aim to provide a robust evaluation of our proposed approach, ensuring its
effectiveness across different data distributions, transaction sizes, and itemset complexities.

4.2. Parameters setting

In this paper, we considered the following FIM algorithm: Apriori [1], GAFIM [5], GA-Apriori [9, 10, 11], PSO-
Apriori [10, 11], and the proposed approach OGA-Apriori.

We ran a benchmark experiment using the previous data instances to determine the population’s size. We consider
the average support of frequent itemsets discovered to choose the population’s size concerning the runtime. The
results of the tests are presented as follows:

• GAFIM: Through experimentation, we varied the population size from 10 to 1000, the number of
generations from 10 to 100, and adjusted the crossover and mutation probabilities across the full range (0%
to 100%). The optimal configuration identified consists of a population size of 80 individuals, a maximum
of 20 generations, with crossover and mutation probabilities set at 50% and 80%, respectively.

• GA-Apriori: By exploring population sizes ranging from 10 to 1000 and setting the maximum number
of iterations between 20 and 100, the optimal configuration was determined to be 80 individuals with a
maximum of 40 iterations.

• PSO-Apriori: By exploring population sizes ranging from 10 to 1000 and setting the maximum number
of iterations between 20 and 100, the optimal configuration was determined to be 80 individuals with a
maximum of 40 iterations.

• OGA-Apriori: By varying the population size from 10 to 1000 and the number of iterations from 20 to 100,
the optimal configuration was identified as 80 individuals and a maximum of 40 iterations.

For each algorithm, we conducted 10 independent runs on each dataset and reported the average runtime to
account for stochastic variability. To determine the optimal population size, we performed additional experiments
by varying the popSize parameter from 10 to 1000 (keeping other parameters fixed) and plotted the average runtime
against popSize Figure 4.

The Apriori algorithm employs exhaustive search strategies to identify all frequent itemsets that meet the
specified minimum support threshold. Notably, these algorithms do not require the tuning of additional parameters
beyond the support constraint.

In all experimental evaluations, the minimum support (MinSup) was uniformly applied across all algorithms to
ensure a fair and consistent comparison.

4.3. Experimental results

To evaluate the effectiveness of our proposed approach, OGA-Apriori, we conducted an extensive experimental
study using ten benchmark datasets of varying sizes and complexities. These datasets, as described in Table 1,
differ in the number of transactions, number of items, and average transaction length, allowing for a comprehensive
assessment of scalability, efficiency, and accuracy. We compared OGA-Apriori with three other frequent item
mining algorithms, Apriori, GAFIM, PSO-Apriori, and GA-Apriori, using two key performance indicators: runtime
and the percentage of frequent item sets discovered.

The runtime analysis in Table 2 reveals that the Apriori algorithm consistently exhibits the highest computational
cost, particularly on large-scale or high-dimensional datasets such as Kddcup99 (1,000,000 transactions, 135
items), PAMAP (1,000,000 transactions, 141 items) and PowerC (1,040,000 transactions). This is due to Apriori’s
exhaustive candidate generation and repeated database scans. Although GAFIM offers improved performance

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3155

200 400 600 800 1000
Population Size

6000

7000

8000

9000

10000

11000

CP
U
(s
ec
)

Accidents
OGA‑Apriori
GA‑Apriori

200 400 600 800 1000
Pop lation Size

1000

2000

3000

4000

5000

6000

7000

CP
U
(s
ec
)

PAMAP
OGA‑Apriori
GA‑Apriori

200 400 600 800 1000
Pop lation Size

1300

1400

1500

1600

1700

1800

CP
U
(s
ec
)

PowerC
OGA‑Apriori
GA‑Apriori

Figure 3. Runtime (Sec) vs Population Size for GA-Apriori and OGA-Apriori on Accidents, PAMAP & PowerC

Table 2. Comparison of Runtime (in seconds) between Apriori, GAFIM, GA-
Apriori, and OGA-Apriori on various datasets

Dataset Apriori GAFIM GA-Apriori OGA-Apriori PSO-Apriori
Chess 15.96 10.90 9.03 6.11 6.50
Mushrooms 61.31 23.74 10.01 9.88 10.92
c20d10k 200.95 100.20 35.81 32.11 36.45
c73d10k 3089.07 2875.95 2676.13 2274.02 2386.8
Connect 1549.87 1402.63 909.83 788.69 790.65
Accidents 3989.79 2596.07 1364.73 760.31 762.46
RecordLink 223.23 203.04 182.42 127.19 130.98
Kddcup99 4303.12 3966.81 3626.89 2415.63 2520.96
PAMAP 6175.05 4976.09 3327.93 2220.87 2390.87
PowerC 1551.67 915.55 612.52 315.76 318.67

through evolutionary search, it remains relatively inefficient on dense or high-volume datasets, taking more than
4976 seconds on PAMAP and 3966 seconds on Kddcup99. GA-Apriori exhibits considerable improvement by
integrating genetic algorithms, achieving runtime reductions of more than 50% on several datasets compared to
GAFIM. However, our proposed approach, OGA-Apriori, delivers the best runtime results across all datasets. On
PowerC, for instance, OGA-Apriori completes in 315.76 seconds, outperforming GA-Apriori (612.52 s) and even
PSO-Apriori (318.67 s), while on Accidents (340,183 transactions, 468 items), it runs in 760.31 seconds, more
than 600 seconds faster than its GA-based predecessor. PSO-Apriori also demonstrates competitive performance

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3156 OPTIMIZED GA-APRIORI

and is often close to OGA-Apriori in speed on smaller datasets, such as RecordLink and Chess, but tends to lag
slightly behind as dataset complexity increases.

Table 3. Percentage (%) of frequent itemsets discovered by GAFIM, GA-
Apriori, and OGA-Apriori on various datasets

Dataset GAFIM GA-Apriori OGA-Apriori PSO-Apriori
Chess 63 89 91 93
Mushrooms 66 85 86 88
c20d10k 71 90 95 98
c73d10k 50 78 85 90
Connect 61 91 95 97
Accidents 62 92 95 97
RecordLink 56 71 80 88
Kddcup99 70 81 89 92
PAMAP 58 70 80 85
PowerC 40 65 79 82

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Suppo t

500

1000

1500

2000

2500

3000

3500

CP
U

(s
ec

)

Accidents
GAFIM
GA‑Ap io i
OGA‑Ap io i
PSO‑Ap io i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Suppo t

1000

1500

2000

2500

3000

3500

4000

CP
U

(s
ec

)

Kddcup99
GAFIM
GA‑Ap io i
OGA‑Ap io i
PSO‑Ap io i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Suppo t

0

2000

4000

6000

8000

10000

12000

CP
U

(s
ec

)

PAMAP
GAFIM
GA‑Ap io i
OGA‑Ap io i
PSO‑Ap io i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Suppo t

200

400

600

800

CP
U

(s
ec

)

PowerC
GAFIM
GA‑Ap io i
OGA‑Ap io i
PSO‑Ap io i

Figure 4. Runtime (Sec) of OGA-Apriori, GA-Apriori, PSO-Apriori and GAFIM using the instances: Accidents, PAMAP,
Kddcup99, and PowerC.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3157

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Support

0

20

40

60

80

100

Pe
rc
e
ta
ge
 (%

) o
f t
he
 Fr
eq
ue
 t
 It
em

%e
t%

Accidents
GAFIM
GA‑Apriori
OGA‑Apriori
PSO‑Apriori

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mi imum Support

0

20

40

60

80

100

Pe
rc
e
ta
ge
 (%

) o
f t
he
 Fr
eq
ue
 t
 It
em

%e
t%

Kddcup99
GAFIM
GA‑Apriori
OGA‑Apriori
PSO‑Apriori

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mi imum Support

0

20

40

60

80

100

Pe
rc
e
ta
ge
 (%

) o
f t
he
 Fr
eq
ue
 t
 It
em

%e
t%

PAMAP
GAFIM
GA‑Apriori
OGA‑Apriori
PSO‑Apriori

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mi imum Support

0

20

40

60

80

100

Pe
rc
e
ta
ge
 (%

) o
f t
he
 Fr
eq
ue
 t
 It
em

%e
t%

PowerC
GAFIM
GA‑Apriori
OGA‑Apriori
PSO‑Apriori

Figure 5. Percentage (%) of the number of the frequent itemsets of OGA-Apriori, GA-Apriori, PSO-Apriori and GAFIM
using the instances: Accidents, PAMAP, Kddcup99, and PowerC.

The effectiveness of the algorithms, in terms of the percentage of frequent itemsets discovered (Table 3),
offers additional insights. While GAFIM suffers from low coverage—only 40% on PowerC and 50% on
c73d10k—both GA-Apriori and OGA-Apriori show marked improvements. OGA-Apriori demonstrates robust
discovery performance, achieving 95% on Accidents and Connect (both containing high transaction lengths),
and 89% on Kddcup99, which has many short but numerous transactions. PSO-Apriori, although slightly slower,
achieves the highest overall discovery rates, reaching 98% on c20d10k and 97% on Accidents and Connect, thanks
to its strong global exploration capabilities. However, this improvement in completeness comes with a trade-off in
execution time, especially on large-scale datasets like PAMAP.

These findings are visually reinforced in Figure 4 and Figure 5. Figure 4 illustrates the runtime evolution
across different minimum support thresholds for the datasets Accidents, PAMAP, Kddcup99, and PowerC. The
figure shows that OGA-Apriori maintains the most stable and lowest runtime curve across all support values,
particularly outperforming others on PAMAP and PowerC, where traditional approaches experience exponential
runtime increases as the support decreases. In contrast, Figure 5 focuses on the discovery performance under
the same conditions. It confirms that OGA-Apriori consistently delivers high percentages of discovered itemsets,
remaining robust even at low support thresholds where search space is large and exhaustive methods like Apriori
become infeasible. Although PSO-Apriori leads slightly in terms of completeness, its performance gain is marginal
compared to its runtime cost when benchmarked against OGA-Apriori.

In summary, the results confirm that OGA-Apriori offers the best trade-off between runtime and completeness,
particularly excelling on large, complex, and high-dimensional datasets. Its superior scalability, efficient use of

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3158 OPTIMIZED GA-APRIORI

genetic operations, and effective parameter tuning make it a reliable and efficient choice for practical frequent
pattern mining tasks across a wide range of data environments.

5. Statistical assessment

The statistical assessment was employed to evaluate the significant differences between the proposed approach and
state-of-the-art models. To ensure the robustness and validity of our comparative analysis, we utilized the Friedman
and Nemenyi tests, which are among the most commonly employed non-parametric statistical tests for comparing
multiple algorithms across multiple datasets.

The Friedman test is particularly well-suited for this scenario as it assesses the null hypothesis that there is
no significant difference in the performance of the compared approaches. It does so by ranking the performance
of each model across different datasets and analyzing whether the observed differences in rankings could have
occurred by chance. If the Friedman test indicates significant differences, this suggests that at least one approach
consistently outperforms the others across the datasets. Originally introduced by Friedman [33, 34, 35]. In this
test, each algorithm is ranked per dataset, with the top-performing algorithm receiving a rank of 1, the second-best
a rank of 2, and so forth. Ties are resolved by assigning average ranks. The rank for the j-th algorithm on the
i-th dataset among k algorithms is denoted as rji . The test computes the mean ranks of the algorithms, defined as
Rj =

1
N

∑
i r

j
i .

Under the null hypothesis, which asserts that all algorithms perform equivalently (hence, their ranks Rj should
be similar), the Friedman statistic is calculated using the formula:

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
.

For large values of N and k, the distribution of this statistic closely approximates a χ2 distribution with k − 1
degrees of freedom.

Following the Friedman test, a Nemenyi post-hoc test [36] will be used to pinpoint which specific pairs of
approaches differ significantly from each other. The Nemenyi test compares all possible pairs of approaches by
calculating the critical difference (CD) between their mean ranks. If the difference in ranks between any two
approaches exceeds this critical value, it is considered statistically significant.

CD = qα

√
k(k + 1)

6N
.

In this context, qα represents the critical value obtained from the Studentized range distribution, modified by a
factor of

√
2. The hypotheses being considered are as detailed below:

• H0: No significant differences exist over the evaluated models.
• H1: Significant differences are present among the evaluated models.

5.1. Statistical assessment application based on runtime

In term of runtime results, we test side by side k = 5 methods over N = 10 datasets. The time is second was used
to rank all models in each data-set. Table 4 presents the results of the rankings of the proposed approach against
SOA methods.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3159

Table 4. Ranking results based on runtime.

Apriori GAFIM GA-Apriori PSO-Apriori OGA-Apriori
Score Rank Score Rank Score Rank Score Rank Score Rank

Chess 15.96 5 10.90 4 9.03 3 6.50 2 6.11 1
Mushrooms 61.31 5 23.74 4 10.01 2 10.92 3 9.88 1

c20d10k 200.95 5 100.20 4 35.81 2 36.45 3 32.11 1
c73d10k 3089.07 5 2875.95 4 2676.13 3 2386.80 2 2274.02 1
Connect 1549.87 5 1402.63 4 909.83 3 790.65 2 788.69 1

Accidents 3989.79 5 2596.07 4 1364.73 3 762.46 2 760.31 1
RecordLink 223.23 5 203.04 4 182.42 3 130.98 2 127.19 1
Kddcup99 4303.12 5 3966.81 4 3626.89 3 2520.96 2 2415.63 1
PAMAP 6175.05 5 4976.09 4 3327.93 3 2390.87 2 2220.87 1
PowerC 1551.67 5 915.55 4 612.52 3 318.67 2 315.76 1∑

i r
j
i 50 40 28 22 10

Rj 5 4 2.8 2.2 1
R2

j 25 16 7.84 4.84 1

Based on the ranking results of the proposed method against SOA approaches across all datasets, as shown in
Table 4, we derive the outcomes of the Friedman and Nemenyi tests. These results include the Chi− square (χ2),
p-value, critical difference (CD), and confidence interval (CI), all of which are presented in Table 5.

Table 5. Friedman and Nemenyi test results.

Approach χ2 P value CD CI
OGA-Apriori 28.81 7.95× 10−8 1.92 [6.110, 2415.630]

Since the calculated p− value is less than 0.05, we reject the null hypothesis H0. The Friedman test,
accompanied by its ameliorated statistic, indicates significant differences over the three methods applied to 10
datasets.

Then, the Nemenyi test is employed to check the pair-wise statistical difference across all methods. After
using the Nemenyi test we fond that the critical value qα = 2.728 and the corresponding CD = 1.92. Since the
difference between the best and the worst performing algorithm is already greater than that, we can conclude that
the post− hoc test is powerful enough to detect any significant differences between the methods. The post− hoc
results are effectively conveyed through a clear graphical representation.

Figure 6. The critical difference of all methods against each other based on runtime.

As shown in Figure 6,The runtime evaluation across ten datasets clearly shows that OGA-Apriori significantly
outperforms all baseline methods, achieving the lowest execution time and the best average rank. The Friedman test

Stat., Optim. Inf. Comput. Vol. 14, December 2025

3160 OPTIMIZED GA-APRIORI

confirms this with a highly significant p-value (7.95× 10−8), rejecting the null hypothesis of equal performance.
The Nemenyi post-hoc test further validates that OGA-Apriori’s improvements are statistically significant, as the
rank differences exceed the critical difference (CD = 1.92). These results highlight OGA-Apriori as a highly
efficient and scalable approach.

6. Conclusion

This paper proposed OGA-Apriori, a new improvement to the GA-Apriori metaheuristic for mining frequent
itemsets. OGA-Apriori speeds up convergence and lowers computational overhead by focusing the evolutionary
search on high-potential areas of the solution space. It does this by combining a support-guided initialization of
candidate 1-itemsets with an improved Apriori-aware crossover operator.

Comprehensive tests on a wide range of benchmark instances show that OGA-Apriori consistently has the fastest
execution times of all the methods tested. It also consistently extracts frequent patterns with high completeness.
It’s important to note that OGA-Apriori finds as many or more solutions as other heuristic methods, including
swarm-based optimizers, but it does so with a lot less runtime. The Friedman and Nemenyi tests show that these
performance gains are statistically significant when they are looked at closely.

Overall, the suggested OGA-Apriori framework strikes a good balance between efficiency and effectiveness,
making it a great choice for use in real-world data-mining applications.

In future work, we will first focus on porting OGA-Apriori to distributed architectures like Apache Spark. This
will let us scale horizontally by running support counting and genetic operations in parallel on partitioned data.
We also want to look into adaptive parameter control, which automatically adjusts crossover and mutation rates
at runtime based on how diverse the population is and how quickly it converges. This will make manual tuning
even less necessary. We will show that OGA-Apriori can be used in the real world by combining it with clustering
methods to group transactions into similar groups before mining. This should make both the runtime and the
relevance of the patterns even better. Lastly, we want to make the algorithm work with streaming data so that
frequent itemsets can be updated as new transactions come in without having to reprocess the whole dataset.

REFERENCES

1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between sets of items in large databases. In
Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pages 207–216, 1993.

2. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. ACM sigmod record, 29(2):1–12, 2000.
3. Sergey Brin, Rajeev Motwani, Jeffrey D Ullman, and Shalom Tsur. Dynamic itemset counting and implication rules for market basket

data. In Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pages 255–264, 1997.
4. Emma Hart and Jon Timmis. Application areas of ais: The past, the present and the future. Applied soft computing, 8(1):191–201,

2008.
5. Youcef Djenouri, Nadia Nouali-Taboudjemat, and Ahcène Bendjoudi. Association rules mining using evolutionary algorithms. In

The 9th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2014). LNCS, 2014.
6. Diana Martı́n, Jesús Alcalá-Fdez, Alejandro Rosete, and Francisco Herrera. Nicgar: a niching genetic algorithm to mine a diverse set

of interesting quantitative association rules. Information Sciences, 355:208–228, 2016.
7. Youcef Djenouri, Habiba Drias, and Zineb Habbas. Bees swarm optimisation using multiple strategies for association rule mining.

International Journal of Bio-Inspired Computation, 6(4):239–249, 2014.
8. Jerry Chun-Wei Lin, Lu Yang, Philippe Fournier-Viger, Jimmy Ming-Thai Wu, Tzung-Pei Hong, Leon Shyue-Liang Wang, and

Justin Zhan. Mining high-utility itemsets based on particle swarm optimization. Engineering Applications of Artificial Intelligence,
55:320–330, 2016.

9. Youcef Djenouri and Marco Comuzzi. Ga-apriori: Combining apriori heuristic and genetic algorithms for solving the frequent
itemsets mining problem. In Trends and Applications in Knowledge Discovery and Data Mining: PAKDD 2017 Workshops, MLSDA,
BDM, DM-BPM Jeju, South Korea, May 23, 2017, Revised Selected Papers 21, pages 138–148. Springer, 2017.

10. Youcef Djenouri and Marco Comuzzi. Combining apriori heuristic and bio-inspired algorithms for solving the frequent itemsets
mining problem. Information Sciences, 420:1–15, 2017.

11. Youcef Djenouri, Djamel Djenouri, Asma Belhadi, Philippe Fournier-Viger, and Jerry Chun-Wei Lin. A new framework for
metaheuristic-based frequent itemset mining. Applied Intelligence, 48:4775–4791, 2018.

12. Jong Soo Park, Ming-Syan Chen, and Philip S Yu. An effective hash-based algorithm for mining association rules. Acm sigmod
record, 24(2):175–186, 1995.

13. Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEE transactions on knowledge and data engineering,
12(3):372–390, 2000.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

M. BARIK, A. TOULAOUI, I. HAFIDI AND Y. ROCHD 3161

14. Mohammed J Zaki and Ching-Jui Hsiao. Charm: An efficient algorithm for closed itemset mining. In Proceedings of the 2002 SIAM
international conference on data mining, pages 457–473. SIAM, 2002.

15. Jianyong Wang, Jiawei Han, and Xifeng Zhu. Mining frequent itemsets by prepost. In Advances in Knowledge Discovery and Data
Mining (PAKDD 2009), volume 5476 of Lecture Notes in Computer Science, pages 398–409. Springer, 2009.

16. CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and technologies: A survey on big data.
Information sciences, 275:314–347, 2014.

17. Yassir Rochd and Imad Hafidi. Parallel implementation of PrePost algorithm based on Hadoop for big data. In 2018 IEEE 5th
International Congress on Information Science and Technology (CiSt), pages 24–31, Marrakech, Morocco, 2018. IEEE.

18. Yassir Rochd and Imad Hafidi. An enhanced apriori algorithm using hybrid data layout based on Hadoop for big data processing.
International Journal of Network Security, 18(6):161–170, 2018.

19. Yassir Rochd and Imad Hafidi. Performance improvement of PrePost algorithm based on Hadoop for big data. International Journal
of Intelligent Engineering and Systems, 11(5):226–235, 2018.

20. Yassir Rochd, Imad Hafidi, and Bajil Ouartassi. A review of scalable algorithms for frequent itemset mining for big data using
Hadoop and Spark. In Lecture Notes in Real-Time Intelligent Systems (Proceedings of RTIS 2017), volume 756 of Advances in
Intelligent Systems and Computing, pages 90–99. Springer, Cham, 2018.

21. Yassir Rochd, Imad Hafidi, and Bajil Ouartassi. Parallel implementation of PrePost algorithm based on Spark for big data. In Big
Data and Smart Digital Environment (ICBDSDE 2018), volume 53 of Studies in Big Data, pages 322–332. Springer, Cham, 2019.

22. Yassir Rochd and Imad Hafidi. An efficient distributed frequent itemset mining algorithm based on Spark for big data. International
Journal of Intelligent Engineering and Systems, 12(4):367–377, 2019.

23. Jacinto Mata, José-Luis Alvarez, and José-Cristobal Riquelme. An evolutionary algorithm to discover numeric association rules. In
Proceedings of the 2002 ACM symposium on Applied computing, pages 590–594, 2002.

24. Bilal Alataş and Erhan Akin. An efficient genetic algorithm for automated mining of both positive and negative quantitative
association rules. Soft Computing, 10:230–237, 2006.

25. Xiaowei Yan, Chengqi Zhang, and Shichao Zhang. Genetic algorithm-based strategy for identifying association rules without
specifying actual minimum support. Expert Systems with Applications, 36(2):3066–3076, 2009.

26. Cristóbal Romero, Amelia Zafra, Jose Marı́a Luna, and Sebastián Ventura. Association rule mining using genetic programming to
provide feedback to instructors from multiple-choice quiz data. Expert Systems, 30(2):162–172, 2013.

27. Simon Fong, Raymond Wong, and Athanasios V Vasilakos. Accelerated pso swarm search feature selection for data stream mining
big data. IEEE transactions on services computing, 9(1):33–45, 2015.

28. RJ Kuo, SY Lin, and CW Shih. Mining association rules through integration of clustering analysis and ant colony system for health
insurance database in taiwan. Expert Systems with Applications, 33(3):794–808, 2007.

29. Meng-Hua Yang, Lei Li, Ying-Shen Hung, Cheng-Shen Hung, Jean-Pierre Allain, Kuo-Sin Lin, and Su-Jen Lin Tsai. The efficacy of
individual-donation and minipool testing to detect low-level hepatitis b virus dna in taiwan. Transfusion, 50(1):65–74, 2010.

30. Meryem Barik, Imad Hafidi, and Yassir Rochd. Review of heuristic algorithms for frequent itemsets mining problem. Computing
and Informatics, 42(6):1360–1377, 2023.

31. Meryem Barik, Imad Hafidi, and Yassir Rochd. Heuristic algorithm for extracting frequent patterns in transactional databases. In
Advances in Machine Intelligence and Computer Science Applications (ICMICSA 2022), volume 656 of Lecture Notes in Networks
and Systems, pages 361–371. Springer, Cham, 2023.

32. Mansour Sheikhan and Maryam Sharifi Rad. Gravitational search algorithm–optimized neural misuse detector with selected features
by fuzzy grids–based association rules mining. Neural Computing and Applications, 23:2451–2463, 2013.

33. Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American
Statistical Association, 32(200):675–701, 1937.

34. Milton Friedman. A correction. Journal of the American Statistical Association, 34(205):109–109, 1939.
35. Milton Friedman. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The Annals of Mathematical

Statistics, 11(1):86 – 92, 1940.
36. Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963.

Stat., Optim. Inf. Comput. Vol. 14, December 2025

	1 Introduction
	2 Background and retaled work
	2.1 Frequent Pattern Mining
	2.1.1 Pattern
	2.1.2 Support
	2.1.3 Frequent Pattern

	2.2 Related work on metaheuristic-based FIM methods
	2.2.1 Exact methods
	2.2.2 Metaheuristic-based methods

	3 Proposed approach
	3.1 Population Initialization:
	3.2 Crossover
	3.3 Mutation
	3.4 Selection
	3.5 Time and Space Complexity of OGA‑Apriori

	4 Experimental results
	4.1 Description of datasets
	4.2 Parameters setting
	4.3 Experimental results

	5 Statistical assessment
	5.1 Statistical assessment application based on runtime

	6 Conclusion

