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Abstract In this paper, we address the prediction problem of the future records based on observed data from two-parameter,
shape and scale parameter, Kies distribution. Various point predictors, including maximum likelihood, conditional median,
best unbiased and Bayesian predictors of the future records are derived. The corresponding prediction intervals are developed
using pivotal quantity, Highest Conditional Density, Shortest Length and Bayesian prediction intervals. The Monte Carlo
algorithm is employed to compute simulation consistent Bayesian prediction intervals for future unobserved records. The
performance of the obtained point predictors and prediction intervals are compared via experimental numerical simulation.
The criteria considered for comparison purposes are mean square prediction error and prediction bias for point predictors
and coverage probability and the average length for prediction intervals. A real and simulated data sets are performed for
illustrative purposes.
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1. Introduction

In connection with the study of braking strength of glass, Kies (1958)[15] proposed a functional form of the
Weibull distribution(WD), which later became known in the literature as the Kies distribution. Kumar and Dharmaja
(2014)[17] studied the properties of the Kies distribution along with its applications in the areas of medical and
engineering sciences. Moreover, they shown that due to of flexibility of the bathtub-shaped hazard function, it
provides a better alternative than other extended versions of the WD, namely the generalized Weibull (GW)
distribution, modified Weibull (MW) distribution, beta Weibull (BW) distribution and beta generalized Weibull
(BGW) distribution, for modeling the lifetime data sets. Furthermore, they considered the estimation of Kies
parameters using maximum likelihood estimation method.
Kumar and Dharmaja (2013)[16] studied a special case of the Kies distribution, called the reduce Kies distribution
(RKD), and showed that the RKD enjoys certain characteristic properties similar to those of the WD. In 2017,
they introduced and studied a generalized version of the extended reduced Kies distribution, called the modified
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Kies distribution (MKD), see Kumar and Dharmaja (2017a)[18]. In addition, Kumar and Dharmaja (2017b)[19]
proposed an exponentiated reduced Kies distribution with two parameters. Al-Olaimat et al. (2021)[5] derived some
properties of record statistics from the two-parameter Kies distribution. They also studied the estimation of the two-
parameter Kies distribution under record values using classical and Bayesian estimation methods, comparing the
performance of these estimators for several samples using extensive simulations.
The cumulative distribution function (CDF), probability density function (PDF), hazard rate and cumulative hazard
rate functions of the two-parameter Kies distribution,K(λ, β), are given by:

F (x;λ, β) = 1− e−λ( x
1−x )

β

, (1)

f(x;λ, β) =
βλxβ−1

(1− x)β+1
e−λ( x

1−x )
β

, (2)

h(x;λ, β) =
βλxβ−1

(1− x)
β+1

, (3)

and
H(x;λ, β) = λ

( x

1− x

)β

, (4)

respectively, where 0 < x < 1, λ > 0 and β > 0. The Kies distribution has a bounded range, which makes it
appropriate model for fitting real data sets with a bounded range. However, there are many situations where
observations can only take values within a limited range, such as fractions, percentages or proportions. Papke
and Wooldridge (1996)[22] pointed out that variables in many economic applications like the proportion of income
spent on non-durable consumption, the fraction of total weekly hours spent on working, a fraction of land area
allocated to agriculture and industry market shares are all bounded between zero and one. Furthermore, Genc
(2013)[14] indicated that when the reliability is measured as a ratio or percentage, it is important to have models
defined on the unit interval in order to have reasonable results.
Records play an important role in several fields of statistics which date back to Chandler (1952)[9], who first
defined and provided the groundwork for the mathematical theory of records. Let {Xj , j ≥ 1} be a sequence of
independent and identically distributed (iid) continuous random variables (r.v.’s) with CDF F (x) and PDF f(x).
An observation Xj is defined to be an upper record if Xj > Xi for every j > i, and an analogous definition can be
given for lower records (with the inequality being reversed). By convention, the first record X1 is called the trivial
record because it is serves as both an upper and a lower record value simultaneously.
The set of the upper record values is given by the r.v.’s XU(k) for k ≥ 1 where

U(1) = 1, U(k) = min{j : j > U(k − 1), Xj > XU(k−1)}.

Suppose we have a random sample (not ordered) of size n, say {X1, X2, ..., Xn}, the set{
XU(1) = X1, XU(2), ..., XU(m)

}
,

presents a set of upper record values with size 1 ≤ m ≤ n that is obtained from the random sample. The sequence
U(k), k ≥ 1 is called the sequence of upper record times. For simplicity, we denote the sequence of upper record
values {XU(j)}mj=1 by Y = {Yj}mj=1.
Record statistics arise in many practical fields, including hydrology, meteorology, sports and athletic events,
wherein only records are usually considered. For example, record values are applied in estimating the strength
of the material, predicting sports achievements, and the natural disasters. Al-Olaimat et al. (2021)[5] addressed the
estimation problem for the two-parameter Kies distribution based on record data, specifically using Bayesian and
non-Bayesian methods. For further details and applications on record statistics, readers may refer to Arnold et al.
(1998)[6], Ahsanullah (2004)[1], Ahsanullah and Raqab (2006)[3] and Ahsanullah and Nevzorov (2015)[2].
The prediction problem of future events based on the past and present knowledge is of great interest in statistics.
Considerable several of work has been done on prediction of record values. For example, Bayesian predictive
distributions of future records from an exponential distribution provided by Dunsmore (1983)[12]. Nagaraja
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2 PREDICTION METHODS FOR FUTURE RECORD VALUES

(1988)[21] discussed the predictors of future records from three extreme value distributions. Awad and Raqab
(2000)[7] considered the prediction interval problem of the future record from exponential distribution. Al-
Hussaini and Ahmed (2003)[4] studied Bayesian prediction interval for the future generalized order statistics
(including record values as a special case). The problem of Bayesian prediction of temperature records using
the Pareto model was considered by Madi and Raqab (2004)[20]. Raqab et al. (2007)[25] considered the
problem of predicting the future record values, either point or interval prediction, from the two-parameter Pareto
distribution, based on the past record values observed. Dey et al. (2017)[11] discussed prediction intervals for
future record values from the generalized Rayleigh distribution using both frequentist and Bayesian approaches.
This study emphasizes the practical utility of record-based inference and highlights the comparative strengths of
frequentist and Bayesian methods in predicting future records. Volovskiy and Kamps (2020)[27] investigated the
point prediction of future upper record values for absolutely continuous distribution with a strictly increasing
cumulative distribution functions. They derived a general predictor by maximizing the observed predictive
likelihood function. Furthermore, they illustrated the results for exponential, extreme-value, and power-function
distributions, comparing the performance of the obtained predictors against maximum likelihood predictors using
the mean squared error and Pitman’s measure of closeness criteria. Empacher et al. (2023)[13] studied the point
prediction of future record values based on sequences of previous records using the maximum product of spacings
method. Their study focused on the power function and Pareto distributions, examining both exact and approximate
prediction intervals in terms of their expected lengths and coverage percentages. Their work emphasizes the
growing importance of statistical predictions in sports analytics, an area that has traditionally relied on extreme
value theory for forecasting athletic records. They applied their methods to various athletic data sets as well as
to American football data and discussed the implications of their findings alongside the choice of underlying
distributions.
This paper is motivated by the need to enhance predictive methodologies for future record values, specifically
within the framework of the two-parameter Kies distribution. While previous research has made significant strides
in the field of record statistics, there remains a notable lack of focus on this particular distribution, which possesses
unique properties that make it well-suited for various applications. The main contributions of this study include
deriving several predictive methods, including maximum likelihood, modified maximum likelihood, conditional
median, best unbiased, and Bayesian predictors. in addition, this study presents a robust framework for obtaining
prediction intervals, which enhances the reliability of our predictions. Using Monte Carlo simulation studies,
comprehensive numerical comparisons of the proposed methods are conducted, validating their effectiveness with
both simulated and real-world data.
The remainder of this paper is organized as follows: In Section(2) we derive the maximum likelihood, modified
maximum likelihood, conditional median, best unbiased and Bayesian predictors for future records based on
observed sample. In section(3) we propose various procedures for obtaining the prediction intervals. The Monte
Carlo simulation study that conducts numerical comparisons are performed in section(5). Section(4) presents the
numerical results from both simulated and real data sets for illustrative purpose. Finally, the conclusions of the
paper are summarized in section(6).

2. Point Prediction

Let ys, s > m be the future record. This future record will be predicting via several point processers based on
Y = (y1, y2, ..., ym), for simplicity, let Ri =

yi

1−yi
, i = 1, 2, ..., s.

The prediction of future records ys based on the a sequence of the first m observed records, Y = {y1, y2, ..., ym},
mainly depends on the conditional predictive density function of ys given the observed record data. Using the
Markovian property of record data, the conditional distribution of ys given data, is just the conditional distribution
of ys given ym, see Arnold et al. (1998),which has the pdf

f(ys|ym;λ, β) =
[H(ys)−H(ym)]s−m−1

Γ(s−m)

f(ys|λ, β)
1− F (ym|λ, β)

, (5)
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Hence, using Eqs.(1), (2) and (4), Eq.(5) reduces to

f(ys|ym;λ, β) = λs−mβ
Rβ

s

ys(1− ys)

(Rβ
s −Rβ

m)s−m−1

Γ(s−m)
e−λ[Rβ

s−Rβ
m] (6)

where 0 < ym < ys < 1.

2.1. Maximum Likelihood Predictor

In this subsection, we will study point predict of ys, s > m using maximum likelihood predictor(MLP) method. Let
Y = {y1, y2, ..., ym} be a sequence of observed records from a population with PDF f(ys; θ) and F (ys; θ) where
θ = (λ, β), then the predictive likelihood function (PLF) of ys, λ and β, which is given by Basak and Balakrishnan
(2003)[8] as:

L(ys; θ, data) =

m∏
i=1

h(yi, θ)
[H(ys; θ)−H(ym; θ)]s−m−1

Γ(s−m)
f(ys; θ). (7)

Generally, if ŷMLP = u(Y), λ̂ = v(Y), and β̂ = w(Y) are statistics for which

L(u(Y), v(Y), w(Y)|Y) = sup
ys,λ,β

L(ys, λ, β|Y), (8)

then u(Y) is said to be the MLP of ys, 1 < m < s, and v(Y) and w(Y) are the predictive maximum likelihood
estimators (PMLEs) of λ and β, respectively. Using the Eqs.(2), (3)and (4), Eq.(7) will be

L(ys, λ, β) = λsβm+1
m∏
i=1

Rβ
i

yi(1− yi)

(Rβ
s −Rβ

m)s−m−1

Γ(s−m)

Rβ
s

ys(1− ys)
e−λRβ

s (9)

Regardless of the constant terms, the predictive log-likelihood function is given by

log(L(ys, λ, β)) ∝ s log(λ) + (m+ 1) log(β) + β

m∑
i=1

log(Ri)

+ (s−m− 1) log(Rβ
s −Rβ

m)

+ (β − 1) log(
Rs

1 +Rs
)− (β + 1) log(

1

1 +Rs
)− λRβ

s

(10)

By using Eq.(10), the predictive likelihood equations (PLEs) for ys, λ and β are derived and presented, respectively,
as follows:

∂ log(L(ys, λ, β))

∂λ
=

s

λ
−Rβ

s = 0 (11)

∂ log(L(ys, λ, β))

∂β
=

m+ 1

β
+

m∑
i=1

logRi + (s−m− 1)
Rβ

s logRs −Rβ
m logRm

Rβ
s −Rβ

m

+ (1− λRβ
s ) logRs = 0

(12)

∂ log(L(ys, λ, β))

∂ys
= (s−m− 1)β

( ys

1−ys
)β

ys(1− ys)[(
ys

1−ys
)β −Rβ

m]
+

β + 2ys − 1

ys(1− ys)

− λβ
ys

β−1

(1− ys)β+1
= 0

(13)

The PMLE of λ is obtained from Eq.(11) and it is given by

λ̂ =
s

Rβ
s

(14)

The PMLE of β, β̂, and MLP of ys, ŷMLP , can be obtained by substituting Eq.(14) in Eq.(12) and Eq.(13) then
using numerical methods can be solve these simultaneous equations with respect to β and ys.
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4 PREDICTION METHODS FOR FUTURE RECORD VALUES

2.2. Modified Maximum Likelihood Predictor

In practical application, the experimenters wish to use a simple and quick predictor, for this the modified maximum
likelihood predictor (MMLP) of ys is suggested. Therefore, the PLF of ys, λ and β can be decomposed into product
of two functions, the first one L1 is the likelihood function of Y, λ and β, which is viewed as a function of λ and
β. The MLEs of λ and β were computed by Al-Olaimat et al. (2021)[5] and presented as follows:

λ̂ =
m

Rβ̂
m

, (15)

and
β̂ =

m∑m−1
i=1 log(Rm

Ri
)
, (16)

respectively, For more details interested readers may refer to [5] Section (3). The second function L2 is the
conditional PDF of ys given Y, λ and β. Based on m observed record values, we compute the MLEs of λ and
β, λ̂ and β̂, and substitute their values onto L2. Using the modified L2 we can easily find a MMLP of ys. Therefor,
the MMLP of ys is obtained by solving the following equation:

1

ys(1− ys)

ñ
(s−m− 1)β̂

Rβ̂
s

Rβ̂
s −Rβ̂

m

+ 2ys − λ̂β̂Rβ̂
s + β̂ − 1

ô
= 0, (17)

where ys > ym. Since Eq.(17) can not be solved analytically, a numerical method is needed to compute the MMLP
of ys, ˆyMMLP . For a special case when s = m+ 1, we can see ˆyMMLP = ym.

2.3. Conditional Median Predictor

Another possible predictor called conditional median predictor (CMP), is proposed in this subsection following
the lines of Raqab (1992)[23]. A predictor ŶCMP is said to be the CMP of ys if it is the median of the conditional
distribution of ys given Y, i.e.,

P ((ys|ym;λ, β) ≤ ŶCMP ) = P ((ys|ym;λ, β) ≥ ŶCMP ) =
1

2
. (18)

Consequently, assume ŶCMP = k(ym;λ, β) which is a function of ym, then from Eq.(6), we have∫ k(ym,λ,β)

ym

λs−mβ
Rβ

s

ys(1− ys)

(Rβ
s −Rβ

m)s−m−1

Γ(s−m)
e−λ(Rβ

s−Rβ
m)dys =

1

2

Setting Rβ
s −Rβ

m = t, we obtain

∫ [
(K(Rm,λ,β))β

1−(K(Rm,λ,β))β
−Rβ

m]

0

λs−m

Γ(s−m)
ts−m−1e−λtdt =

1

2
.

Thus

ŶCMP =
(Med(W ) +Rβ

m)
1
β

1 + (Med(W ) +Rβ
m)

1
β

,

where W ∼ Gamma(s−m, 1
λ ).

Assume that we are interested in predicting the first future prediction, i.e s = m+ 1, then W ∼ Exp(λ), with
Median(W)= 1

λ log 2, therefore

ŶCMP =
(log 2

1
λ +Rβ

m)
1
β

1 + (log 2
1
λ +Rβ

m)
1
β

,
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2.4. Best Unbiased Predictor

The predictor ŶBUP of ys, s > m is called the best unbiased predictor (BUP)if the prediction error ŶBUP − ys
has a mean zero and it’s prediction variance, var(ŶBUP − ys), is less than or equal to that of any other unbiased
predictor of ys. For known λ and β, the BUP of ys is given by

ŶBUP = E(Ys|Ym;λ, β). (19)

Therefore, using Eq.(6) and the binomial expansion, we can obtain ŶBUP as the following:

ŶBUP =

∫ 1

ym

ysf(ys|ym;λ, β)dys

=

∫ 1

ym

λs−mβRβ
s

1

1− ys

(Rβ
s −Rβ

m)s−m−1

Γ(s−m)
e−λ(Rβ

s−Rβ
m)dys

=
λs−mβ

Γ(s−m)
e−λRβ

m

s−m−1∑
i=0

Ç
s−m− 1

i

å
(−1)s−m−i−1Rβ(s−m−i−1)

m

×
∫ 1

ym

R
β(i+1)
s

1− ys
e−λRβ

s dys,

(20)

when the parameters λ and β are unknown, the BUP of ys can be approximated by replacing both the parameters
λ and β by their corresponding MLEs.

2.5. Bayesian Prediction

In this section, we use the Bayesian approach to predict unknown future records based on the observed current
sequence from K(λ, β) distribution. The important task in Bayesian inference is the selection of an appropriate
prior for the unknown parameter. Therefore, we want to assume the parameters λ and β are independent and follow
gamma distributions; namely Gamma(a1, b1) and Gamma(a2, b2), respectively, where the hyper parameters a1,
b1,a2 and b2 are preselected and non negative real numbers that are chosen to reflect prior knowledge about λ and
β. The choice of the gamma distribution is done for illustrative purposes only and any other suitable prior can be
used instead of this. Moreover, dependent priors can also be assumed. Therefore, the joint prior distribution of λ
and β is obtained as follows:

g(λ, β) ∝ λa1−1e−b1λβa2−1e−b2β . (21)

In order to conduct a Bayesian analysis, we want to use the squared error(SE)loss function, the most commonly
used loss function, which is given as follows L(θ̂, θ) = (θ̂ − θ)2. The SE loss function is a symmetric loss function,
it leads to the identical penalization for overestimation and underestimation, so that it is not an appropriate in some
practical situations. Therefore, several loss functions have been introduced to handle such a problem, for example,
Varian (1975) [26] proposed an extremely helpful asymmetric loss function it is called linear exponential(LINEX)
loss function, which is given as follows L(θ̂, θ) = b[eν(θ̂−θ) − ν(θ̂ − θ)− 1] where ν ̸= 0 is the shape parameter
and b is the scale parameter, in our study we assumed b = 1. The LINEX loss function reduce to SE loss function
when ν close to zero and therefore almost symmetric. Furthermore, when ν > 0, overestimation more serious than
underestimation and when ν < 0, underestimation more serious than overestimation.
Let Y = {y1, y2, . . . , ym} be the first m upper record values arising from a sequence of iid K(λ, β) distribution
with CDF, PDF and hazard rate being defined in Eqs. (1), (2) and (3), respectively., The likelihood function of Y
is given by (see Arnold et al. (1998).

L(Y;λ, β) = f(ym;λ, β)

m−1∏
i=1

h(yi;λ, β)

= βmλme−λ( ym
1−ym

)β
m∏
i=1

yβ−1
i

(1− yi)β+1
.

(22)
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where 0 < y1 ≤ y2 ≤ ... ≤ ym < 1, λ > 0 and β > 0.
In light of the observed upper record, Y = {y1, y2, ..., ym}, and by combining Eqs. (21) and (22), we obtain the
joint posterior density of λ and β as following:

π(λ, β|Y) ∝ 1

C
λm+a1−1βm+a2−1e−β(b2−

∑m
i=1 logRi)e−λ(b1+Rβ

m), (23)

where C is the normalizing constant and it is obtained as

C =

∫ ∞

0

∫ ∞

0

λm+a1−1βm+a2−1e−β(b2−
∑m

i=1 logRi)e−λ(b1+Rβ
m)dλdβ. (24)

The joint posterior distribution in Eq.(23) can be rewritten as follows:

π(λ, β|data) ∝ π1(β|data)π2(λ|β, data), (25)

where

π1(β|data) ∝
βm+a2−1e−βb2

∏m
i=1 R

β
iÄ

b1 +Rβ
m

äm+a1
, (26)

and π2(λ|β, data) is a gamma density with shape and scale parameters are m+ a1 and
[
b1 +Rβ

m

]−1, respectively.
Here we are mainly interested in obtaining the posterior predictive density of ys, fP

s (ys|Y), given observed data
Y. The posterior predictive density of ys is given by

fP
s (ys|Y) = Eposterior(f(Ys|Y, λ, β))

=

∫ ∞

0

∫ ∞

0

f(ys|Y, λ, β)π(λ, β|Y)dλdβ
(27)

where f(ys|Y, λ, β) and π(λ, β|Y) are given in Eqs.(6) and (23), respectively. Substituting these equations in
Eq.(27), then the posterior predictive density function fP

s (ys|Y) becomes

fP
s (ys|Y) =

1

C

∫ ∞

0

∫ ∞

0

λs−mβ

Γ(s−m)

Rβ
s

ys(1− ys)
(Rβ

s −Rβ
m)s−m−1e−λ(Rβ

s−Rβ
m)

× λm+a1−1e−λ(b1+Rβ
m)βm+a2−1e−β(b2−

∑m
i=1 log(Ri))dλdβ,

(28)

Since ∫ ∞

0

λs+a1−1e−λ(b1+Rβ
s )dλ =

Γ(s+ a1)

(b1 +Rβ
s )s+a1

and

C =

∫ ∞

0

∫ ∞

0

λm+a1−1βm+a2−1e−λ(b1+Rβ
m)e−β(b2−

∑m
i=1 log(Ri))dλdβ

=
Γ(m+ a1)Γ(m+ a2)

(b2 −
∑m

i=1 logRi)m+a2
× Eπβ

⋆ [J(β)],

then Eq.(28) reduces to the form

fP
s (ys|Y) =

(b2 −
∑m

i=1 logRi)
m+a2

Γ(m+ a1)Γ(m+ a2)

Γ(s+ a2)Γ(m+ a2 + 1)

Γ(s−m)(b2 −
∑m

i=1 logRi)m+a2+1

× 1

ys(1− ys)

Eπ∗
1
[I(ys, β)]

Eπ2
⋆ [J(β)]

,

(29)
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where I(ys, β) =
(Rβ

s−Rβ
m)s−m−1Rβ

s

(Rβ
s+b1)s+a1

, and π∗
1 is the gamma density function with the shape and scale parameters are

m+ a2 + 1 , 1
b2−

∑m
i=1 logRi

, respectively. J(β) = 1

(b1+Rβ
m)m+a1

, and π2
⋆ is the gamma density function with the

shape and scale parameters are m+ a2 , 1
b2−

∑m
i=1 logRi

, respectively.
Notice that Eq(29)can not be computed explicitly. Therefore, as an approximate of the expected value we take the
mean of β, then if we replace β by it’s corresponding means say β1 and β2 in I(ys, β) and J(β) from π∗

1 and π∗
2 ,

respectively, then an approximate of fp
s (ys|Y), which is denoted by f∗

s (ys|Y)
∧

, is obtained as follows

f∗
s (ys|Y)
∧

=
1

g(ym)

Γ(s+ a2)(m+ a2)

Γ(m+ a1)Γ(s−m)(b2 −
∑m

i=1 logRi)

× 1

ys(1− ys)

I(ys, β1)

J(β2)
,

(30)

where g(ym) =
∫ 1

ym
f∗
s (ys|Y)
∧

dys.

If Ŷ is a predictor of ys, 0 < ym < ys < 1, then the Bayes predictive estimators of ys under SE loss, ŶSEP and
LINEX loss functions, ŶLEP are given by:

ŶSEP = E
f∗
s

∧ (Ys|Y)

=

∫ 1

ym

ysf
∗
s (ys|Y)
∧

dys

=
1

g(ym)

Γ(s+ a2)(m+ a2)

J(β2)Γ(m+ a1)Γ(s−m)(b2 −
∑m

i=1 logRi)

×
∫ 1

ym

I(ys, β1)

(1− ys)
dys,

(31)

and

ŶLEP =
−1

ν
logE

f∗
s

∧
(
e−νYs |Y

)
=

−1

ν
log

∫ 1

ym

e−νysf∗
s (ys|Y)
∧

dys

=
−1

ν
log[

1

g(ym)

Γ(s+ a2)(m+ a2)

J(β2)Γ(m+ a1)Γ(s−m)(b2 −
∑m

i=1 logRi)

×
∫ 1

ym

e−νys
I(ys, β1)

ys(1− ys)
dys],

(32)

respectively. Furthermore, since we are often interested in predict the first unobserved record value, substitute
s = m+ 1 in Eqs.(31) and (32) and using binomial expansion on (Rβ1

s −Rβ1
m )s−m−1 ,we will get the following:

Ŷ SEP2
m+1 =

1

g(ym)

(b1 +Rβ2
m )m+a1Γ(s+ a2)(m+ a2)

Γ(m+ a1)(b2 −
∑m

i=1 logRi)

×
∫ 1

ym

1

1− ys

Rβ1
s

(b1 +Rβ1
s )s+a1

dys,

and

Ŷ LEP2
m+1 =

−1

ν
log[

1

g(ym)

(b1 +Rβ2
m )m+a1Γ(s+ a2)(m+ a2)

Γ(m+ a1)(b2 −
∑m

i=1 logRi)

×
∫ 1

ym

e−νys
1

ys(1− ys)

Rβ1
s

(b1 +Rβ1
s )s+a1

dys].
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3. Prediction Intervals

The second way to use the previous data to predict a future observation from the same distribution is to construct
an interval, which will likely to contain a future observation given what has already been observed such these
intervals are called prediction intervals(PIs). In this section we consider several methods to obtain the PIs based
on the observed record sample Y = (y1, y2, ..., ym).

3.1. Pivotal Method

Let us take the random variable Z as
Z = Rβ

s −Rβ
m,

it is easily to observe that Z|ym ∼ Gamma(s−m, 1
λ ), using jacobian transformation of Z|ym in Eq.(6). Hence

when the parameters λ and β are known and ym is given then the pivotal quantity 2λZ|ym ∼ χ2(2(s−m)). From
this, the exact (1− τ)100% PI of ys is (L1(ym), U1(ym)) where

L1(ym) =
(
χ2

τ
2
(2(s−m))

2λ +Rβ
m)

1
β

1 + ((
χ2

τ
2
(2(s−m))

2λ +Rβ
m)

1
β )

, U1(ym) =
(
χ2
1− τ

2
(2(s−m))

2λ +Rβ
m)

1
β

1 + ((
χ2
1− τ

2
(2(s−m))

2λ +Rβ
m)

1
β )

, (33)

when λ and β are unknown, the parameters in Eqs.(33), have to be estimated by their MLEs. So an approximate
(1− τ)100% PI is obtained as follows:

L̂1(ym) =
(1 +

χ2
τ
2
(2(s−m))

2m )
1

β̂ Rm

1 + (1 +
χ2

τ
2
(2(s−m))

2m )
1

β̂ Rm

, Û1(ym) =
(1 +

χ2
1− τ

2
(2(s−m))

2m )
1

β̂ Rm

1 + (1 +
χ2
1− τ

2
(2(s−m))

2m )
1

β̂ Rm

(34)

Since we are usually interest in predict the first prediction, when s = m+ 1, then using the pivotal quantity
λZ|ym ∼ Exp(1), the (1− τ)100% exact PI and approximate PI of ym+1, respectively, are given by

L2(ym) =
(Rβ

m − 1
λ log(1− τ

2 ))
1
β

1 + [Rβ
m − 1

λ log(1− τ
2 )]

1
β

, U2(ym) =
(Rβ

m − 1
λ log( τ2 ))

1
β

1 + [Rβ
m − 1

λ log( τ2 )]
1
β

(35)

and

L̂2(ym) =
Rm(1− 1

m log(1− τ
2 ))

1

β̂

1 +Rm[1− 1
m log(1− τ

2 )]
1

β̂

, Û2(ym) =
1− 1

m log( τ2 ))
1

β̂

1 +Rm[1− 1
m log( τ2 )]

1

β̂

(36)

3.2. Highest Conditional Density Method

An interval in which the value of the conditional PDF of ys given observed data, f(ys|Y), at every point inside it
is greater than that for every point outside it is called the highest conditional density (HCD) interval, Raqab (2001)
[24]. If we replace λ and β in Eq.(6) with their corresponding MLEs we will obtain the approximate PDF of ys
given ym as follows:

f(ys|ym, λ̂, β̂)

∧

= β̂(
m

Rβ̂
m

)s−mRβ̂
s

1

ys(1− ys)

× [Rβ̂
s −Rβ̂

m]s−m−1

Γ(s−m)
e
− m

R
β̂
m

[Rβ̂
s−Rβ̂

m]

,

(37)

since the approximation conditional density given in Eq.(37) is unimodal function of U =
m(Rβ̂

s−Rβ̂
m)

Rβ̂
m

, and the

distribution of U given ym is G(s−m, 1) with PDF

g(u) =
us−m−1e−u

Γ(s−m)
, u > 0.
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therefore, an interval [w1, w2] is called a HCD-PI of content 1− τ (0 < τ < 1), if [w1, w2] is given by

{w : w ∈ [0,∞), g(w) ≥ k} ⊂ [0,∞),where
∫ w2

w1

g(w)dw = 1− τ,

for some k > 0. If s > m+ 1, then g(w) is a unimodal PDF and it attains its maximum value at ξ = s−m− 1 ∈
(0,∞). In this context, the HCD method requires finding two cut of points w1 = w τ

2
≤ ξ ≤ w2 = w1− τ

2
, as

( τ2 )100th and (1− τ
2 )100th percentiles of G(s−m, 1) distribution, respectively, satisfying

1− τ =

∫ w2

w1

g(u)du, (38)

and
g(w1) = g(w2). (39)

Eqs.(38) and (39)can be simplified as follows:

1− τ = Γ(s−m,w1)− Γ(s−m,w2), (40)

and
(
w1

w2
)s−m−1 = e−(w2−w1), (41)

where Γ(a, b) = 1
Γ(a)

∫∞
b

ta−1e−tdt, which is the upper incomplete gamma function. In consequence of that, the
(1− τ)100% PI of ys based on HCD method is computed to be (L3(ym), U3(ym)) where

L3(ym) =
Rm(1 + w1

m )
1

β̂

1 +Rm(1 + w1

m )
1

β̂

, U3(ym) =
Rm(1 + w2

m )
1

β̂

1 +Rm(1 + w2

m )
1

β̂

(42)

Now, let us consider a special case where s = m+ 1, it may be noted that, Eq.(41) yields w1 = w2 and then
no prediction interval can be constructed. In this case to avoid this problem, we can note the density g(w) is a
decreasing function with g(0) = 1 and g(∞) = 0. Then, the HCD method involves finding [0, w2] where∫ w2

0

g(w)dw = 1− τ,which is equivalent to w2 = − log(τ).

This leads that the (1− τ)100% HCD PI of ym+1 where it’s bounds are L4(ym) and U4(ym) as follows:

(ym,

ym

1−ym
(1− log(τ)

m )
1

β̂

1 + ym

1−ym
(1− log(τ)

m )
1

β̂

).

3.3. The Shortest Length Prediction Intervals

Another related PI is the shortest length(SL)PI. Using the fact that the distribution of V =
2m(Rβ̂

s−Rβ̂
m)

Rβ̂
m

∼ χ2
2(s−m),

we first choose the constants c1 and c2 where c1 < c2 satisfying the following:

P (c1 < χ2
2(s−m) < c2) = 1− τ (43)

which is equivalent to

P (c1 <
2m(Rβ̂

s −Rβ̂
m)

Rβ̂
m

< c2) = 1− τ, (44)

or equivalently

P (
Rm(1 + c1

2m )
1

β̂

1 +Rm(1 + c1
2m )

1

β̂

< y <
Rm(1 + c2

2m )
1

β̂

1 +Rm(1 + c2
2m )

1

β̂

) = 1− τ. (45)
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This implies that a (1− τ)100% PI for ys is derived to be (L5(ym), U5(ym)), where

L5(ym) =
Rm(1 + c1

2m )
1

β̂

1 +Rm(1 + c1
2m )

1

β̂

, and U5(ym) =
Rm(1 + c2

2m )
1

β̂

1 +Rm(1 + c2
2m )

1

β̂

. (46)

The best choices for c1 and c2 are ones minimizing the width of PI, U5(ym)− L5(ym). The shortest length
(1− τ)100% PI can be obtained by minimizing the Lagrangian multipliers function by imposing (43) as follows:

L(c1, c2, ω) = U5(ym)− L5(ym)− ω[

∫ c2

c1

gχ2
2(s−m)

(v)dv − (1− τ)], (47)

which is equivalent to

L(c1, c2, ω) =
Rm(1 + c2

2m )
1

β̂

1 +Rm(1 + c2
2m )

1

β̂

−
Rm(1 + c1

2m )
1

β̂

1 +Rm(1 + c1
2m )

1

β̂

− ω[

∫ c2

c1

gχ2
2(s−m)

(v)dv − (1− τ)], (48)

where gχ2
2(s−m)

is the PDF of χ2
2(s−m) distribution and ω is a Lagrangian multiplier. The constants c1 and c2 can be

derived from equating the partial derivative of L(c1, c2, ω), with respect to c1, c2 and ω, to zero as follows:

∂L

∂c1
=

−Rm

2mβ̂
(1 + c1

2m )
1

β̂
−1

(1 +Rm(1 + c1
2m )

1
β )2

+ ωgχ2
2(s−m)

(c1) = 0 (49)

∂L

∂c2
=

Rm

2mβ̂
(1 + c2

2m )
1

β̂
−1

(1 +Rm(1 + c2
2m )

1
β )2

− ωgχ2
2(s−m)

(c2) = 0 (50)

∂L

∂ω
= −[

∫ c2

c1

gχ2
2(s−m)

(v)dv − (1− τ)] = 0 (51)

After some algebraic computations on Eqs.(49)and (50), we reach to

(
c2
c1

)s−m−1e
−1
2 (c2−c1) = (

2m+ c2
2m+ c1

)
1

β̂
−1 ×

ñ
1 +Rm(1 + c1

2m )
1
β

1 +Rm(1 + c2
2m )

1
β

ô2
, (52)

also from Eq.(51) we get ∫ c2

c1

gχ2
2(s−m)

(v)dv = (1− τ). (53)

Now, c1 and c2 of the shortest PI can be computed simultaneously by solving Eqs.(52)and (53) numerically.
We now consider the case where s = m+ 1. In this case, gχ2

2(s−m)
(v) is decreasing function with gχ2

2(s−m)
(0) = 1

2

and gχ2
2(s−m)

(∞) = 0. Consequently, the lower endpoint of the PI can be chosen simply as L5(ym) = ym, this leads
that the (1− τ)100% PI is (ym, U5(ym)) as a modified of SLPI for ym+1.

3.4. Bayesian Prediction Interval

Our aim of this section is to obtain the Bayes predictive intervals for the sth future record, s > m, based on observed
records data from K(λ, β) distribution under SE and LINEX loss functions. Let us define the survival prediction
function of ys, s > m, based on the observed record sample, Y = (y1, y2, ..., ym), as

SP (ys|Y, λ, β) = Eposterior[S(ys|Y, λ, β)]

=

∫ ∞

0

∫ ∞

0

S(ys|Y, λ, β)× π(λ, β|Y)dλdβ.
(54)
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AL-OLAIMAT ET AL. 11

Where S(ys|Y, λ, β) is the survival function of ys, and S(ys|Y, λ, β)= S(ys|ym, λ, β) due to Markovian property
of record statistics, thus

S(ys|ym, λ, β) = Pr(Y > ys|ym)

=

∫ 1

ys

f(t|ym, λ, β)dt

=

∫ 1

ys

[H(t)−H(ym)]s−m−1

Γ(s−m)

f(t|λ, β)
1− F (ym|λ, β)

dt

By making the transformation v = H(t)−H(ym) and using the relation between the incomplete gamma function
and the poisson distribution, the survival function S(ys|ym, λ, β) reduces to the form

S(ys|ym, λ, β) =

s−m−1∑
i=0

1−F (y)
1−F (ym) [log(

1−F (ym)
1−F (y) )]i

i!
(55)

using the Eqs.(55) and (1), the survival function S(ys|ym, λ, β) is obtained as follows:

S(ys|ym, λ, β) =

s−m−1∑
i=0

e−λ(Rβ
s−Rβ

m)λi (R
β
s −Rβ

m)i

i!
(56)

Now, by substitute the Eq.(56)in the Eq.(54), then the survival prediction function of ys, is given by:

SP (ys|ym, λ, β) =

∫ ∞

0

∫ ∞

0

[

s−m−1∑
i=0

e−λ(Rβ
s−Rβ

m)λi (R
β
s −Rβ

m)i

i!
]× π(λ, β|data)dλdβ (57)

It is obvious that Eq.(57) can not be expressed in a closed form and hence it can not be evaluated analytically.
For this, we propose to approximate Eq.(57) by using an importance sampling technique as suggested by Chen
(1999)[10]. We need the following lemma for further development.

Lemma 3.1
The conditional distribution of β given the observed records, π1(β|data), is log concave.

Proof
The log likelihood of conditional distribution of β given the observed records, Eq. (26), is given by:

log π1(β|data) ∝ −(m+ a1) log (b1 +Rβ
m) + (m+ a2 − 1) log (β)− β(b2 −

m∑
i=1

logRi) (58)

By differentiating log π1(β|data) twice with respect to β, we get:

∂2 log π1(β|data)
∂β2

= −(m+ a1)

Ç
(b1 +Rβ

m)Rβ
m(logRm)2 − (Rm logRm)2

(b1 +Rβ
m)2

å
− m+ a2 − 1

β2
(59)

Since ∂2 log π1(β|data)
∂β2 < 0, this follows that π1(β|data) is log-concave density.

Since π1(β|data) has a log-concave density, using the idea of Devroye (1984) it is possible to generate a sample
from π1(β|data). Moreover, since π2(λ|β, data) follows gamma, it is quite simple to generate from π2(λ|β, data).
Now we would like to provide the importance sampling procedure to compute the survival prediction estimators
and also to construct the Bayesian PIs of ys. Using Lemma (3.1), a simulation consistent estimator for the predictive
survival function of ys can be obtained using the following algorithm:
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algorithm 3.2
step 1: Generate β from the log concave density function π1(β|data), Eq. (26), by using the method proposed
by Devroy (1984) as follows:

(a) Compute c = π1(m|data) where m is the mode of π1(.|data), also compute d = log c.

(b) Generate U uniform on [0, 2] and E exponential random variate where E independent of U .
(c) If U ≤ 1, then β = U and T = −E, else β = 1 + E∗ and T = −E − E∗, where E∗ is a new exponential

random variate.
(d) Set β = m+ β

c and if T ≤ log π1(β|data)− d then β is a sample from π1(.|data) else go to step (b).
step 2: For each β obtained in step (1), generate λ from the marginal posterior density function of λ given β,
in step (1), and data, π2(λ|β, data).
step 3: Repeat step (1) and step (2) M times, and obtain MCMC-samples, (λj , βj), j = 1, 2, ...,M .

Then the survival prediction estimators of ys under SE loss function ŜSES , and under LINEX loss function
ŜLES , are obtained, respectively, as

ŜSES(ys) =
1

M

M∑
j=1

[

s−m−1∑
i=0

e−λj(R
βj
s −R

βj
m )λi

j

(R
βj
s −R

βj
m )i

i!
] (60)

ŜLES(ys) =
−1

ν
log[

1

M

M∑
j=1

e−ν
∑s−m−1

i=0 e−λj(R
βj
s −R

βj
m )λi

j
(R

βj
s −R

βj
m )i

i! ] (61)

Therefore, the (1− τ)% Bayesian predictive interval for ys, s > m under SE loss is given by (L5(ym), U5(ym))
where L5(ym) and U5(ym)) can be obtained by solving the following non-linear equations simultaneously

Pr(Y > L(ym)|ym) = 1− τ

2
⇔ ŜSES(L(ym)) = 1− τ

2

Pr(Y > U(ym)|ym) =
τ

2
⇔ ŜSES(U(ym)) =

τ

2

(62)

and, the (1− τ)% Bayesian predictive interval for ys, s > m under LINEX loss function is given by
(L6(ym), U6(ym)) where L6(ym) and U6(ym)) can be obtained by solving the following non-linear equations
simultaneously

Pr(Y > L|data) = 1− τ

2
⇔ ŜLESL(ym) = 1− τ

2

Pr(Y > U |data) = τ

2
⇔ ŜLESU(ym) =

τ

2

(63)

Thus we need to apply an appropriate numerical technique to solve these non-linear equations (62)and (63). As
a special case when s = m+ 1, (1− γ)% PI for ym+1, can be obtained by setting s = m+ 1 in the Eqs.(62)and
(63).

4. Data Analysis

In this section, we study the proposed prediction classical and Bayesian methods for records from real and
simulated data sets from two-parameter Kies distribution.

4.1. Real Data: Total Annual Rainfall

In this example, we analyze the total annual rainfall (in inches) during 25 years from 1984-2008 recorded at Los
Angeles Civic Center. This data is given below, see
http : // www.laalmanac.com/weather/we08aa.php:

Stat., Optim. Inf. Comput. Vol. x, Month 202x

 http:// www.laalmanac.com/weather/we08aa.php


AL-OLAIMAT ET AL. 13

12.82 17.86 7.66 2.48 8.08 7.35 11.99 21.00 7.36
8.11 24.35 12.44 12.40 31.01 9.09 11.57 17.94 4.42
16.42 9.25 37.96 13.19 3.21 13.53 9.08

Firstly, all observations have been divided over 100, where we can also divide by any number greater than 38, in
order to transform them to be in (0, 1), the support of K(λ, β) distribution. Then, the well known Kolmogorov-
Smirnov (K-S) goodness of fit test is used to test whether the Kies distribution adequately fits this data set or not.
The MLEs of λ and β have been computed based on the complete sample using Newton Raphson method and
found to be 11.1410 and 1.4171, respectively. The corresponding K-S test statistic and the associated P-value are
equal to 0.1674 and 0.4851, respectively. Accordingly, one cannot reject the hypothesis that the data set is coming
from K(λ, β) distribution.
It can be easily seen that the upper records obtained from this data set are: 0.1282, 0.1786, 0.2100, 0.2435, 0.3101,
0.3796. Based on these records, we compute the value of the predictors of the 7th, 8th and 9th future records using
point and interval prediction methods including, MLP, MMLP, BUP, CMP and Bayes predictor as well as the pivotal
quantity, HCD, SL and Bayesian PIs. To study how sensitive are the Bayes estimates and the Bayes predictors for
the choice of the hyper-parameters, we consider two priors as follows: Prior 1 : a1 = 24, b1 = 2, a2 = 7, b2 = 5,
and Prior 2 : a1 = 12, b1 = 1, a2 = 12, b2 = 9.
Tables (1) and (2) summarize the results of point and interval predictors of the 7th, 8th and 9th future records,
respectively, based on both the classical and the Bayesian approaches.

Table 1. predicted values for the 7th, 8th and 9th future records based on the real data set(I)

m Ys MLP MMLP BUP CMP Bayes predictor
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

m= 6

Y7 - 0.3796 0.4043 0.3971 0.4046 0.4046 0.4047 0.4048 0.4446 0.4446 0.4443 0.4433

Y8 0.4014 0.4090 0.4263 0.4215 0.4306 0.4306 0.4315 0.4344 0.4966 0.4966 0.4963 0.4952

Y9 0.4207 0.4338 0.4463 0.4426 0.4497 0.4497 0.4505 0.4530 0.5346 0.5346 0.5342 0.5328

Table 2. 95% PIs for the 7th, 8th and 9th future records based on the real data set(I)

m Ys Pivot HCD SPL BPIs
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

m= 6

y7 (0.3803, 0.4620) (0.3796, 0.4490) (0.3796, 0.3917) (0.1701, 0.3997) (0.1701, 0.3998) (0.1677, 0.3994) (0.1596, 0.3987) (0.2114, 0.5122) (0.2114, 0.5122) (0.2093, 0.5112) (0.2028, 0.5084)

y8 (0.3862, 0.4934) (0.3808, 0.4806) (0.3816, 0.4812) (0.3796, 0.4205) (0.3647, 0.4205) (0.3637, 0.4202) (0.3654, 0.4192) (0.3796, 0.5655) (0.3791, 0.5656) (0.3786, 0.5639) (0.3794, 0.5595)

y9 (0.3961, 0.5170) (0.4447, 0.51394) (0.3908, 0.5078) (0.2593, 0.4370) (0.2593, 0.4370) (0.2578,0.4367) (0.2522, 0.4357) (0.175, 0.6025) (0.1752, 0.6026) (0.1659, 0.6004) (0.1334, 0.5947)

4.2. Real Data II: Size of Rocks

In this example, we study the proposed prediction methods, based on the following data of Dunsmore (1983)[12]
which is discussed by Awad and Raqab (2000)[7]. This data shows the sizes of rocks to be crushed at any operation.
If the size of the rock being crushed is greater than any that has been crushed before then a crushing machine has
to be rest. These data are presented as follows:

9.3 0.6 24.4 18.1 6.6 9.0
14.3 6.6 13.0 2.4 5.6 33.8

Firstly, all observations have been divided over 100 in order to transform them to be in (0, 1), the support of
K(λ, β) distribution. Then, to check the validity of the use of K(λ, β) distribution to fit this data set, The K-S
test is applied. The K-S distance and its respective p-value are computed to be K-S= 0.1184 and p-value= 0.9078,
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respectively. Hence, it is quite reasonable to indicate that K(λ, β) distribution is adequately fitting this data.
The MLEs of λ and β have been computed based on the complete sample numerically using Newton Raphson
method to be 7.8460 and 1.1105, respectively. The record values extracted from the original data set are: 0.093,
0.244, 0.338.
Based on the proposed prediction methods presented in the previous sections, the point predictors and PIs of the 4th,
5th and 6th future records are computed and presented in Tables (3) and (4), respectively. In the context of Bayesian
predictors, to examine the sensitivity of the hyperparameters (a1, b1, a2, b2) we used two different choices of
the hyperparameters: Prior 1 : a1 = 16, b1 = 8, a2 = 2, b2 = 7 and Prior 2 : a1 = 4, b1 = 0.5, a2 = 5.5, b2 = 5,
under SE and LINEX loss functions.

Table 3. predicted values for the 4th, 5th and 6th future records based on the real data set(II)

m Ys MLP MMLP BUP CMP Bayes predictor
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

3

Y4 - 0.3380 0.3800 0.3707 0.3848 0.3848 0.3848 0.3850 0.3911 0.3911 0.3918 0.3935

Y5 0.3704 0.3936 0.4152 0.4094 0.4233 0.4233 0.4236 0.4246 0.4329 0.4329 0.4341 0.4374

Y6 0.3968 0.4336 0.4453 0.4418 0.4585 0.4584 0.4593 0.4616 0.4698 0.4698 0.4715 0.4757

Table 4. 95% PIs for the 4th, 5th and 6th future records based on the real data set(II)

m Ys Pivot HCD SPL BPIs
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

3

y4 (0.3393, 0.4699) (0.3380, 0.4512) (0.3380, 0.3598) (0.1059, 0.4098) (0.1060, 0.4098) (0.1034, 0.4095) (0.0951, 0.4085) (0.1156, 0.4355) (0.1156, 0.4355) (0.1128, 0.4344) (0.1034, 0.4314)

y5 (0.3501, 0.5125) (0.3402, 0.4955) (0.3428, 0.4974) (0.3380, 0.4575) (0.3301, 0.4575) (0.3378, 0.4571) (0.3379, 0.4559) (0.3380, 0.4903) (0.3332, 0.4903) (0.3231, 0.4885) (0.3317, 0.4839)

y6 (0.3674, 0.5427) (0.3480, 0.5209) (0.3612, 0.5338) (0.1479, 0.4890) (0.1480, 0.4891) (0.1446, 0.4886) (0.1339, 0.4873) (0.1558, 0.5338) (0.1559, 0.5338) (0.1484, 0.5307) (0.3480, 0.5230)

4.3. Simulated Data

Here we illustrate the usefulness of the proposed prediction methods for a simulated random sample of size 20
generated from Kies distribution with λ = 2 and β = 1 as follows: The upper record values extracted from the

0.1811 0.1293 0.5248 0.3133 0.4067 0.5709 0.2763 0.2429 0.0219 0.0574
0.5127 0.5185 0.1941 0.4240 0.0435 0.1036 0.0065 0.6788 0.3354 0.0133

above data set are: 0.1811, 0.5248, 0.5709, 0.6788.
Based on the above record values and based on the proposed prediction methods, we computed the point predictors
and PIs of the 5th, 6th and 7th future records and these results are presented in Tables (5) and (6). In context of
Bayesian procedure ,two priors are considered assuming

Prior 1 : a1 = 20, b1 = 10, a2 = 9, b2 = 8,

P rior 2 : a1 = 10, b1 = 5, a2 = 14, b2 = 11,

under SE and LINEX loss function and using Different choices of LINEX parameter ν; namely -0.01, 0.5 and 2.
From Tables (5) and (6) we observed that the point predictors of y5, y6 and y7 are lying within the so obtained

prediction intervals, also, we can see the PIs become wider as s increases. It is evident from tables, the length of
the classical PIs are shorter than the Bayesian PIs, and the best of them is SL PIs in terms of the length interval.

5. Simulation Results of the Prediction Methods

In this section we present a simulation study to assess the performance of the proposed prediction methods which
were discussed in chapter 4. Performances are measured in terms of mean square prediction errors (MSPEs) and
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Table 5. predicted values for the 5th, 6th and 7th future records based on the simulated data set

m Ys MLP MMLP BUP CMP Bayes predictor
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

4
Y5 - 0.6788 0.7188 0.7101 0.7145 0.7145 0.7151 0.7167 0.7128 0.7127 0.7133 0.7148

Y6 0.7133 0.7297 0.7506 0.7461 0.7437 0.7437 0.7450 0.7487 0.7366 0.7366 0.7374 0.7394

Y7 0.7408 0.7623 0.7763 0.7753 0.7649 0.7648 0.7664 0.7712 0.7605 0.7605 0.7617 0.7651

Table 6. 95% PIs for the 5th, 6th and 7th future records based on the simulated data

m Ys Pivot HCD SPL BPIs
Prior 1 prior 2

BESE BELE BESE BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

4

y5 (0.6801, 0.7983) (0.6788, 0.7719) (0.6788, 0.6980) (0.6381,0.7275) (0.6404, 0.7276) (0.6111, 0.7269) (0.5813, 0.7249) (0.6539, 0.7469) (0.6567, 0.7470) (0.6236, 0.7456) (0.5872, 0.7420)

y6 (0.6908, 0.8305) (0.6807, 0.8036) (0.6842, 0.8059) (0.6788, 0.7598) (0.6788, 0.7598) (0.6788, 0.7585) (0.6788, 0.7550) (0.6788, 0.7741) (0.6778, 0.7742) (0.6788, 0.7727) (0.6788, 0.7689)

y7 (0.7078, 0.8513) (0.7251, 0.7738) (0.6501, 0.8132) (0.6463, 0.7855) (0.6485, 0.7855) (0.6188, 0.7837) (0.5895, 0.7790) (0.6488, 0.7947) (0.6530, 0.7947) (0.6218, 0.7930) (0.5947, 0.7886)

the average biases of the predictors. We also compare the PIs, which are presented in the previous sections, in terms
of coverage probabilities (CPs) and the average lengths (ALs). For conducting the Bayesian analysis, under the SE
and LINEX loss functions, we assume four different priors as follows: Prior 0: a1 = 0, b1 = 0, a2 = 0, b2 = 0.
For λ = 1, β = 2: Prior 1: a1 = 20, b1 = 20, a2 = 16, b2 = 8.
For λ = 2, β = 1: Prior 2: a1 = 1, b1 = 0.5, a2 = 20, b2 = 20.
For λ = 2, β = 2: Prior 3: a1 = 1, b1 = 0.5, a2 = 10, b2 = 5.
These priors are proposed so as λ has the same mean but different variances, similarly for β. The main purpose
of this is to reflect the sensitivity of our inferences to the choice of the hyper-parameters. The shape parameter of
LINEX loss function ν is assumed to equal -0.01, 0.5 and 2, separately. In each case, we compute the value of the
point predictor (classical and Bayesian). We also compute 95% PIs based on the pivotal quantity, HCD, SL and
Bayesian methods.
Record samples from the Kies distribution were randomly generated using

Ym
D
=

( 1λ
∑m

i=1 X
∗
i )

1
β

1 + ( 1λ
∑m

i=1 X
∗
i )

1
β

, (64)

where {X∗
i }mi=1 is a sequence of i.i.d. Exp(1) random variables. The simulation process is repeated 1000 times.

Using these random samples, MSPEs and prediction biases of the predictors are reported. Moreover, the CPs and
ALs of the PIs are computed. The obtained results involving MSPEs, prediction biases, CPs, and ALs are presented
in Tables(7) to (12).

From Tables (7), (8) and (9), and by considering the prediction average biases as an optimality criterion, there
is a clear evidence that the BUPs are the most preferred classical point predictors. When comparing among the
classical methods, one can see that the prediction average biases of the CMP are less than those of the MLP and
MMLP for all the considered cases. Further, the prediction average biases of the MMLP are lower than those of
MLP across all the considered cases.
When comparing Bayesian and frequentist methods, we observe that Bayes predictors perform better under
different error loss functions and priors in terms of bias compared with MLPs and MMLPs. By considering
MSPEs as an optimality criterion, it is also observed that Bayes predictors outperform MLPs and MMLPs.
Additionally, Bayes predictors under the informative priors (Prior 1, Prior 2 and Prior 3 ) are more efficient
than the corresponding Bayes predictors under Prior 0. Finally, when comparing among classical methods, the
BUPs provide lower MSPEs than the other predictors.
From Tables (10), (11) and (12), and by considering the average length (AL) as an optimality criterion, the SL
method is shown to be more efficient than the other methods for obtaining PIs. Among the HCD and the pivotal
quantity methods, the HCD PIs are superior to the pivotal PIs in most considered cases in terms of ALs. When
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Table 7. MSPEs and Average Bias from simulations of λ = 1 and β = 2

m Ys Criterion MLP MMLP BUP CMP Prior 0 prior 1

BESE
BELE BESE

BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

m=5
Y7

MSPE 0.001492 0.001276 0.000459 0.000465 0.001538 0.001541 0.001432 0.00127 0.000724 0.000725 0.000699 0.000649
Bias -0.025749 -0.020434 -0.000026 -0.002417 -0.014546 -0.014617 -0.011204 -0.002874 -0.006494 -0.006517 -0.005386 -0.002143

Y8
MSPE 0.002023 0.001688 0.000458 0.000459 0.002091 0.002096 0.001909 0.001649 0.000846 0.000847 0.000811 0.000743
Bias -0.029308 -0.021296 -0.000250 -0.001470 -0.018323 -0.018420 -0.013771 -0.002445 -0.007216 -0.007246 -0.005708 -0.001262

m=6
Y8

MSPE 0.000849 0.000745 0.000256 0.000258 0.000459 0.000460 0.000436 0.000426 0.000333 0.000334 0.000328 0.000320
Bias -0.019653 -0.015785 0.000655 -0.001638 -0.004980 -0.005027 -0.002732 0.003049 -0.001814 -0.001830 -0.001048 0.001246

Y9
MSPE 0.001666 0.001460 0.000420 0.000426 0.000616 0.000617 0.000566 0.000529 0.000383 0.000384 0.000372 0.000353
Bias -0.025196 -0.019210 -0.002515 -0.003844 -0.007818 -0.007883 -0.004729 0.003205 -0.003305 -0.003325 -0.002780 0.000744

m=7
Y9

MSPE 0.000674 0.000589 0.000298 0.000313 0.000388 0.000389 0.000378 0.000375 0.000286 0.000286 0.000283 0.000277
Bias -0.017886 -0.015077 -0.002828 -0.004944 -0.007485 -0.007520 -0.005830 -0.003474 -0.005342 -0.005355 -0.004736 -0.002978

Y10
MSPE 0.000716 0.000604 0.000292 0.000296 0.000539 0.000539 0.000522 0.000528 0.000367 0.000368 0.000365 0.000363
Bias -0.017047 -0.012547 -0.000504 -0.001886 -0.005522 -0.005561 -0.003252 0.002697 -0.001536 -0.001553 -0.000724 0.001703

m=8
Y10

MSPE 0.000529 0.000478 0.000209 0.000215 0.000332 0.000332 0.000322 0.000311 0.000264 0.000264 0.000261 0.000252
Bias -0.014086 -0.011842 -0.000702 -0.002672 -0.003652 -0.003677 -0.002404 0.000932 -0.002214 -0.002224 -0.001756 -0.000378

Y11
MSPE 0.000866 0.000762 0.000292 0.000299 0.000551 0.000552 0.000529 0.000501 0.000419 0.000419 0.000412 0.000395
Bias -0.017215 -0.013541 -0.002641 -0.003970 -0.005774 -0.005810 -0.004032 0.000622 -0.003266 -0.003271 -0.002619 0.002931

Table 8. MSPEs and Average Bias from simulations of λ = 2 and β = 1

m Ys Criterion MLP MMLP BUP CMP Prior 0 prior 2

BESE
BELE BESE

BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

m=5
Y7

MSPE 0.006668 0.005880 0.001866 0.001870 0.004541 0.004554 0.004346 0.003902 0.002720 0.002720 0.002717 0.002713
Bias -0.048639 -0.038692 -0.000893 -0.004069 -0.026404 -0.026460 -0.023726 -0.016903 -0.013969 -0.013973 -0.013787 -0.013326

Y8
MSPE 0.007759 0.006576 0.001544 0.001536 0.005861 0.005868 0.005525 0.004803 0.002859 0.002859 0.002854 0.002844
Bias -0.052920 -0.039338 -0.001004 -0.001672 -0.030690 -0.030766 -0.027083 -0.017871 -0.013394 -0.013401 -0.013067 -0.012201

m=6
Y8

MSPE 0.004181 0.003571 0.001033 0.001082 0.001787 0.001788 0.001747 0.001676 0.0012774 0.001277 0.001278 0.001271
Bias -0.043753 -0.036647 -0.005959 -0.009032 -0.017547 -0.017584 -0.015776 -0.011111 -0.008661 -0.008673 -0.008453 -0.007864

Y9
MSPE 0.004781 0.003882 0.000988 0.000991 0.002315 0.002317 0.002224 0.002049 0.001393 0.001394 0.001391 0.001385
Bias -0.044832 -0.034681 -0.004063 -0.005064 -0.019082 -0.019132 -0.016684 -0.010374 -0.006791 -0.006807 -0.006462 -0.005522

m=7
Y9

MSPE 0.002482 0.002163 0.000934 0.000964 0.000728 0.000729 0.000705 0.000658 0.000553 0.000553 0.000552 0.000541
Bias -0.032610 -0.027503 -0.003014 -0.005911 -0.009754 -0.009778 -0.008530 -0.005255 -0.005776 -0.005778 -0.005645 -0.005315

Y10
MSPE 0.002956 0.002462 0.001021 0.001034 0.000945 0.000946 0.000903 0.000818 0.000582 0.000582 0.000581 0.000580
Bias -0.034864 -0.027463 -0.003136 -0.004354 -0.013391 -0.013434 -0.011725 -0.007236 -0.007706 -0.007710 -0.007472 -0.006851

m=8
Y10

MSPE 0.001291 0.001143 0.000531 0.000553 0.000965 0.000965 0.000939 0.000871 0.000771 0.000771 0.000768 0.000760
Bias -0.021682 -0.018040 -0.002648 -0.005155 -0.010264 -0.010283 -0.009383 -0.006975 -0.007069 -0.007072 -0.006903 -0.006431

Y11
MSPE 0.001623 0.001382 0.000515 0.000528 0.001115 0.001116 0.001075 0.000982 0.000826 0.000826 0.000822 0.000811
Bias -0.024281 -0.018911 -0.004914 -0.006263 -0.011421 -0.011455 -0.010221 -0.006917 -0.007066 -0.007070 -0.006832 -0.006185

Table 9. MSPEs and Average Bias from simulations of λ = 2 and β = 2

m Ys Criterion MLP MMLP BUP CMP Prior 0 prior 3

BESE
BELE BESE

BELE

ν = −0.01 ν = 0.5 ν = 2 ν = −0.01 ν = 0.5 ν = 2

m=5
Y7

MSPE 0.001955 0.001670 0.000757 0.000779 0.000909 0.000910 0.000855 0.000846 0.000641 0.000642 0.000635 0.000634
Bias -0.031369 -0.025596 -0.001186 -0.004084 -0.007873 -0.007952 -0.004162 0.005065 0.001336 0.001311 0.002576 0.005931

Y8
MSPE 0.003108 0.002570 0.000814 0.000834 0.001273 0.001276 0.001182 0.001188 0.000819 0.000819 0.000815 0.000837
Bias -0.039313 -0.030320 -0.004476 -0.006068 -0.019799 -0.019909 -0.014669 -0.009371 -0.008746 -0.008778 -0.007192 -0.005370

m=6
Y8

MSPE 0.001339 0.001179 0.000547 0.000565 0.000720 0.000721 0.000696 0.000695 0.000549 0.000549 0.000545 0.000544
Bias -0.023939 -0.019788 -0.001523 -0.004253 -0.007077 -0.007131 -0.004493 0.002078 -0.002288 -0.002305 -0.003835 -0.001974

Y9
MSPE 0.001727 0.001483 0.000524 0.000529 0.001027 0.001028 0.000988 0.001006 0.000718 0.000719 0.000718 0.000732
Bias -0.026193 -0.019552 -0.000711 -0.002417 -0.010211 -0.010287 -0.006628 0.002478 -0.002664 -0.002688 -0.001468 0.001625

m=7
Y9

MSPE 0.000794 0.000690 0.000271 0.000295 0.000666 0.000667 0.000639 0.000601 0.000516 0.000516 0.000501 0.000497
Bias -0.019820 -0.016521 -0.001796 -0.004363 -0.006901 -0.006940 -0.005001 0.004139 -0.004167 -0.004182 -0.003465 -0.002487

Y10
MSPE 0.001097 0.000926 0.000315 0.000324 0.000952 0.000953 0.000901 0.000868 0.000672 0.000672 0.000658 0.000631
Bias -0.021694 -0.016319 -0.001743 -0.003457 -0.007434 -0.007489 -0.004794 0.002123 -0.004070 -0.004090 -0.003104 -0.001907

m=8
Y10

MSPE 0.000787 0.000712 0.000261 0.000271 0.000402 0.000402 0.000387 0.000371 0.000309 0.000309 0.000305 0.000295
Bias -0.017853 -0.015357 -0.000679 -0.003128 -0.004693 -0.004723 -0.003256 0.002792 -0.002634 -0.002645 -0.002062 -0.001984

Y11
MSPE 0.001197 0.001065 0.000353 0.000357 0.000842 0.000843 0.000808 0.000762 0.000623 0.000623 0.000611 0.000587
Bias -0.020459 -0.016292 -0.000984 -0.002671 -0.007673 -0.007715 -0.005653 0.004162 -0.005007 -0.005023 -0.004231 -0.002256

adopting the CPs as the optimality criterion, the simulated CPs of PIs based on the pivotal quantity method are
higher than those associated with the other methods in most considered cases. Moreover, one can see that the
pivotal quantity PIs perform very well when compared to the Bayesian PIs in most the considered cases. However,
Bayesian PIs outperform HCD and SL PIs in terms of CPs.
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Table 10. CPs and ALs from simulations of λ = 1 and β = 2

m Ys Criterion Pivot HCD SL BPIs

BESE
BELE

ν = −0.01 ν = 0.5 ν = 2

m=5
y7

CP 0.94 0.69 0.68 0.97 0.97 0.97 0.90
AL 0.081834 0.068411 0.054774 0.091521 0.107440 0.095436 0.093739

y8
CP 0.95 0.61 0.63 0.99 0.99 0.99 0.97
AL 0.08628 0.069513 0.068958 0.104510 0.121960 0.101750 0.096548

m=6
y8

CP 0.96 0.78 0.76 0.971429 0.971429 0.971429 0.957143
AL 0.067859 0.052533 0.046157 0.078527 0.099947 0.092039 0.090749

y9
CP 0.98 0.64 0.64 0.99 0.99 0.99 0.97
AL 0.072816 0.058481 0.058322 0.087110 0.108130 0.085808 0.082046

m=7
y9

CP 0.93 0.67 0.67 0.94 0.94 0.86 0.86
AL 0.060137 0.046778 0.037941 0.071483 0.116410 0.066859 0.077446

y10
CP 0.97 0.67 0.67 0.98 0.99 0.80 0.78
AL 0.065109 0.047001 0.045184 0.076375 0.124930 0.060163 0.067669

m=8
y10

CP 0.99 0.86 0.84 0.97 0.97 0.94 0.88
AL 0.049566 0.048812 0.038217 0.069515 0.130260 0.081471 0.081768

y11
CP 0.99 0.76 0.76 0.97 0.98 0.92 0.92
AL 0.054562 0.050493 0.045384 0.076367 0.142340 0.070210 0.086240

Table 11. CPs and ALs from simulations of λ = 2 and β = 1

m Ys Criterion Pivot HCD SL BPIs

BESE
BELE

ν = −0.01 ν = 0.5 ν = 2

m=5
y7

CP 0.95 0.73 0.69 0.93 0.93 0.91 0.90
AL 0.138920 0.109680 0.093530 0.157380 0.157450 0.144780 0.133160

y8
CP 0.95 0.66 0.65 0.98 0.98 0.98 0.93
AL 0.141140 0.122930 0.116990 0.175080 0.176500 0.156470 0.144770

m=6
y8

CP 0.95 0.72 0.68 0.90 0.90 0.89 0.88
AL 0.108720 0.095392 0.076062 0.121080 0.122890 0.117540 0.108920

y9
CP 0.96 0.69 0.72 0.91 0.91 0.88 0.87
AL 0.112680 0.109600 0.107510 0.137210 0.138430 0.133780 0.125030

m=7
y9

CP 0.95 0.79 0.76 0.89 0.89 0.87 0.87
AL 0.092416 0.090503 0.066912 0.101680 0.104870 0.098422 0.090173

y10
CP 0.95 0.749 0.754 0.87 0.87 0.87 0.82
AL 0.096927 0.096199 0.091193 0.114580 0.116100 0.111200 0.102800

m=8
y10

CP 0.95 0.82 0.79 0.86 0.86 0.86 0.83
AL 0.078396 0.074663 0.058354 0.084383 0.091762 0.081671 0.074334

y11
CP 0.95 0.75 0.77 0.91 0.91 0.91 0.90
AL 0.083206 0.081510 0.080934 0.099775 0.099618 0.098116 0.090220

6. Conclusion

In this study, we have investigated the prediction of future records for the two-parameter Kies distribution. Both
classical and Bayesian approaches were employed to develop point and interval predictors of the future records.
The performance of these predictors was compared through Monte Carlo simulation studies. It was observed that,
among all point predictors, the BUP showed the best performance in terms of bias, while the BUP and the CMP
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Table 12. CPs and ALs from simulations of λ = 2 and β = 2

m Ys Criterion Pivot HCD SL BPIs

BESE
BELE

ν = −0.01 ν = 0.5 ν = 2

m=5
y7

CP 0.96 0.81 0.77 0.91 0.91 0.90 0.88
AL 0.092129 0.111960 0.062277 0.101150 0.127210 0.097757 0.088902

y8
CP 0.97 0.69 0.72 0.83 0.79 0.83 0.80
AL 0.097837 0.086782 0.085165 0.117650 0.140730 0.114940 0.104500

m=6
y8

CP 0.93 0.84 0.78 0.87 0.86 0.89 0.86
AL 0.071806 0.081650 0.056904 0.086710 0.092262 0.084933 0.076393

y9
CP 0.94 0.72 0.71 0.87 0.87 0.86 0.83
AL 0.078153 0.075926 0.073548 0.096249 0.098934 0.093238 0.085162

m=7
y9

CP 0.96 0.73 0.72 0.93 0.91 0.91 0.90
AL 0.065872 0.061657 0.045903 0.082202 0.129440 0.084075 0.076667

y10
CP 0.98 0.6 0.53 0.91 0.90 0.91 0.89
AL 0.072133 0.066071 0.061670 0.094351 0.146290 0.092539 0.081635

m=8
y10

CP 0.97 0.82 0.81 0.96 0.97 0.96 0.95
AL 0.056281 0.053228 0.043322 0.084983 0.267850 0.091926 0.087719

y11
CP 0.97 0.78 0.75 0.91 0.92 0.90 0.90
AL 0.062486 059308 059120 0.088974 0.250540 0.087110 0.078726

were quit close to each other in terms of MSPEs. The MLP and the MMLP also performed similarly.
Additionally, it was noted that the Bayesian predictors outperformed the MLP and MMLP in terms of both bias
and MSPEs, especially under SE and LINEX loss functions. In the context of prediction intervals, the SL method
was found to be the most suitable for obtaining PIs of the unobserved future records when adopting ALs as the
optimality criterion. When adopting the CPs as the optimality criterion, it was observed that the pivotal quantity
method proved to be an efficient technique for constructing PIs in most of the considered cases.
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