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1. Introduction

In connection with the study of braking strength of glass, Kies (1958)[15] proposed a functional form of the
Weibull distribution(WD), which later became known in the literature as the Kies distribution. Kumar and Dharmaja
(2014)[17] studied the properties of the Kies distribution along with its applications in the areas of medical and
engineering sciences. Moreover, they shown that due to of flexibility of the bathtub-shaped hazard function, it
provides a better alternative than other extended versions of the WD, namely the generalized Weibull (GW)
distribution, modified Weibull (MW) distribution, beta Weibull (BW) distribution and beta generalized Weibull
(BGW) distribution, for modeling the lifetime data sets. Furthermore, they considered the estimation of Kies
parameters using maximum likelihood estimation method.

Kumar and Dharmaja (2013)[16] studied a special case of the Kies distribution, called the reduce Kies distribution
(RKD), and showed that the RKD enjoys certain characteristic properties similar to those of the WD. In 2017,
they introduced and studied a generalized version of the extended reduced Kies distribution, called the modified
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Kies distribution (MKD), see Kumar and Dharmaja (2017a)[18]. In addition, Kumar and Dharmaja (2017b)[19]
proposed an exponentiated reduced Kies distribution with two parameters. Al-Olaimat et al. (2021)[5] derived some
properties of record statistics from the two-parameter Kies distribution. They also studied the estimation of the two-
parameter Kies distribution under record values using classical and Bayesian estimation methods, comparing the
performance of these estimators for several samples using extensive simulations.

The cumulative distribution function (CDF), probability density function (PDF), hazard rate and cumulative hazard
rate functions of the two-parameter Kies distribution,K()\, 3), are given by:

F(x;\,p)=1- e_A(ﬁ)ﬁ, (1
Azf—1 -
A B) = (fxwe”(w>57 )
Azf1
W\, B) = (f_:”w, ©)
and 5
Hia:AB) = (1) - )

respectively, where 0 <z < 1, A > 0 and 8 > 0. The Kies distribution has a bounded range, which makes it
appropriate model for fitting real data sets with a bounded range. However, there are many situations where
observations can only take values within a limited range, such as fractions, percentages or proportions. Papke
and Wooldridge (1996)[22] pointed out that variables in many economic applications like the proportion of income
spent on non-durable consumption, the fraction of total weekly hours spent on working, a fraction of land area
allocated to agriculture and industry market shares are all bounded between zero and one. Furthermore, Genc
(2013)[14] indicated that when the reliability is measured as a ratio or percentage, it is important to have models
defined on the unit interval in order to have reasonable results.

Records play an important role in several fields of statistics which date back to Chandler (1952)[9], who first
defined and provided the groundwork for the mathematical theory of records. Let {X;,j > 1} be a sequence of
independent and identically distributed (iid) continuous random variables (r.v.’s) with CDF F'(z) and PDF f(x).
An observation X is defined to be an upper record if X; > X; for every j > 4, and an analogous definition can be
given for lower records (with the inequality being reversed). By convention, the first record X; is called the trivial
record because it is serves as both an upper and a lower record value simultaneously.

The set of the upper record values is given by the r.v.’s Xy;( for k > 1 where

Ul)=1,U(k) =min{j:j>Uk—1),X; > Xyg_1)}
Suppose we have a random sample (not ordered) of size n, say { X1, Xo, ..., X, }, the set

{Xva) = X1, Xu@)s - Xvm) } 5

presents a set of upper record values with size 1 < m < n that is obtained from the random sample. The sequence
U(k), k > 11s called the sequence of upper record times. For simplicity, we denote the sequence of upper record
values { Xy (j)}7, by Y = {Y;}7.

Record statistics arise in many practical fields, including hydrology, meteorology, sports and athletic events,
wherein only records are usually considered. For example, record values are applied in estimating the strength
of the material, predicting sports achievements, and the natural disasters. Al-Olaimat et al. (2021)[5] addressed the
estimation problem for the two-parameter Kies distribution based on record data, specifically using Bayesian and
non-Bayesian methods. For further details and applications on record statistics, readers may refer to Arnold et al.
(1998)[6], Ahsanullah (2004)[1], Ahsanullah and Raqab (2006)[3] and Ahsanullah and Nevzorov (2015)[2].

The prediction problem of future events based on the past and present knowledge is of great interest in statistics.
Considerable several of work has been done on prediction of record values. For example, Bayesian predictive
distributions of future records from an exponential distribution provided by Dunsmore (1983)[12]. Nagaraja
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2 PREDICTION METHODS FOR FUTURE RECORD VALUES

(1988)[21] discussed the predictors of future records from three extreme value distributions. Awad and Ragab
(2000)[7] considered the prediction interval problem of the future record from exponential distribution. Al-
Hussaini and Ahmed (2003)[4] studied Bayesian prediction interval for the future generalized order statistics
(including record values as a special case). The problem of Bayesian prediction of temperature records using
the Pareto model was considered by Madi and Ragab (2004)[20]. Raqab et al. (2007)[25] considered the
problem of predicting the future record values, either point or interval prediction, from the two-parameter Pareto
distribution, based on the past record values observed. Dey et al. (2017)[11] discussed prediction intervals for
future record values from the generalized Rayleigh distribution using both frequentist and Bayesian approaches.
This study emphasizes the practical utility of record-based inference and highlights the comparative strengths of
frequentist and Bayesian methods in predicting future records. Volovskiy and Kamps (2020)[27] investigated the
point prediction of future upper record values for absolutely continuous distribution with a strictly increasing
cumulative distribution functions. They derived a general predictor by maximizing the observed predictive
likelihood function. Furthermore, they illustrated the results for exponential, extreme-value, and power-function
distributions, comparing the performance of the obtained predictors against maximum likelihood predictors using
the mean squared error and Pitman’s measure of closeness criteria. Empacher et al. (2023)[13] studied the point
prediction of future record values based on sequences of previous records using the maximum product of spacings
method. Their study focused on the power function and Pareto distributions, examining both exact and approximate
prediction intervals in terms of their expected lengths and coverage percentages. Their work emphasizes the
growing importance of statistical predictions in sports analytics, an area that has traditionally relied on extreme
value theory for forecasting athletic records. They applied their methods to various athletic data sets as well as
to American football data and discussed the implications of their findings alongside the choice of underlying
distributions.

This paper is motivated by the need to enhance predictive methodologies for future record values, specifically
within the framework of the two-parameter Kies distribution. While previous research has made significant strides
in the field of record statistics, there remains a notable lack of focus on this particular distribution, which possesses
unique properties that make it well-suited for various applications. The main contributions of this study include
deriving several predictive methods, including maximum likelihood, modified maximum likelihood, conditional
median, best unbiased, and Bayesian predictors. in addition, this study presents a robust framework for obtaining
prediction intervals, which enhances the reliability of our predictions. Using Monte Carlo simulation studies,
comprehensive numerical comparisons of the proposed methods are conducted, validating their effectiveness with
both simulated and real-world data.

The remainder of this paper is organized as follows: In Section(2) we derive the maximum likelihood, modified
maximum likelihood, conditional median, best unbiased and Bayesian predictors for future records based on
observed sample. In section(3) we propose various procedures for obtaining the prediction intervals. The Monte
Carlo simulation study that conducts numerical comparisons are performed in section(5). Section(4) presents the
numerical results from both simulated and real data sets for illustrative purpose. Finally, the conclusions of the
paper are summarized in section(6).

2. Point Prediction

Let ys,s > m be the future record. This future record will be predicting via several point processers based on
Y = (y1,¥2, ..., ym), for simplicity, let R; = %, 1=1,2,...,s.

The prediction of future records y based on the a sequence of the first m observed records, Y = {y1,y2, ..., Ym }»
mainly depends on the conditional predictive density function of y, given the observed record data. Using the
Markovian property of record data, the conditional distribution of y, given data, is just the conditional distribution
of y, given y,,, see Arnold et al. (1998),which has the pdf

[H (ys) — H(ym)]s_m_l f(ys|A, B)
I'(s —m) L= F(ym|A B)’

f(ys‘ym;)\yﬂ) = )
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Hence, using Egs.(1), (2) and (4), Eq.(5) reduces to

R6 (RE—RB) ™1 _ s _ps
s|Yms A =\ g s m —AR{—R.] 6

where 0 < y,, < ys < 1.

2.1. Maximum Likelihood Predictor

In this subsection, we will study point predict of y5, s > m using maximum likelihood predictor(MLP) method. Let
Y = {y1, 2, ..., ym } be a sequence of observed records from a population with PDF f(y;6) and F(ys; 0) where
6 = (A, B), then the predictive likelihood function (PLF) of y,, A and /3, which is given by Basak and Balakrishnan
(2003)[8] as:

H(ys;0) — H(ym; 0)) ™!

L(ys; 0, data) Hh (yi, 0 o) f(ys;0). @)
Generally, if §a.p = u(Y), A = v(Y), and 3 = w(Y) are statistics for which
L(U(Y),U(Y),’LU(Y)|Y) = sup L(ysa)‘vﬂ|Y)v (3

Ys A,

then u(Y) is said to be the MLP of ys, 1 < m < s, and v(Y) and w(Y) are the predictive maximum likelihood
estimators (PMLEs) of \ and 3, respectively. Using the Egs.(2), (3)and (4), Eq.(7) will be

~ R’ (RP-RB)~m1 RS 5
L ) ,)\,ﬂ — /\56m+1 7 S m S G*ARS (9)
(¥e:2,8) Eyi(l—yi) I(s=m)  ys(l—ys)
Regardless of the constant terms, the predictive log-likelihood function is given by
log(L(ys, A, B)) x slog(A\) + (m + 1) log(8) + 8 Z log(R
+ (s —m —1)log(R? — R?) (10)
_ s _ _ B
+ (8= Dlog(=p-) = (B4 Dlog(—7-) = AR
By using Eq.(10), the predictive likelihood equations (PLEs) for y,, A and 3 are derived and presented, respectively,
as follows: Dlog(L(ye. A, B))
Og ysa 9 S 3
=2 _ = 11
X T (11
Olog(L(ys; A, B))  m+1 & RPlog Ry — RE log R,y
= + ) logRi+(s—m—1 m
o8 ERRPIE LA TR R (12)
+(1—=AR%)1logR, =0
log(L 2-)° 2, — 1
e
Ys ys(L = y)l(72:)7 — Rim] - ¥s(1 = ¥s 13
ys" !
_/\’8(1—3/5)5“ =0
The PMLE of A is obtained from Eq.(11) and it is given by
f=2 (14)

RB

The PMLE of 3, B, and MLP of y,, yarp, can be obtained by substituting Eq.(14) in Eq.(12) and Eq.(13) then
using numerical methods can be solve these simultaneous equations with respect to 5 and ;.
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4 PREDICTION METHODS FOR FUTURE RECORD VALUES

2.2. Modified Maximum Likelihood Predictor

In practical application, the experimenters wish to use a simple and quick predictor, for this the modified maximum
likelihood predictor (MMLP) of y is suggested. Therefore, the PLF of y,, A and (5 can be decomposed into product
of two functions, the first one L, is the likelihood function of Y, A and 3, which is viewed as a function of A\ and
5. The MLEs of A and 3 were computed by Al-Olaimat et al. (2021)[5] and presented as follows:

m

A= %, (15)
and R m
B= 15> (16)
Zi:1llog(%)

respectively, For more details interested readers may refer to [5] Section (3). The second function Lo is the
conditional PDF of y, given Y, A and 3. Based on m observed record values, we compute the MLEs of A and
B, X and B, and substitute their values onto Lo. Using the modified Ly we can easily find a MMLP of y,. Therefor,
the MMLP of y; is obtained by solving the following equation:

1 . RS ca s
(= v) (s—m—l)ﬂﬂwys—w%w—l =0, (17)

where ys > y,,. Since Eq.(17) can not be solved analytically, a numerical method is needed to compute the MMLP
of ys, ymarrp- For a special case when s = m + 1, we can see Yy prpp = Ym-

2.3. Conditional Median Predictor

Another possible predictor called conditional median predictor (CMP), is proposed in this subsection following
the lines of Raqab (1992)[23]. A predictor Y p is said to be the CMP of y; if it is the median of the conditional
distribution of y, given Y, i.e.,

P((elymi 0. B) < Yorrr) = P(uelymi A 6) > Vorrr) = 5. (18)

Consequently, assume ffc mp = k(ym; A, B) which is a function of y,,, then from Eq.(6), we have

k 77L7>\7 Ss—m—
/ v ? Asfmﬁ Rf (R? - RnL) ! eiA(Rf*an)dys — 1
. ys(1 — ys) I'(s —m)
Setting R? — R = t, we obtain
(K (Bm A.8))P
(Gt s pp ~Rml - ys=m smm—1 —\t 1
—t e Mdt = =.
o T'(s—m) 2

Thus .
(Med(W) + R2)5
1+ (Med(W) + R5)?

Y/VCM P = )

where W ~ Gamma(s —m, §).

Assume that we are interested in predicting the first future prediction, i.e s =m + 1, then W ~ Exp()), with
Median(W)=1 log 2, therefore

(log 2% + RE)5

Yomp = n 51
1+ (log2% 4+ R)?
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2.4. Best Unbiased Predictor

The predictor Y’BU p of ys, s > m is called the beAst unbiased predictor (BUP)if the prediction error YBU P —Ys
has a mean zero and it’s prediction variance, var(Ypyp — ys), is less than or equal to that of any other unbiased
predictor of y;. For known A and 3, the BUP of y; is given by

Yaup = E(Ya|Yim; A, B). (19)

Therefore, using Eq.(6) and the binomial expansion, we can obtain YBU p as the following:

1
YBUP:/ Ys S Ws|ym: A, B)dys

Ym
1 Cm—
1 (Rﬁ—Rﬁ)“"1 \(RP_RP
= N BRE s m (RS—=R) g .
/m /6 S 1 _ F(S _ m) € y‘
)\S_mﬁ s—m—1 s—m 1 (20)
_ —ARP -m- _1\s—m—i—1 pB(s—m—i—1)
— m ]. R
I'(s—m) ¢ ; ( i > (=1) mn
1 pB>i+1)
8 / L Rﬂdyéw
Ym 1 —Ys

when the parameters A and 8 are unknown, the BUP of y, can be approximated by replacing both the parameters
A and j3 by their corresponding MLEs.

2.5. Bayesian Prediction

In this section, we use the Bayesian approach to predict unknown future records based on the observed current
sequence from K (A, 3) distribution. The important task in Bayesian inference is the selection of an appropriate
prior for the unknown parameter. Therefore, we want to assume the parameters A and /3 are independent and follow
gamma distributions; namely Gamma(a1,b1) and Gamma(as, ba), respectively, where the hyper parameters a;,
b1,a2 and b, are preselected and non negative real numbers that are chosen to reflect prior knowledge about A and
B. The choice of the gamma distribution is done for illustrative purposes only and any other suitable prior can be
used instead of this. Moreover, dependent priors can also be assumed. Therefore, the joint prior distribution of A
and [ is obtained as follows:

g\, B) oc A1 TlemhiAgaz—l,=b2f (1)

In order to conduct a Bayesian analysis, we want to use the squared error(SE)loss function, the most commonly
used loss function, which is given as follows L(6, 8) = (§ — 6)2. The SE loss function is a symmetric loss function,
it leads to the identical penalization for overestimation and underestimation, so that it is not an appropriate in some
practical situations. Therefore, several loss functions have been introduced to handle such a problem, for example,
Varian (1975) [26] proposed an extremely helpful asymmetric loss function it is called linear exponential(LINEX)
loss function, which is given as follows L(é7 0) = bler?=9) — u(é — 0) — 1] where v # 0 is the shape parameter
and b is the scale parameter, in our study we assumed b = 1. The LINEX loss function reduce to SE loss function
when v close to zero and therefore almost symmetric. Furthermore, when v > 0, overestimation more serious than
underestimation and when v < 0, underestimation more serious than overestimation.

Let Y = {y1,y2,...,Ym} be the first m upper record values arising from a sequence of iid K(}\, 3) distribution
with CDF, PDF and hazard rate being defined in Eqgs. (1), (2) and (3), respectively., The likelihood function of Y
is given by (see Arnold et al. (1998).

m—1
LOY;AB) = fymi\B) [] R A B)
=1 . o (22)
— RMmH\m _A(l?ynm)ﬁ %7
= A" A"e ilj[l(l—yi)ﬁ"'l'
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6 PREDICTION METHODS FOR FUTURE RECORD VALUES

where 0 <y <y2 < ... <y, <1,A>0and 8 > 0.
In light of the observed upper record, Y = {y1,ya, ..., Ym }, and by combining Egs. (21) and (22), we obtain the
joint posterior density of A and S as following:

)

7O\, BIY) é)\m+alflﬂm+a27167ﬂ(b272;’;1 log R;) ,~A(b1 +RS,) 23)
where C'is the normalizing constant and it is obtained as
C = / / \mtai— 1ﬁm+a2 1,=B(b2=37"  log Ri) ,—A (b1+R5, )d)\dﬁ. (24)
The joint posterior distribution in Eq.(23) can be rewritten as follows:

7w (X, Bldata) x w1 (B|data)me (|3, data), (25)

where 5
—1 _—8Bb m
Bm-‘raz e~ Bb2 Hi:l Ri

(b +RE)"

m1(B|data) (26)

and w2 (|8, data) is a gamma density with shape and scale parameters are m + a; and [bl + an] 71, respectively.
Here we are mainly interested in obtaining the posterior predictive density of y,, f£(ys|Y), given observed data
Y. The posterior predictive density of y is given by

fP(y€|Y) posferzor( (Y€|Y7)‘56))

@7)
- /0 /0 FwslY X, B, B[Y)dAd

where f(ys|Y, A, 8) and w(\, 5|Y) are given in Eqs.(6) and (23), respectively. Substituting these equations in
Eq.(27), then the posterior predictive density function £ (y,|Y) becomes

fP ys‘Y / /OO A5 ﬂlﬁ R’B (Rf _ Rﬁ)s_Tn_le_A(Rf_Rgl)
m) ys(1 = ys) 28)

X)\nz+a1 1 —A(b1+RB )Bm+a2 1 —ﬁ(bg > IOg(Rl))dAdﬁ,

Since -
/ )\S+a1_16_>\(b1+R§')d)\ — F(S + al)
: o+ RO

and
0o poo
C:/ / \mtan— lﬂm+a2 1 7)\(b1+R/3 B(ba—37"  log(R; ))dAdﬂ
0 0

L'(m +a)l'(m + az)
- (bg — 2111 log Ri)m—i-ag X E”B* [‘](ﬂ)]a

then Eq.(28) reduces to the form

(b2 — 3o~ log Ry)™ e (s + ag)l(m +ag + 1)
L(m+a)T(m+az) T(s—m)(by — Y i~ log R;)mtaatl
1 Er[I(ys, B)]
Ys(1 = ys) Ery+[J(B)] ’

fEysY) =
(29)
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B_RA ys—m—1ps . . . .
where I(y,, 3) = %, and 7] is the gamma density function with the shape and scale parameters are
s 1)

m+az+1, m, respectively. J(3) = m

shape and scale parameters are m + as , m, respectively.
Notice that Eq(29)can not be computed explicitly. Therefore, as an approximate of the expected value we take the
mean of j3, then if we replace S by it’s corresponding means say 8; and 35 in I(ys, 8) and J(8) from 7} and 75,

, and 7> is the gamma density function with the

respectively, then an approximate of fP(y,|Y), which is denoted by f2(ys|Y), is obtained as follows

; 1 ['(s+az)(m + az)
[i(ys|Y) = 9(Ym) T(m + a1)T(s — m) (b — Z?il log R;) (30)
1 I(ysaﬂl)

Xys(l_ys) J(BQ) ’

1
where g(y) = [ Tyl ¥)dy..
IfYisa predictor of Ys, 0 <ym <ys <1, then the Bayes predictive estimators of y; under SE loss, }A’S ep and
LINEX loss functions, Y7, gp are given by:

Vsep = E (Yi|Y)

Is
1
:/ ysf:(ys|Y)dys
1 I(s+ az)(m+ az) (€2
9(ym) J(B2)T(m + a1)T(s —m)(ba — Y., log R;)
' I(y&Bl)
——dys,
- / -y
and
YLEP = ;1 log E/; (G_VY‘“’ Y)
v S
-1 1 [
= — log/ e~ fr(ys|Y)dys
Ym
_ -l log| ! ['(s + az)(m + az) 2
v 9(Ym) J(B2)T (m 4 a1)T(s —m)(ba — 3 2, log R;)

1
1
X/ e Y (ymBl) dys]7

ys(l - ys)

m

respectively. Furthermore, since we are often interested in predict the first unobserved record value, substitute
s =m + 1in Egs.(31) and (32) and using binomial expansion on (Rt — RP1)s~m~1 we will get the following:

ysep2 _ L (by+ Rp2)™ D (s +n?2)(m + asz)
m 9(Ym) L(m +aq)(ba — Zizl log R;)

1 1 RBI
X / Sﬂ dy57
ym L= Us (by + RSY)star

and
oLEP2 _ L L (b + RZ)™ 9T (s + ag)(m + ag)
Y% = — log| m
v 9(ym) T(m+aq)(b2 — Zi:l log R;)
1
1 Rb51
g / o e sl
Ym ys(1 —ys) (by + RSY)s+ar
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8 PREDICTION METHODS FOR FUTURE RECORD VALUES

3. Prediction Intervals

The second way to use the previous data to predict a future observation from the same distribution is to construct
an interval, which will likely to contain a future observation given what has already been observed such these
intervals are called prediction intervals(PIs). In this section we consider several methods to obtain the PI; based
on the observed record sample Y = (y1, Y2, .-, Ym)-

3.1. Pivotal Method

Let us take the random variable Z as
Z=R!-RP,

it is easily to observe that Z|y,, ~ Gamma(s —m, 1), using jacobian transformation of Z|y,, in Eq.(6). Hence

when the parameters \ and 3 are known and y,,, is given then the pivotal quantity 2\ Z|y,, ~ x2(2(s — m)). From
this, the exact (1 — 7)100% PI of ys is (L1(ym ), U1(ym)) where

2 s—m 1z (2(s—m

S LT
2 o ) Ui (ym) = NE) o

x% (2(s—m)) 81 X1_1(2(5 m)) 5.1
L+ (g + BR)P) L+ (= 4 Bl
when A and /3 are unknown, the parameters in Eqgs.(33), have to be estimated by their MLEs. So an approximate
(1 — 7)100% PI is obtained as follows:

x5 (2(s=m)) 1 X3z (2(s—m)) 1

. 1+ 5 m . (1+ 5 )P R
Ll(ym) = x2 (2(s—m)) 1 ) Ul (ym) = Xf_;(Q(S—m)) 1 (34)
1+(1+2T)BRWL 1+(1+227)BR7,L

Since we are usually interest in predict the first prediction, when s = m + 1, then using the pivotal quantity
AZ|ym ~ Exp(1), the (1 — 7)100% exact PI and approximate PI of y,, 1, respectively, are given by

1
(RP, — log(1—1%))®

L2(ym) = 1 U2(ym) = T (35)
1+ [Ry, — Llog(1 - 1)]# 1+ [Rh, — Llog(2)]5
and ) )
. R, (1— Llog(l—1))5 . 1—Llog(Z))s
Lo(ym) = (1 5, loa(l — 5)) ; Ua(ym) =  108(5)) (36)

1+ Rm[l - %k)g(l - %)]%

3.2. Highest Conditional Density Method

An interval in which the value of the conditional PDF of y, given observed data, f(y,|Y), at every point inside it
is greater than that for every point outside it is called the highest conditional density (HCD) interval, Raqab (2001)
[24]. If we replace A and 5 in Eq.(6) with their corresponding MLEs we will obtain the approximate PDF of y,
given y,,, as follows:

Pl A, B) = Ay RE

m ys(l - ys>
R R . 37
[RE — RO |51 -~ [RI-R]]
S m R’nl
I'(s —m) ¢ ’
since the approximation conditional density given in Eq.(37) is unimodal function of U = m(RL—Ry) , and the

m

distribution of U given y,, is G(s — m, 1) with PDF

us—m—le—u

—_ 0.
I'(s —m) ks

g(u) =
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therefore, an interval [wy, ws] is called a HCD-PI of content 1 — 7 (0 < 7 < 1), if [wy, ws] is given by
wa
{w:w€[0,00),9(w) >k} C [O,oo),where/ glw)dw =1-r,
w
for some k > 0. If s > m + 1, then g(w) is a unimodal PDF and it attains its maximum value at{ = s —m —1 €
(0,00). In this context, the HCD method requires finding two cut of points wy = wz <& <wy =wi_z, as
(5)100th and (1 — %)100th percentiles of G(s — m, 1) distribution, respectively, satisfying

1—7= / g(u)du, (38)
and
g(w1) = g(wa). (39)
Eqgs.(38) and (39)can be simplified as follows:
1—7=0(s—m,w) —T'(s —m,ws), (40)
and w
i)sfmfl _ ef(u)gfwl)7 (41)
wa

where I'(a,b) = ﬁ fboo t?~le~tdt, which is the upper incomplete gamma function. In consequence of that, the
(1 —7)100% PI of y, based on HCD method is computed to be (L3 (Y, ), Us(ym)) where

Ls(ym) = R, (14 51)5 Us () — R, (14 %2)5
1+ Ry (14 %)7 1+ Ry (14 %2)5

42)

ol

Now, let us consider a special case where s = m + 1, it may be noted that, Eq.(41) yields w; = ws and then
no prediction interval can be constructed. In this case to avoid this problem, we can note the density g(w) is a
decreasing function with g(0) = 1 and g(co) = 0. Then, the HCD method involves finding [0, ws] where

wa
/ g(w)dw =1 — 7, which is equivalent to wy = — log(7).
0

This leads that the (1 — 7)100% HCD PI of y,,,+1 where it’s bounds are L4(y,,) and Uy (y.,) as follows:

1—ym m
(ym, i T )
Lo 21—

3.3. The Shortest Length Prediction Intervals

m(RS~RS)

Another related PI is the shortest length(SL)PI. Using the fact that the distribution of V' = 2 e ~ X% (s—m)?
we first choose the constants ¢; and ¢ where ¢ < c5 satisfying the following:
P < Xg(sfm) <e)=1-71 (43)
which is equivalent to ) )
2) 8 _ RS
Py < M <c)=1-r7, (44)
Ry,
or equivalently
1 1
R, (1+ )5 Ry (14 52)6
P( ( 1) ( 1) )=1-1. 45)

ol

1
1+R,(1+&) 1+ Rn(145%)%

2m
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10 PREDICTION METHODS FOR FUTURE RECORD VALUES

This implies that a (1 — 7)100% PI for y; is derived to be (L5 (Y. ), Us(ym)), where

Ru(14 ££)5 Ru(14 )5
= L+ 50) +,and Us (ym) = A+ o) T (46)
1+ R,(1+5%)7 1+ R, (1+52)5

2m

L5 (ym)

The best choices for ¢; and ¢ are ones minimizing the width of PI, Us(y.,) — Ls(ym). The shortest length
(1 — 7)100% PI can be obtained by minimizing the Lagrangian multipliers function by imposing (43) as follows:

Cc2
L(erse2) = Uslom) = Ls(um) —l | 933, _,, (0)do = (1= 7)] )

c1

which is equivalent to
1 1
Ro(1+ )7 Rn(1+ £1)7 E
L(c1, ca,w) = )’ m)” / g, dv—(1-7), @8
L+ Ry(1+5%)7 1+ Ryu(1+55)7 o1

where 9o is the PDF of X%(sfm) distribution and w is a Lagrangian multiplier. The constants ¢; and ¢, can be
derived from equating the partial derivative of L(cy, ¢2,w), with respect to ¢1, ¢o and w, to zero as follows:

Ry C1 z-1
oL s (l+54)7
—_ = 2mp 2 - +ng2 (Cl) =0 (49)
Ocy (14 R (1+ 2%)‘3)2 2(s—m)
Ron co |
oL amztan)?
= = _2mb —— —wge (e)=0 (50)
Oc2 (14 Rp(1+ 52)%)? Hemm)
oL 2
o / o, W= (1= 1) =0 (51)
After some algebraic computations on Egs.(49)and (50), we reach to
c 142
(@)s—m—le%(c’z—m) —_ <2m+02>%_1 % 1+Rm(1+ﬁ)f , (52)
g 2m+ L4 R (14 35)7
also from Eq.(51) we get
ca
/ 9is (v)dv = (1 —7). (53)
c1

Now, ¢; and cs of the shortest PI can be computed simultaneously by solving Eqgs.(52)and (53) numerically.
We now consider the case where s = m + 1. In this case, 9, )(v) is decreasing function with 9, 0)=1

and 9o (c0) = 0. Consequently, the lower endpoint of the PI can be chosen simply as L5 (y:,) = ym, this leads
that the (1 — 7)100% PLis (ym, Us(ym)) as a modified of SLPI for y,;,41.

s—m)

3.4. Bayesian Prediction Interval

Our aim of this section is to obtain the Bayes predictive intervals for the 5" future record, s > m, based on observed
records data from K (), ) distribution under SE and LINEX loss functions. Let us define the survival prediction
function of y,, s > m, based on the observed record sample, Y = (y1, Y2, ..., Ym ), as

SP(yS|Y7)‘76) = posterior[s(ys|Y7A7B)]

o oo (54)
_ / / S(y.[Y. ), B) x w(A, BY)dAdS.
0 0
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Where S(ys|Y, A, 8) is the survival function of y,, and S(ys|Y, A, 8)= S(ys|ym, A, 8) due to Markovian property
of record statistics, thus

S(ys‘ymv)\aﬂ) = PT(Y > ys|ym)
1

= f(t|yma)\75)dt

[ OB,
s [(s —m) 1 — F(yml|X, B)

By making the transformation v = H(t) — H (y,,) and using the relation between the incomplete gamma function
and the poisson distribution, the survival function S(ys|ym, A, 5) reduces to the form

s—m—1 117FF(‘(y))[ g(lfFF(‘lé/nS))]i
SWslym: A B) = Y = = (55)

=0

7!
using the Eqgs.(55) and (1), the survival function S(ys|ym, A, §) is obtained as follows:

s—m—1 )
Z R _rAy i (RE—RE)
S(ys|ym; )\7 B) == [ A(R‘S R'rn,)>\ g (56)

= 7!
Now, by substitute the Eq.(56)in the Eq.(54), then the survival prediction function of y;, is given by:
s—m—1 .
R (RP—RP)
S (Ys|ym, A, B) = / / (> e*“R«f*REnWM] x (A, B|data)dAdB (57)
0 JO0O =0

1!

It is obvious that Eq.(57) can not be expressed in a closed form and hence it can not be evaluated analytically.
For this, we propose to approximate Eq.(57) by using an importance sampling technique as suggested by Chen
(1999)[10]. We need the following lemma for further development.

Lemma 3.1
The conditional distribution of 8 given the observed records, 71 (5|data), is log concave.

Proof
The log likelihood of conditional distribution of 3 given the observed records, Eq. (26), is given by:

log 71 (B|data) o< —(m + ay)log (by + R%) 4 (m + as — 1) log (8) — B(by — Zlog R;) (58)
i=1

By differentiating log 71 (8|data) twice with respect to 3, we get:

0% log 1 (B|data) _ C(mtay) (b1 + Ry )Ry (log Rin)® — (Rmlog Rin)? \  m+ag —1 (59)
op? (b1 + Rim)? B2
Since W < 0, this follows that 71 (3|data) is log-concave density. O

Since 7 (8B|data) has a log-concave density, using the idea of Devroye (1984) it is possible to generate a sample
from 71 (8|data). Moreover, since w2 (|5, data) follows gamma, it is quite simple to generate from w5 (\|3, data).
Now we would like to provide the importance sampling procedure to compute the survival prediction estimators
and also to construct the Bayesian PIs of y,. Using Lemma (3.1), a simulation consistent estimator for the predictive
survival function of y can be obtained using the following algorithm:
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12 PREDICTION METHODS FOR FUTURE RECORD VALUES

algorithm 3.2
step 1: Generate ( from the log concave density function 71 (8|data), Eq. (26), by using the method proposed
by Devroy (1984) as follows:

(a) Compute ¢ = m1(m|data) where m is the mode of 71 (.|data), also compute d = log c.

(b) Generate U uniform on [0, 2] and E exponential random variate where F independent of U.

(c) fU<1,thenf=UandT = —F,else § =1+ E*and T = —FE — E*, where E* is a new exponential
random variate.

(d) Set3=m+ % and if T' < log 71 (B|data) — d then S is a sample from 71 (.|data) else go to step (b).

step 2: For each /3 obtained in step (1), generate A from the marginal posterior density function of A given f3,
in step (1), and data, 7o (\|3, data).
step 3: Repeat step (1) and step (2) M times, and obtain MCMC-samples, ()}, 5;),7 = 1,2,..., M.

Then the survival prediction estimators of y, under SE loss function 5'3 Es, and under LINEX loss function
SLEs, are obtained, respectively, as

M s—m-—1 B Bing
A 1 (R _RPiy . (R — Ryl )*
Sses(ys) = i Z[ Z e N (17 Rm))\}%] (60)
j=1 i=0 :
A~ 71 1 iy sfwl—le—Aj(Rg]—Rg{) i(Rfijfrf)i
SLES(ys) = 7 log[ﬂ Ze 2o A} i ] (61)

j=1
Therefore, the (1 — 7)% Bayesian predictive interval for y, s > m under SE loss is given by (Ls(ym ), Us(ym))
where Ls(y.,) and Us(y,,,)) can be obtained by solving the following non-linear equations simultaneously

P’I"(Y > L(ym)|ym> =1- g a4 SSES(L<ym)) =1- g (62)
Pr(Y > U(yn)lgm) = =  Ss5s(U(ym)) = 3

and, the (1 —7)% Bayesian predictive interval for ys,s > m under LINEX loss function is given by
(L6(Ym ), Us(ym)) where Lg(y,,) and Us(y.,,)) can be obtained by solving the following non-linear equations
simultaneously

Pr(Y > L|data) = 1 — g & SrpsLh(ym)=1— g

-2 : (63)
Pr(Y > Uldata) = 5@ StesU(ym) = 3
Thus we need to apply an appropriate numerical technique to solve these non-linear equations (62)and (63). As
a special case when s = m + 1, (1 — )% PI for y,,+1, can be obtained by setting s = m + 1 in the Eqs.(62)and

(63).

4. Data Analysis

In this section, we study the proposed prediction classical and Bayesian methods for records from real and
simulated data sets from two-parameter Kies distribution.

4.1. Real Data: Total Annual Rainfall

In this example, we analyze the total annual rainfall (in inches) during 25 years from 1984-2008 recorded at Los
Angeles Civic Center. This data is given below, see
http : // www.laalmanac.com/weather/weO8aa.php:
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1282 17.86  7.66 2.48 8.08 7.35 11.99 21.00 7.36
811 2435 1244 1240 31.01 9.09 11.57 1794 442
1642 925 3796 13.19 321 13.53  9.08

Firstly, all observations have been divided over 100, where we can also divide by any number greater than 38, in
order to transform them to be in (0, 1), the support of K(), ) distribution. Then, the well known Kolmogorov-
Smirnov (K-S) goodness of fit test is used to test whether the Kies distribution adequately fits this data set or not.
The MLEs of A and  have been computed based on the complete sample using Newton Raphson method and
found to be 11.1410 and 1.4171, respectively. The corresponding K-S test statistic and the associated P-value are
equal to 0.1674 and 0.4851, respectively. Accordingly, one cannot reject the hypothesis that the data set is coming
from K(), ) distribution.

It can be easily seen that the upper records obtained from this data set are: 0.1282, 0.1786, 0.2100, 0.2435, 0.3101,
0.3796. Based on these records, we compute the value of the predictors of the 7¢", 8" and 9" future records using
point and interval prediction methods including, MLP, MMLP, BUP, CMP and Bayes predictor as well as the pivotal
quantity, HCD, SL and Bayesian PIs. To study how sensitive are the Bayes estimates and the Bayes predictors for
the choice of the hyper-parameters, we consider two priors as follows: Prior 1:a; = 24,by = 2,a9 = 7,by = 5,
and Prior 2 :a; = 12,by = 1,a0 = 12,b5 = 9.

Tables (1) and (2) summarize the results of point and interval predictors of the 7", 8t* and 9" future records,
respectively, based on both the classical and the Bayesian approaches.

Table 1. predicted values for the 7th 8" and 9" future records based on the real data set(I)
m Ys MLP  MMLP BUP CMP Bayes predictor
Prior 1 prior 2
BEsg BELE BEsg BELE
v=-001 vr=05 v=2 v=-001 v=05 V=

Y~ - 0.3796  0.4043 0.3971 0.4046 0.4046 0.4047 0.4048 0.4446 0.4446 0.4443 04433
m=6 Yz 04014 04090 04263 04215 0.4306 0.4306 0.4315 0.4344 0.4966 0.4966 0.4963  0.4952
Yo 04207 04338 0.4463 0.4426 0.4497 0.4497 0.4505 0.4530 0.5346 0.5346 0.5342  0.5328

Table 2. 95% PIs for the 7t", 8" and 9*" future records based on the real data set(I)

m Ys Pivot HCD SPL BPIs
Prior 1 prior 2
BEsk BELg BEsg BELp
v =-0.01 v=05 v=2 v =—0.01 v=05 v=2
yr  (0.3803, 0.4620) (0.3796, 0.4490) (0.3796,0.3917)  (0.1701,0.3997)  (0.1701,0.3998)  (0.1677,0.3994)  (0.1596,0.3987)  (0.2114,0.5122)  (0.2114,0.5122)  (0.2093,0.5112) ~ (0.2028, 0.5084)
m=6
ys  (0.3862,0.4934)  (0.3808,0.4806)  (0.3816,0.4812)  (0.3796,0.4205)  (0.3647,0.4205)  (0.3637,0.4202) ~ (0.3654,0.4192)  (0.3796, 0.5655)  (0.3791,0.5656)  (0.3786, 0.5639)  (0.3794, 0.5595)

yo  (0.3961,0.5170)  (0.4447,0.51394)  (0.3908,0.5078)  (0.2593,0.4370)  (0.2593,0.4370)  (0.2578,0.4367)  (0.2522,0.4357)  (0.175,0.6025)  (0.1752,0.6026)  (0.1659, 0.6004)  (0.1334, 0.5947)

4.2. Real Data II: Size of Rocks

In this example, we study the proposed prediction methods, based on the following data of Dunsmore (1983)[12]
which is discussed by Awad and Raqgab (2000)[7]. This data shows the sizes of rocks to be crushed at any operation.
If the size of the rock being crushed is greater than any that has been crushed before then a crushing machine has
to be rest. These data are presented as follows:

93 06 244 181 66 90
143 66 130 24 56 338

Firstly, all observations have been divided over 100 in order to transform them to be in (0, 1), the support of
K(A, B) distribution. Then, to check the validity of the use of K()\, ) distribution to fit this data set, The K-S
test is applied. The K-S distance and its respective p-value are computed to be K-S= 0.1184 and p-value= 0.9078,
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14 PREDICTION METHODS FOR FUTURE RECORD VALUES

respectively. Hence, it is quite reasonable to indicate that K(A, 3) distribution is adequately fitting this data.

The MLEs of A and 8 have been computed based on the complete sample numerically using Newton Raphson
method to be 7.8460 and 1.1105, respectively. The record values extracted from the original data set are: 0.093,
0.244, 0.338.

Based on the proposed prediction methods presented in the previous sections, the point predictors and PIs of the 4*",
5" and 6" future records are computed and presented in Tables (3) and (4), respectively. In the context of Bayesian
predictors, to examine the sensitivity of the hyperparameters (a1, b1, as, b)) we used two different choices of
the hyperparameters: Prior 1:a; = 16,01 = 8,a2 =2,bo =7 and Prior 2:ay; =4,b; =0.5,a3 = 5.5,by = 5,
under SE and LINEX loss functions.

Table 3. predicted values for the 4t 5" and 6" future records based on the real data set(Il)

m Y MLP MMLP BUP CMP Bayes predictor
Prior 1 prior 2
BEsg BELE BEsE BELE
vr=-001 v=0.5 v=2 v=-001 v=0.5 v=2
Y, - 0.3380 0.3800 0.3707 0.3848 0.3848 0.3848 0.3850 0.3911 0.3911 0.3918  0.3935
3 Ys 03704 03936 04152 0.4094 0.4233 0.4233 0.4236 0.4246 0.4329 0.4329 04341  0.4374
Ys 0.3968 0.4336 0.4453 04418 0.4585 0.4584 0.4593 0.4616 0.4698 0.4698 04715 04757

Table 4. 95% PIs for the 4*", 5" and 6" future records based on the real data set(II)

m Y Pivot HCD SPL BPIs
Prior 1 prior 2

BEsg BELE BEsp BELp

v =—0.01 v =05 v= v =—0.01 v =05 v=2
ys  (0.3393,0.4699) (0.3380,0.4512)  (0.3380,0.3598)  (0.1059, 0.4098)  (0.1060, 0.4098)  (0.1034,0.4095)  (0.0951, 0.4085)  (0.1156, 0.4355)  (0.1156,0.4355)  (0.1128,0.4344)  (0.1034, 0.4314)

3 ys  (0.3501,0.5125)  (0.3402,0.4955)  (0.3428,0.4974)  (0.3380,0.4575)  (0.3301,0.4575)  (0.3378,0.4571)  (0.3379,0.4559)  (0.3380,0.4903)  (0.3332,0.4903)  (0.3231,0.4885)  (0.3317, 0.4839)
ye  (0.3674,0.5427)  (0.3480,0.5209)  (0.3612,0.5338)  (0.1479, 0.4890)  (0.1480,0.4891)  (0.1446, 0.4886)  (0.1339,0.4873)  (0.1558,0.5338)  (0.1559,0.5338)  (0.1484,0.5307)  (0.3480, 0.5230)

4.3. Simulated Data

Here we illustrate the usefulness of the proposed prediction methods for a simulated random sample of size 20
generated from Kies distribution with A = 2 and 5 =1 as follows: The upper record values extracted from the

0.1811  0.1293  0.5248 03133 0.4067 0.5709 0.2763  0.2429  0.0219  0.0574
0.5127 05185 0.1941 0.4240 0.0435 0.1036 0.0065 0.6788 0.3354 0.0133

above data set are: 0.1811, 0.5248, 0.5709, 0.6788.
Based on the above record values and based on the proposed prediction methods, we computed the point predictors
and PIs of the 5t", 6!" and 7*" future records and these results are presented in Tables (5) and (6). In context of
Bayesian procedure ,two priors are considered assuming

Prior 1:ay =20,b; =10,a0 =9,by =8,

Prior 2: a1 =10,b1 =5,ay = 14,05, = 11,
under SE and LINEX loss function and using Different choices of LINEX parameter v; namely -0.01, 0.5 and 2.
From Tables (5) and (6) we observed that the point predictors of ys, yg and y; are lying within the so obtained

prediction intervals, also, we can see the PIs become wider as s increases. It is evident from tables, the length of
the classical PIs are shorter than the Bayesian PIs, and the best of them is SL PIs in terms of the length interval.

5. Simulation Results of the Prediction Methods

In this section we present a simulation study to assess the performance of the proposed prediction methods which
were discussed in chapter 4. Performances are measured in terms of mean square prediction errors (MSPEs) and

Stat., Optim. Inf. Comput. Vol. x, Month 202x



AL-OLAIMAT ET AL. 15

Table 5. predicted values for the 5th, 6" and 7*" future records based on the simulated data set
m Y MLP MMLP BUP CMP Bayes predictor
Prior 1 prior 2
BEsg BELEg BEsg BELE
v =—-0.01 v=20.5 v=2 v =-—0.01 v=20.5 v=

Ys - 0.6788 0.7188 0.7101 0.7145 0.7145 0.7151 0.7167 0.7128 0.7127 0.7133 0.7148
4 Ys 0.7133  0.7297 0.7506 0.7461  0.7437 0.7437 0.7450 0.7487 0.7366 0.7366 0.7374 0.7394
Yz 0.7408 0.7623 0.7763 0.7753  0.7649 0.7648 0.7664 0.7712 0.7605 0.7605 0.7617 0.7651

Table 6. 95% PIs for the 5", 6 and 7" future records based on the simulated data

m Y Pivot HCD SPL BPIs
Prior 1 prior 2
BEsg BELp BEsg BELp

v =—0.01 v=05 v=2 v =—0.01 v =05 v=2
ys  (0.6801,0.7983) (0.6788,0.7719)  (0.6788,0.6980)  (0.6381,0.7275)  (0.6404,0.7276)  (0.6111,0.7269)  (0.5813,0.7249)  (0.6539,0.7469)  (0.6567,0.7470)  (0.6236, 0.7456)  (0.5872, 0.7420)

4 ye (0.6908,0.8305) (0.6807,0.8036) (0.6842,0.8059) (0.6788,0.7598)  (0.6788,0.7598)  (0.6788,0.7585) (0.6788,0.7550)  (0.6788,0.7741)  (0.6778,0.7742)  (0.6788,0.7727)  (0.6788, 0.7689)
yr _ (0.7078,0.8513)  (0.7251,0.7738)  (0.6501,0.8132)  (0.6463,0.7855)  (0.6485,0.7855)  (0.6188,0.7837)  (0.5895,0.7790)  (0.6488,0.7947)  (0.6530,0.7947)  (0.6218,0.7930)  (0.5947, 0.7886)

the average biases of the predictors. We also compare the PIs, which are presented in the previous sections, in terms
of coverage probabilities (CPs) and the average lengths (ALs). For conducting the Bayesian analysis, under the SE
and LINEX loss functions, we assume four different priors as follows: Prior 0: a1 = 0, b1 =0, ag = 0, by = 0.
For A =1, 8 =2: Prior 1: a; = 20, by = 20, as = 16, by = 8.

For A\ =2, 3 = 1: Prior 2: a1 = 1, by = 0.5, as = 20, by = 20.

For A =2, 3 =2: Prior 3:a; =1, by = 0.5, as = 10, by = 5.

These priors are proposed so as A has the same mean but different variances, similarly for 5. The main purpose
of this is to reflect the sensitivity of our inferences to the choice of the hyper-parameters. The shape parameter of
LINEX loss function v is assumed to equal -0.01, 0.5 and 2, separately. In each case, we compute the value of the
point predictor (classical and Bayesian). We also compute 95% PIs based on the pivotal quantity, HCD, SL and
Bayesian methods.

Record samples from the Kies distribution were randomly generated using

m £\ L

2 (% 21:1 Xi )5
L+ (GXL XD
where {X}", is a sequence of i.i.d. Exp(1) random variables. The simulation process is repeated 1000 times.
Using these random samples, MSPEs and prediction biases of the predictors are reported. Moreover, the CPs and

ALs of the PIs are computed. The obtained results involving MSPEs, prediction biases, CPs, and ALs are presented
in Tables(7) to (12).

Yo

(64)

From Tables (7), (8) and (9), and by considering the prediction average biases as an optimality criterion, there
is a clear evidence that the BUPs are the most preferred classical point predictors. When comparing among the
classical methods, one can see that the prediction average biases of the CMP are less than those of the MLP and
MMLP for all the considered cases. Further, the prediction average biases of the MMLP are lower than those of
MLP across all the considered cases.

When comparing Bayesian and frequentist methods, we observe that Bayes predictors perform better under
different error loss functions and priors in terms of bias compared with MLPs and MMLPs. By considering
MSPEs as an optimality criterion, it is also observed that Bayes predictors outperform MLPs and MMLPs.
Additionally, Bayes predictors under the informative priors (Prior 1, Prior 2 and Prior 3 ) are more efficient
than the corresponding Bayes predictors under Prior 0. Finally, when comparing among classical methods, the
BUPs provide lower MSPEs than the other predictors.

From Tables (10), (11) and (12), and by considering the average length (AL) as an optimality criterion, the SL
method is shown to be more efficient than the other methods for obtaining PIs. Among the HCD and the pivotal
quantity methods, the HCD PIs are superior to the pivotal PIs in most considered cases in terms of ALs. When
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Table 7. MSPEs and Average Bias from simulations of A = 1 and g = 2

m Y, Criterion  MLP MMLP BUP CMP Prior 0 prior 1
BEsp BELp BEsp BELp
v =—0.01 v =0.5 v=2 v =—0.01 v=20.5 v=2
7. MSPE 0001492 0001276 0000450 0.000465 0001538 0001541 0001432 000127 _ 0.000724 0000725 0000699  0.000649
mes 7 Bias  -0.025749  -0.020434 -0.000026 -0.002417 0014546 -0.014617 -0.011204 0002874 -0.006494 -0.006517 -0.005386 -0.002143
y.  MSPE 0002023 0001638 0000458 0.000459 0002091 0002096  0.001909 0001649  0.000846  0.000347 0000811  0.000743
8 Bias  -0.029308 -0.021296 -0.000250 -0.001470 -0.018323  -0.018420 -0.013771 -0.002445 -0.007216  -0.007246  -0.005708  -0.001262
v MSPE 0000849 0000745 0000256 0.000258 0000459  0.000460  0.000436 0000426  0.000333  0.000334  0.00328  0.000320
s Bias  -0.019653 -0.015785 0.000655 -0.001638 -0.004980  -0.005027  -0.002732  0.003049  -0.001814  -0.001830  -0.001048  0.001246
yo  MSPE 0001666 0001460  0.000420  0.000426 0000616  0.000617 ~ 0.000566 ~ 0.000529  0.000383 0000384  0.000372  0.000353
o Bias  -0.025196 -0.019210 -0.002515 -0.003844 -0.007818  -0.007883  -0.004729  0.003205  -0.003305  -0.003325  -0.002780  0.000744
v, MSPE 0000674 0.000580 0000208 0.000313 0000383  0.000389  0.000378  0.00375  0.000286 _ 0.000286  0.000283  0.000277
ey Bias  -0.017886 -0.015077 -0.002828 -0.004944 -0.007485  -0.007520 -0.005830 -0.003474 -0.005342  -0.005355  -0.004736  -0.002978
v MSPE 0000716 0000604  0.000292  0.000296  0.000539  0.000539  0.000522  0.000528  0.000367  0.000368  0.000365  0.000363
10 Bias  -0.017047 -0.012547 -0.000504 -0.001886 -0.005522 -0.005561  -0.003252 0.002697 -0.001536  -0.001553  -0.000724  0.001703
v MSPE 0000529 0.000478  0.000209 _ 0.000215 _ 0.000332 _ 0.000332 _ 0.000322 _ 0.00031T _ 0.000264 _ 0.000264 _ 0.00026] __0.000252
mes 10 Bias 0014086 0011842 0000702 -0.002672 -0.003652 -0.003677 -0.002404  0.000932 -0.002214 -0.002224 -0.001756 -0.000378
v MSPE 0000866  0.000762  0.000292  0.000299  0.000551 ~ 0.000552  0.000529  0.000501  0.000419  0.000419  0.000412  0.000395
11 Bias  -0.017215  -0.013541  -0.002641  -0.003970 -0.005774  -0.005810  -0.004032  0.000622  -0.003266  -0.003271  -0.002619  0.002931
Table 8. MSPEs and Average Bias from simulations of A =2and 8 =1
- Prior 0 prior 2
m Ys Criterion MLP MMLP BUP CMP
BEsp BELp BEsg BELE
v =—0.01 v=20.5 v=2 v =-0.01 v=20.5 v=2
v, MSPE 0006668  0.005880 0001866 0001870 0004541 0004554 0004346 0.003902 0002720  0.002720  0.002717 0002713
mes Bias  -0.048639 -0.038692 -0.000893 -0.004069 -0.026404  -0.026460  -0.023726 -0.016903 -0.013969  -0.013973  -0.013787 -0.013326
y.  MSPE 0007759 0006576 0001544 0001536 0005861  0.005368 0005525  0.004803  0.002850  0.002859  0.002854  0.002844
8 Bias  -0.052920 -0.039338 -0.001004 -0.001672  -0.030690  -0.030766  -0.027083 -0.017871 -0.013394  -0.013401  -0.013067 -0.012201
v MSPE  0004ISI 0003571 0001033 0001082 0001787 0001788 0001747 0001676 00012774 0001277 0001278  0.001271
e C Bias  -0.043753 -0.036647 -0.005959 -0.009032 -0.017547  -0.017584  -0.015776 -0.011111 -0.008661  -0.008673  -0.008453  -0.007864
vo  MSPE 0004781 0003882 0000988 0000991 0002315 0002317 0002224 0.002049  0.001393 0001394 0001391  0.001385
0 Bias  -0.044832  -0.034681 -0.004063 -0.005064 -0.019082  -0.019132  -0.016684 -0.010374  -0.006791  -0.006807  -0.006462  -0.005522
v, MSPE 0002482 0002163  0.00003 000094  0.000728  0.000720 0000705 _ 0.000658  0.000553  0.000553  0.000352  0.000541
ey Bias  -0.032610 -0.027503 -0.003014 -0.005911 -0.009754  -0.009778  -0.008530 -0.005255 -0.005776  -0.005778  -0.005645 -0.005315
Vv MSPE 0002956 0002462  0.001021  0.001034  0.000945  0.000946  0.000903  0.000818  0.000582  0.000582  0.000581  0.000580
10 Bigs  -0.034864 -0.027463 -0.003136 -0.004354 -0.013391 -0.013434 -0.011725 -0.007236  -0.007706  -0.007710  -0.007472  -0.006851
v MSPE 0001291 0.001T43  0.000531  0.000553  0.000965  0.000965 0000939 _ 0.000871  0.000771 _ 0.000771 _ 0.000768  0.000760
mes 0 Bias  -0.021682 0018040 -0.002648 0005155 -0.010264 0010283 -0.009383 -0.006975 -0.007069  -0.007072  -0.006903 -0.006431
v MSPE 0001623 0001382  0.000515 0000528 0.001115 0001116  0.001075  0.000982 0000826  0.000826  0.000822  0.000811
11 Bias  -0.024281 -0.018911 -0.004914 -0.006263 -0.011421 -0.011455 -0.010221 -0.006917 -0.007066  -0.007070  -0.006832  -0.006185
Table 9. MSPEs and Average Bias from simulations of A = 2 and g = 2
m Y. Criterion  MLP MMLP BUP cMP Prior 0 prior 3
BEgp BELE BEgp BELp
v =—0.01 v=20.5 v=2 v =—-0.01 v=20.5 v=2
v, MSPE 0001955 0001670 0000757 0000779 0000009 0000010  0.000855  0.000846 0000641  0.000642  0.000635  0.000634
mes 7 Bias  -0.031369 -0.025596 -0.001186 -0.004084 -0.007873 -0.007952 -0.004162  0.005065  0.001336  0.001311  0.002576  0.005931
y.  MSPE 0003108 0002570 0000814 0000834 0001273 0001276  0.001182 0001188  0.000819  0.000319 0000815  0.000837
8 Bias 0039313 -0.030320 -0.004476  -0.006068 -0.019799  -0.019909  -0.014669 -0.009371 -0.008746  -0.008778  -0.007192  -0.005370
v MSPE 0001339 0001179 0.000547 _ 0.000565 0000720 _ 0.00072I _ 0.00069%  0.000695  0.000549 0000549 _ 0.000545 _ 0.000544
e Bias  -0.023939 -0.019788 -0.001523 -0.004253 -0.007077 -0.007131  -0.004493  0.002078  -0.002288  -0.002305  -0.003835  -0.001974
v, MSPE 0001727 0001483 0000524 0000529 0001027 0001028  0.000988 0001006  0.000718 ~ 0.000719 0000718  0.000732
® Bias  -0.026193 -0.019552 -0.000711 -0.002417 -0.010211  -0.010287 -0.006628  0.002478  -0.002664  -0.002688  -0.001468  0.001625
v, MSPE 0000794 0000690 0000271  0.000295  0.000666  0.000667  0.000639  0.000601  0.000516  0.0005[6 0000501  0.000497
ey Bias  -0.019820 -0.016521 -0.001796 -0.004363 -0.006901  -0.006940  -0.005001  0.004139  -0.004167  -0.004182  -0.003465  -0.002487
v MSPE 0001097 0000926  0.000315 0000324  0.000952  0.000953  0.000901  0.000868  0.000672  0.000672  0.000658  0.000631
10 Bias  -0021694 -0.016319 -0.001743  -0.003457 -0.007434  -0.007489  -0.004794  0.002123  -0.004070  -0.004090  -0.003104 -0.001907
. MSPE 0000787 _ 0.000712 _ 0.000261 _ 0.000271 _ 0.000402 _ 0.000402 _ 0.000387 _ 0.000371 _ 0.000309 _ 0.000309 _ 0.000305 _ 0.000295
mes ' Bias  -0.017853 -0.015357 -0.000679 -0.003128 -0.004693 -0.004723 -0.003256  0.002792 -0.002634 -0.002645 -0.002062 -0.001984
Vv MSPE 0001197 0001065 0.000353  0.000357  0.000842  0.000843  0.000808  0.000762  0.000623  0.000623  0.000611  0.000587
11 Bias  -0.020459 -0.016292  -0.000984 -0.002671 -0.007673  -0.007715  -0.005653  0.004162  -0.005007  -0.005023  -0.004231  -0.002256

adopting the CPs as the optimality criterion, the simulated CPs of PIs based on the pivotal quantity method are
higher than those associated with the other methods in most considered cases. Moreover, one can see that the
pivotal quantity PIs perform very well when compared to the Bayesian PIs in most the considered cases. However,
Bayesian PIs outperform HCD and SL PIs in terms of CPs.
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Table 10. CPs and ALs from simulations of A = 1 and 8 = 2
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m Ys Criterion Pivot HCD SL EFls
BESE BELE
v =-—0.01 v =20.5 v=2
CP 0.94 0.69 0.68 0.97 0.97 0.97 0.90
m=5 y7 AL 0.081834 0.068411 0.054774 0.091521 0.107440 0.095436  0.093739
CP 0.95 0.61 0.63 0.99 0.99 0.99 0.97
vs AL 0.08628 0.069513  0.068958  0.104510 0.121960 0.101750  0.096548
CP 0.96 0.78 0.76 0.971429 0.971429 0.971429  0.957143
m=6 vs AL 0.067859  0.052533 0.046157 0.078527 0.099947 0.092039  0.090749
CP 0.98 0.64 0.64 0.99 0.99 0.99 0.97
Yo AL 0.072816  0.058481 0.058322 0.087110 0.108130 0.085808  0.082046
CP 0.93 0.67 0.67 0.94 0.94 0.86 0.86
m=7 Yo AL 0.060137  0.046778 0.037941 0.071483 0.116410 0.066859  0.077446
CP 0.97 0.67 0.67 0.98 0.99 0.80 0.78
y1o AL 0.065109 0.047001 0.045184 0.076375 0.124930 0.060163  0.067669
CP 0.99 0.86 0.84 0.97 0.97 0.94 0.88
=8 y10 AL 0.049566  0.048812 0.038217  0.069515 0.130260 0.081471  0.081768
CP 0.99 0.76 0.76 0.97 0.98 0.92 0.92
1 AL 0.054562  0.050493 0.045384 0.076367 0.142340 0.070210  0.086240
Table 11. CPs and ALs from simulations of A =2 and 8 =1
m Ys Criterion Pivot HCD SL BPls
BEspk BELE
v =—0.01 v =20.5 v=2
CP 0.95 0.73 0.69 0.93 0.93 0.91 0.90
m=5 y7 AL 0.138920  0.109680  0.093530 0.157380 0.157450 0.144780  0.133160
CP 0.95 0.66 0.65 0.98 0.98 0.98 0.93
ys AL 0.141140  0.122930 0.116990  0.175080 0.176500 0.156470  0.144770
CP 0.95 0.72 0.68 0.90 0.90 0.89 0.88
m=6 vs AL 0.108720  0.095392  0.076062  0.121080 0.122890 0.117540  0.108920
CP 0.96 0.69 0.72 0.91 0.91 0.88 0.87
Yo AL 0.112680  0.109600 0.107510 0.137210 0.138430 0.133780  0.125030
CP 0.95 0.79 0.76 0.89 0.89 0.87 0.87
m=7 Yo AL 0.092416  0.090503 0.066912  0.101680 0.104870 0.098422  0.090173
CP 0.95 0.749 0.754 0.87 0.87 0.87 0.82
y1o AL 0.096927  0.096199 0.091193  0.114580 0.116100 0.111200 0.102800
CP 0.95 0.82 0.79 0.86 0.86 0.86 0.83
m=8 y10 AL 0.078396  0.074663  0.058354  0.084383 0.091762 0.081671  0.074334
CP 0.95 0.75 0.77 091 091 0.91 0.90
1 AL 0.083206  0.081510 0.080934  0.099775 0.099618 0.098116  0.090220

6. Conclusion

In this study, we have investigated the prediction of future records for the two-parameter Kies distribution. Both
classical and Bayesian approaches were employed to develop point and interval predictors of the future records.
The performance of these predictors was compared through Monte Carlo simulation studies. It was observed that,
among all point predictors, the BUP showed the best performance in terms of bias, while the BUP and the CMP
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Table 12. CPs and ALs from simulations of A = 2 and 8 = 2

m Ys Criterion Pivot HCD SL EFls
BESE BELE

v =-—0.01 v =20.5 v=2
CP 0.96 0.81 0.77 0.91 091 0.90 0.88

m=5 y7 AL 0.092129  0.111960 0.062277  0.101150 0.127210 0.097757  0.088902
CP 0.97 0.69 0.72 0.83 0.79 0.83 0.80

vs AL 0.097837 0.086782 0.085165 0.117650 0.140730 0.114940  0.104500
CP 0.93 0.84 0.78 0.87 0.86 0.89 0.86

=6 vs AL 0.071806  0.081650 0.056904  0.086710 0.092262 0.084933  0.076393
CP 0.94 0.72 0.71 0.87 0.87 0.86 0.83

Yo AL 0.078153  0.075926  0.073548  0.096249 0.098934 0.093238 0.085162
CP 0.96 0.73 0.72 0.93 0.91 091 0.90

m=7 Yo AL 0.065872  0.061657  0.045903  0.082202 0.129440 0.084075  0.076667
CP 0.98 0.6 0.53 0.91 0.90 091 0.89

y1o AL 0.072133  0.066071  0.061670  0.094351 0.146290 0.092539  0.081635
CP 0.97 0.82 0.81 0.96 0.97 0.96 0.95

m=8 y10 AL 0.056281  0.053228 0.043322  0.084983 0.267850 0.091926  0.087719
CP 0.97 0.78 0.75 091 0.92 0.90 0.90

Y1 AL 0.062486 059308 059120  0.088974  0.250540  0.087110  0.078726

were quit close to each other in terms of MSPEs. The MLP and the MMLP also performed similarly.
Additionally, it was noted that the Bayesian predictors outperformed the MLP and MMLP in terms of both bias
and MSPEs, especially under SE and LINEX loss functions. In the context of prediction intervals, the SL method
was found to be the most suitable for obtaining PIs of the unobserved future records when adopting ALs as the
optimality criterion. When adopting the CPs as the optimality criterion, it was observed that the pivotal quantity
method proved to be an efficient technique for constructing PIs in most of the considered cases.
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