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Abstract In this paper we define the Mid-Truncated Burr XII distribution and derive some of its statistical properties
such as moments, moment generating function, characteristic function, likelihood function, etc. We have also obtained the
recurrence relations for single and product moments of order statistics in a random sample of size n drawn from Mid-
Truncated Burr XII distribution. Further, the characterization of Mid-Truncated distributions using conditional moments has
been given.
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1. Introduction

Many authors like Malik [10], Balakrishnan and Joshi [1], Balakrishnan et al. [2], Saran and Pushkarna [17, 18, 19],
etc. have obtained several results for the single and product moments of order statistics from the un-truncated,
left truncated, right truncated and doubly truncated distributions. Mohie El-Din and Sultan [12] have obtained
recurrence relations for moments of order statistics from doubly truncated continuous distributions. They have also
presented some applications of their results. Mohie El-Din et al. [11] have obtained moment generating functions
of order statistics from doubly truncated exponential distribution in terms of hypergeometric function. They have
also derived some recurrence relations between these moment generating functions.The truncated distributions are
quite effectively used where a random variable is restricted to be observed on some range and these situations are
common in various fields. For instance, in survival analysis, failures during the warranty period may not be counted.
Therefore many researchers were being attracted to the problem of analysing such truncated data encountered in
various disciplines, proposed the truncated versions of the usual statistical distributions, to improve a forecasting
actuarial model and particularly for modelling data from insurance policies. But there exist life models which
do not obey the complete or truncated distribution, for example, in Microbiology (cf. Tortora et al. [21]), when a
bacterial strain is inoculated into a liquid growth medium, the population is counted at intervals, it is possible to plot
a bacterial growth curve. There are three basic phases of growth: the log, stationary, and death phases. During log
phase, the bacterial cells are most metabolically active and are preferred for industrial purposes. During stationary
phase we find that the number of cells will still remain constant due to the number of bacterial death balances with
the number of new cells. Consequently during this phase no investigation is required. After the stationary phase
the most bacterial cells will die because of the exclusion of nutrients and lead to accumulation of waste products.
In such live models mid-truncated distributions are quite effectively used where the random variable is restricted
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to be observed on some sub intervals of the given specified range (cf. Okasha et al. [14] and Mohie El-Din et al.
[13]).

Burr system of distributions was constructed in 1942 by Irving W. Burr [3]. Since the corresponding density
functions have a wide variety of shapes, this system is useful for approximating histograms, particularly when a
simple mathematical structure for the fitted cumulative distribution function (cdf) is required. Other applications
include simulation, quantal response, approximation of distributions, and development of non-normal control
charts. Pathak and Chaturvedi [15] evaluated reliability function for Burr (X) distribution for its wide variety
of application in life time data. Recently work on optimal sample size determination for Burr (XII) population has
been done by Hashempour [5]. According to Soliman [20], this distribution covers the curve shape characteristic
for a large number of distributions. Due to versatility and flexibility of the Burr (XII) distribution, this distribution
is quite attractive as a tentative model for data whose underlying distribution is unknown.

In this paper, we propose to consider the mid-truncated Burr distribution (MTBD) (Type XII) with three
parameters, which contains, as special sub models, mid-truncated Weibull distribution, mid-truncated exponential
distribution, mid-truncated log-logistic distribution, among others. Due to the flexibility of the considered
distribution in accommodating different forms of risk function, this MTBD is appropriate for a variety of problems
modelling lifetime data.

2. Mid-truncated distribution

We define the Mid-truncated distribution as follows:
Let Y be a continuous random variable with baseline probability density function (pdf) g(y), cumulative

distribution function (cdf) G(y), define X as a corresponding mid-truncated variable, of the random variable Y
with pdf f(x). We define

f(x) =

p g(x)
G(Q1)

, if x ≤ Q1

q g(x)
1−G(P1)

, if x ≥ P1

, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, s.t. p+ q = 1, Q1 ≤ P1, (2.1)

which is called the Mid-truncated density function and, Q1 and P1 are the points of mid truncation of the baseline
distribution under consideration. Also we assume that

Q =

∫ Q1

−∞
g(x)dx , (2.2)

and

1− P =

∫ ∞

P1

g(x)dx. (2.3)

Then equation (2.1) can be written as

f(x) =

p g(x)
Q , if x ≤ Q1

q g(x)
1−P , if x ≥ P1

, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, s.t. p+ q = 1, Q1 ≤ P1. (2.4)

2.1. k-th moment

The k-th moment of a mid-truncated random variable X (denoted by µ
(k)
∗ ) is given by:

µ
(k)
∗ =

p

G(Q1)

∫ Q1

−∞
xkg(x)dx+

q

1−G(P1)

∫ ∞

P1

xkg(x)dx.
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Integrating by parts, we get

µ
(k)
∗ =

p

G(Q1)

[
Qk

1G(Q1)−
∫ Q1

−∞
kxk−1G(x)dx

]
+

q

(1−G(P1))

[
µ(k) − P k

1 G(P1) +

∫ P1

−∞
kxk−1G(x)dx

]
,

(2.5)

where µ(k) is the k-th moment of the un-truncated distribution.

2.2. Moment generating function and characteristic function

The moment generating function of a mid-truncated random variable X (denoted by M∗(t)) is given by:

M∗(t) =
p

G(Q1)

∫ Q1

−∞
extg(x)dx+

q

1−G(P1)

∫ ∞

P1

etxg(x)dx.

Integrating by parts, we get

M∗(t) = petQ1 − p

G(Q1)

∫ Q1

−∞
textG(x)dx+

q

1−G(P1)

[
M(t)− etP1G(P1) +

∫ P1

−∞
tetxG(x)dx

]
, (2.6)

where M(t) is the moment generating function of the un-truncated random variable.
Similarly, the characteristic function of the mid-truncated random variable is given by:

Φ∗(t) = peitQ1 − p

G(Q1)

∫ Q1

−∞
iteixtG(x)dx+

q

1−G(P1)

[
Φ(t)− eitP1G(P1) +

∫ P1

−∞
iteitxG(x)dx

]
,

where Φ(t) is the characteristic function of the un-truncated random variable.

2.3. Distribution function

The distribution function of a mid-truncated random variable X is given by:

F (x) =

p G(x)
G(Q1)

, −∞ < x ≤ Q1

1− q 1−G(x)
1−G(P1)

, P1 ≤ x < ∞.
(2.7)

2.4. Generating data

If the distribution function of the mid-truncated random variable exists we can use the inverse transform method to
generate the data. To generate a random variable X with distribution function F (x) as given in (2.7), draw U1, U2

from U(0, 1) and then solve each of the following equations

u1 =
G(x)

G(Q1)
, u2 =

(
1− 1−G(x)

1−G(P1)

)
(2.8)

with respect to x.

2.5. Likelihood function

For n observations x1, x2, . . . , xn from a mid-truncated distribution, the likelihood function is given by:

L(θ) =

r∏
i=1

pg(xi)

G(Q1)

n∏
i=r+1

qg(xi)

(1−G(P1))
, where r is the number of xi’s ≤ Q1.

L(θ) =
prqn−r

(G(Q1))
r
(1−G(P1))

n−r

n∏
i=1

g(xi). (2.9)
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3. Mid-truncated Burr XII distribution

The probability density function (pdf) of Burr distribution (type XII) is given by

g(x) = νβλxβ−1(1 + λxβ)
−(ν+1)

, 0 ≤ x < ∞, ν, β, λ > 0, (3.1)

and the cumulative distribution function (cdf) is given by

G(x) = 1− (1 + λxβ)−ν , 0 ≤ x < ∞, ν, β, λ > 0. (3.2)

Then the probability density function (pdf) of mid-truncated Burr distribution (type XII) is given by

f(x) =


pνβλxβ−1(1 + λxβ)

−(ν+1)

Q
, 0 < x ≤ Q1

qνβλxβ−1(1 + λxβ)
−(ν+1)

1− P
, P1 ≤ x < ∞

(3.3)

and the cumulative distribution function (cdf) is given by

F (x) =


p(1− (1 + λxβ)−ν)

Q
, 0 < x ≤ Q1

1− q(1 + λxβ)−ν

1− P
, P1 ≤ x < ∞.

(3.4)

Using (3.3) and (3.4), we get the relation between pdf and cdf as

1− F (x) =


1− p

Q
+ f(x)

x1−β(1 + λxβ)

νβλ
, 0 < x ≤ Q1

f(x)
x1−β(1 + λxβ)

νβλ
, P1 ≤ x < ∞.

(3.5)

Using (2.2) and (2.3), we get

Q1 =

{
(1−Q)

−1
ν − 1

λ

} 1
β

(3.6)

P1 =

{
(1− P )

−1
ν − 1

λ

} 1
β

. (3.7)

Using (3.6) and (3.7), equations (3.3) and (3.4) can be rewritten as

f(x) =


pνβλxβ−1(1 + λxβ)

−(ν+1)

1− (1 + λQ1
β)

−ν , 0 < x ≤ Q1

qνβλxβ−1(1 + λxβ)
−(ν+1)

(1 + λP1
β)

−ν , P1 ≤ x < ∞,

(3.8)

and

F (x) =


p(1− (1 + λxβ)

−ν
)

1− (1 + λQ1
β)

−ν , 0 < x ≤ Q1

1− q(1 + λxβ)
−ν

(1 + λP1
β)

−ν , P1 ≤ x < ∞.

(3.9)
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The mid-truncated Burr XII density function for β = 2, λ = 4, ν = 0.5, p = q = 0.5 truncated at Q1 = 1.5 and
P1 = 3.25 is provided in Figure 1.
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Figure 1. Probability density function for mid-truncated Burr XII distribution.

The mid-truncated Burr XII density function for β = 2.6, λ = 0.5, ν = 2, p = 0.8 and q = 0.2 truncated at
Q1 = 1.9 and P1 = 5.9 is provided in Figure 2.

 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f(
x
)

Figure 2. Probability density function for mid-truncated Burr XII distribution.

Let X1, X2, . . . , Xn be a random sample of size n from the mid-truncated Burr XII distribution defined in (3.3)
and let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the corresponding order statistics. Thus the probability density function (pdf)
of Xr:n(1 ≤ r ≤ n) is given by:

fr:n(x) = cr:n[F (x)]
r−1

[1− F (x)]
n−r

f(x), 0 ≤ x < ∞, (3.10)
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where cr:n = n!
(r−1)!(n−r)! .

The joint density function of order statistics Xr:n and Xs:n (1 ≤ r < s ≤ n) is given by

fr,s:n(x, y) = cr,s:n[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(y)f(x), 0 ≤ x < y < ∞, (3.11)

where

cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!

(cf. David and Nagaraja [4]).
The single moments of order statistics Xr:n (1 ≤ r ≤ n) are given by

µ(k)
r:n = E(Xk

r:n) =

∫ Q1

0

xkfr:n(x)dx+

∫ ∞

P1

xkfr:n(x)dx, k = 0, 1, 2, . . . (3.12)

Similarly, the product moments of Xr:n and Xs:n (1 ≤ r < s ≤ n) are given by

µ(j,k)
r,s:n = E(Xj

r:nX
k
s:n) =

∫ Q1

0

∫ Q1

x

xjykfr,s:n(x, y)dydx+

∫ ∞

P1

∫ ∞

x

xjykfr,s:n(x, y)dydx. (3.13)

3.1. k-th moment

The k-th moment of the mid-truncated Burr XII distribution can be obtained using (2.5) and is given by:

µ
(k)
∗ =

p

G(Q1)

[
Qk

1G(Q1)− k

∫ Q1

0

xk−1G(x)dx

]
+

q

(1−G(P1))

[
µ(k) − P k

1 G(P1) + k

∫ P1

0

xk−1G(x )dx

]
.

Substituting the values of G(Q1), G(P1) and G(x) from equation (3.2) and solving, we get

µ
(k)
∗ =

p

G(Q1)

[
−Qk

1(1 + λQβ
1 )

−ν
]
+

q

(1−G(P1))

[
µ(k) + P k

1 (1 + λP β
1 )

−ν
]

+
pk

G(Q1)

∫ Q1

0

xk−1(1 + λxβ)
−ν

dx− qk

1−G(P1)

∫ P1

0

xk−1(1 + λxβ)
−ν

dx

=
p

G(Q1)

[
−Qk

1(1 + λQβ
1 )

−ν
]
+

q

(1−G(P1))

[
µ(k) + P k

1 (1 + λP β
1 )

−ν
]

+
pk

G(Q1)

βm(Q1)(
k
β , ν − k

β )

βλβ
− qk

1−G(P1)

βm(P1)(
k
β , ν − k

β )

βλβ
,

where m(Q1) =
λQ1

β

1+λQ1
β , m(P1) =

λP1
β

1+λP1
β and βx(a, b) =

∫ x

0
ta−1(1− t)

b−1
dt, 0 < x < 1, is the incomplete beta

function and can be obtained using tables given by Pearson et al. [16].
To investigate the effect of the shape parameters β, ν and scale parameter λ on the mid-truncated Burr XII

density function we have computed mean, variance, skewness and kurtosis for different values of the parameters,
which are presented in following Tables 1 to 3.

Table 1. ν = 6 and λ = 1.5

β Mean Variance Skewness (β1) Kurtosis (β2)

0.8 2.2156 5.5589 1.1701 10.6781

0.9 2.1373 4.7813 0.487 4.7715

0.95 2.1076 4.5052 0.3348 3.6722

1 2.0826 4.2775 0.2375 2.9912

1.5 1.9648 3.1544 0.0195 1.3656

2 1.939 2.7109 0.0033 1.1638
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Table 2. ν = 5 and β = 1

λ Mean Variance Skewness (β1) Kurtosis (β2)

1 2.2716 5.1371 0.9897 8.3788

1.23 2.2294 5.0299 0.8434 7.5447

2 2.1553 4.8732 0.6276 6.2366

2.5 2.1309 4.829 0.5663 5.846

3 2.1144 4.8009 0.5274 5.5938

4 2.0937 4.7674 0.481 5.2883

Table 3. β = 1 and λ = 1.5

ν Mean Variance Skewness (β1) Kurtosis (β2)

5 2.1953 4.9532 0.7379 6.9181

6 2.0826 4.2775 0.2375 2.9912

6.5 2.0412 4.0658 0.15 2.3661

7 2.0067 3.9016 0.0996 1.9957

8 1.9523 3.6639 0.049 1.5964

10 1.8796 3.3818 0.0159 1.283

3.2. Moment generating function and characteristic function

The moment generating function of the mid-truncated Burr XII distribution is given by:

M∗(t) =
p

G(Q1)

∫ Q1

0

extg(x)dx+
q

1−G(P1)

∫ ∞

P1

etxg(x)dx.

Integrating by parts, we get

M∗(t) = petQ1 − p

G(Q1)

∫ Q1

0

textG(x)dx+
q

1−G(P1)

[
M(t)− etP1G(P1) +

∫ P1

0

tetxG(x)dx

]
= petQ1 +

q

1−G(P1)
[M(t)− etP1G(P1)]−

pt

G(Q1)

∫ Q1

0

extG(x)dx+
qt

1−G(P1)

∫ P1

0

etxG(x)dx.

Substituting the value of G(x) = 1− (1 + λxβ)−ν from (3.2), and solving we get

M∗(t) = petQ1 +
q

1−G(P1)
[M(t)− etP1G(P1)]−

p

G(Q1)
(etQ1 − 1) +

q

1−G(P1)
(etP1 − 1)

+
pt

G(Q1)

∞∑
m=0

tm

m!

∫ Q1

0

xm(1 + λxβ)
−ν

dx− qt

1−G(P1)

∞∑
m=0

tm

m !

∫ P1

0

xm(1 + λxβ)
−ν

dx

= petQ1 +
q

1−G(P1)
[M(t)− etP1G(P1)]−

p

G(Q1)
(etQ1 − 1) +

q

1−G(P1)
(etP1 − 1)

+
pt

G(Q1)

∞∑
d=0

td

d!

βm(Q1)(
d+1
β , ν − d+1

β )

βλ(d+1)/β
− qt

1−G(P1)

∞∑
d=0

td

d!

βm(P1)(
d+1
β , ν − d+1

β )

βλ(d+1)/β
,

where m(Q1) =
λQ1

β

1+λQ1
β , m(P1) =

λP1
β

1+λP1
β and βx(a, b) =

∫ x

0
ta−1(1− t)

b−1
dt, 0 < x < 1, is the incomplete beta

function and can be obtained using tables given by Pearson et al. [16].
Similarly the characteristic function of the mid-truncated Burr XII distribution can be evaluated.
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3.3. Distribution function

The cumulative distribution function of the mid-truncated Burr XII distribution (as in equation (3.9)) is given by

F (x) =


p
1− (1 + λxβ)

−ν

1− (1 + λQβ
1 )

−ν , 0 < x ≤ Q1

1− q
(1 + λxβ)

−ν

(1 + λP β
1 )

−ν , P1 ≤ x < ∞.

(3.14)

3.4. Generating data

To generate random variables from mid-truncated Burr XII distribution, we use equations (3.14) and (2.8), and we
get

u1 =
1− (1 + λxβ)−ν

1− (1 + λQβ
1 )

−ν
,

u2 = 1− (1 + λxβ)−ν

(1 + λP β
1 )

−ν
.

Solving the above two equations for x, we get

x =



[
[1− u1(1− (1 + λQβ

1 )
−ν)]−1/ν − 1

λ

]1/β
, 0 < x ≤ Q1[

[(1− u2)(1 + λP β
1 )

−ν ]−1/ν − 1

λ

]1/β
, P1 ≤ x < ∞.

3.5. Likelihood function

For n observations x1, x2, . . . , xn from mid-truncated Burr XII distribution the likelihood function is obtained from
equation (2.9) and is given by:

L(ν, β, λ) =
prqn−r

(1− (1+λQ1
β)

−ν
)
r
((1+λP1

β)
−ν

)
(n−r)

n∏
i=1

νβλxi
β−1(1 + λxi

β)
−(ν+1)

logL(ν, β, λ) = r log(p) + (n− r) log(q) + n(log ν + log β + log λ) + (β − 1)

n∑
i=1

log(xi)

− (ν + 1)

n∑
i=1

log(1 + λxβ
i )− r log(1− (1 + λQβ

1 )
−ν) + ν(n− r) log(1 + λP β

1 ). (3.15)

4. Recurrence relations for single moments of order statistics from mid-truncated Burr XII distribution

In this section we will derive recurrence relations for single moments of order statistics from mid-truncated Burr
XII distribution as defined in Section 3.

Theorem 1
For k = β, ν > 1 and λ, β > 0, we have

µ
(β)
1:n

(
1− 1

nν

)
=

(Q− p)β

Q
I
(β)
1:n − qn

[{
(1−Q)

−1
ν − 1

λ

}
−
{
(1− P )

−1
ν − 1

λ

}]
, (4.1)
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and, for k > β, β ∈ Z+, ν > 1 and λ, β > 0, we have

µ
(k)
1:n =

k

nνβλ
µ
(k−β)
1:n +

k

nνβ
µ
(k)
1:n +

(Q− p)k

Q
I
(k)
1:n − qn

[[{
(1−Q)

−1
ν − 1

λ

} 1
β
]k

−
[{

(1− P )
−1
ν − 1

λ

} 1
β
]k]

,

(4.2)

where

I
(k)
1:n =


Qk

1

k
, n = 1{

1 +

n−1∑
j=1

(−1)
j

(
p

Q

)j(
n− 1

j

)}
Qk

1

k
+

n−1∑
j=1

j∑
i=1

(−1)
j+i

(
p

Q

)j(
n− 1

j

)(
j

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β
, n > 1,

I
(β)
1:n is the same as I(k)1:n with k replaced by β, m(Q1) =

λQ1
β

1+λQ1
β and βx(a, b) =

∫ x

0
ta−1(1− t)

b−1
dt, 0 < x < 1, is

the incomplete beta function of first kind and can be obtained by using tables given by Pearson et al. [16].

Proof
Relations in (4.1) and (4.2) may be proved by following exactly the same steps as those in proving Theorem 2
which is presented below.

Theorem 2
For 2 ≤ r ≤ n, k = β, ν > 1, λ, β > 0, we have

µ(β)
r:n

(
1− 1

nν

)
− µ

(β)
r−1:n−1 =

(Q− p)β

Q
I(β)r:n −

(
n− 1

r − 1

)
pr−1qn−r+1

[{
(1−Q)

−1
ν − 1

λ

}
−
{
(1− P )

−1
ν − 1

λ

}]
,

(4.3)

and, for k > β, β ∈ Z+, ν > 1, λ, β > 0, we have

µ(k)
r:n − µ

(k)
r−1:n−1 =

k

nνβλ
µ(k−β)
r:n +

k

nνβ
µ(k)
r:n +

(Q− p)k

Q
I(k)r:n

−
(
n− 1

r − 1

)
pr−1qn−r+1

[[{
(1−Q)

−1
ν − 1

λ

} 1
β
]k

−
[{

(1− P )
−1
ν − 1

λ

} 1
β
]k]

, (4.4)

where

I(k)r:n =


n∑

j=r

j−1∑
i=1

(−1)
j−r+i

(
p

Q

)j−1(
n− 1

j − 1

)(
j − 1

r − 1

)(
j − 1

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β
, 2 ≤ r < n(

p

Q

)n−1{
Qk

1

k
+

n−1∑
i=1

(−1)
i

(
n− 1

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β

}
, r = n,

I
(β)
r:n is the same as I(k)r:n with k replaced by β, m(Q1) =

λQ1
β

1+λQ1
β and

βx(a, b) =

∫ x

0

ta−1(1− t)
b−1

dt, 0 < x < 1,

is the incomplete beta function of first kind and can be obtained by using tables by Pearson et al. [16].

Proof
To prove the above theorem, first we prove the following two lemmas.
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Lemma 1
In usual notations, for an arbitrary mid-truncated distribution discussed in Section 2, we have

µ(k)
r:n − µ

(k)
r−1:n−1 =

(
n− 1

r − 1

)[
k

∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r+1

dx

+ k

∫ ∞

P1

xk−1(F (x))
r−1

(1− F (x))
n−r+1

dx−(Q1
k − P1

k) pr−1qn−r+1

]
. (4.5)

Proof
Using (3.12), we get

µ(k)
r:n − µ

(k)
r−1:n−1 = Cr:n

∫ Q1

0

xk(F (x))
r−1

(1− F (x))
n−r

f(x)dx

+ Cr:n

∫ ∞

P1

xk(F (x))
r−1

(1− F (x))
n−r

f(x)dx

− Cr−1:n−1

∫ Q1

0

xk(F (x))
r−2

(1− F (x))
n−r

f(x)dx

− Cr−1:n−1

∫ ∞

P1

xk(F (x))
r−2

(1− F (x))
n−r

f(x)dx

=

(
n− 1

r − 1

)[∫ Q1

0

xk(F (x))
r−2

(1− F (x))
n−r

f(x){nF (x)− (r − 1)}dx

+

∫ ∞

P1

xk(F (x))
r−2

(1− F (x))
n−r

f(x){nF (x)− (r − 1)}dx
]
. (4.6)

Let

φ(x) = −(F (x))
r−1

(1− F (x))
n−r+1

. (4.7)

Differentiating both sides with respect to x, we get

dφ(x)

dx
= (F (x))

r−2
(1− F (x))

n−r
f(x){nF (x)− (r − 1)}. (4.8)

On using (4.8), equation (4.6) becomes

µ(k)
r:n − µ

(k)
r−1:n−1 =

(
n− 1

r − 1

)[∫ Q1

0

xk

(
dφ(x)

dx

)
dx+

∫ ∞

P1

xk

(
dφ(x)

dx

)
dx

]
=

(
n− 1

r − 1

)[
[xkφ(x)]

Q1

0 − k

∫ Q1

0

xk−1φ(x)dx+ [xkφ(x)]
∞
P1

− k

∫ ∞

P1

xk−1φ(x)dx

]
=

(
n− 1

r − 1

)[
Qk

1φ(Q1)− P k
1 φ(P1)− k

∫ Q1

0

xk−1φ(x)dx− k

∫ ∞

P1

xk−1φ(x)dx

]
. (4.9)

Now, since F (Q1) = p and F (P1) = 1− q, therefore, from (4.7), we have

φ(Q1) = φ(P1) = −pr−1qn−r+1.

Substituting the values of φ(x), φ(Q1) and φ(P1) in (4.9), it leads to Lemma 1.

Lemma 2
If for 1 ≤ r ≤ n and k = 1, 2, . . .,

I(k)r:n =

(
n− 1

r − 1

)∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r

dx, (4.10)
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then, it may be written as

I
(k)
1:n =


Qk

1

k
, n = 1

{
1 +

n−1∑
j=1

(−1)
j

(
p

Q

)j(
n− 1

j

)}
Qk

1

k
+

n−1∑
j=1

j∑
i=1

(−1)
j+i

(
p

Q

)j(
n− 1

j

)(
j

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β
, n > 1,

(4.11)

and

I(k)r:n =


n∑

j=r

j−1∑
i=1

(−1)
j−r+i

(
p

Q

)j−1(
n− 1

j − 1

)(
j − 1

r − 1

)(
j − 1

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β
, 2 ≤ r < n(

p

Q

)n−1{
Qk

1

k
+

n−1∑
i=1

(−1)
i

(
n− 1

i

)
βm(Q1)(

k
β , νi−

k
β )

βλk/β

}
, r = n,

(4.12)

where m(Q1) =
λQ1

β

1+λQ1
β and βx(a, b) =

∫ x

0
ta−1(1− t)

b−1
dt, 0 < x < 1, is the incomplete beta function of first

kind, which can be found out using tables given by Pearson et al. [16].

Proof
Relation in (4.11) may be proved by following exactly the same steps as those in proving (4.12) which is presented
below.

Expanding (1− F (x))
n−r binomially in powers of F (x) and then substituting the same in (4.10), we get for

2 ≤ r < n,

I(k)r:n =

(
n− 1

r − 1

) n−r∑
l=0

(−1)
l

(
n− r

l

)∫ Q1

0

xk−1(F (x))
l+r−1

dx.

On putting j = l + r, we get

I(k)r:n =

(
n− 1

r − 1

) n∑
j=r

(−1)
j−r

(
n− r

j − r

)∫ Q1

0

xk−1(F (x))
j−1

dx.

Substituting the value of F (x) from (3.4), we get

I(k)r:n =

n∑
j=r

(−1)
j−r

(
n− 1

j − 1

)(
j − 1

r − 1

)∫ Q1

0

xk−1

(
p(1− (1 + λxβ)

−ν
)

Q

)j−1

dx

=

n∑
j=r

(−1)
j−r

(
n− 1

j − 1

)(
j − 1

r − 1

)
pj−1

Qj−1

∫ Q1

0

xk−1((1− (1 + λxβ)
−ν

))
j−1

dx.

Expanding ((1− (1 + λxβ)
−ν

))
j−1

binomially, we get

I(k)r:n =

n∑
j=r

(−1)
j−r

(
n− 1

j − 1

)(
j − 1

r − 1

)
pj−1

Qj−1

j−1∑
i=1

(
j − 1

i

)∫ Q1

0

(−1)
i
xk−1(1 + λxβ)

−νi
dx

=

n∑
j=r

j−1∑
i=1

(−1)
j−r+i

(
p

Q

)j−1(
n− 1

j − 1

)(
j − 1

r − 1

)(
j − 1

i

)∫ Q1

0

xk−1(1 + λxβ)
−νi

dx. (4.13)
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Now consider

J =

∫ Q1

0

xk−1(1 + λxβ)
−νi

dx

=

∫ 1+λQβ
1

1
y−νi(y − 1)

k
β−1

dy

βλk/β
, by taking y = 1 + λxβ

=
1

βλk/β

∫ λQ1
β

1+λQ1
β

0

z
k
β−1(1− z)

νi− k
β−1

dz, by taking z = (y − 1)/y

=
1

βλk/β
βm(Q1)

(
k

β
, νi− k

β

)
, (4.14)

where m(Q1) =
λQ1

β

1+λQ1
β and βx(a, b) =

∫ x

0
ta−1(1− t)

b−1
dt, 0 < x < 1, is the incomplete beta function and can

be obtained using tables given by Pearson et al. [16].
Substituting the value of J from (4.14) in (4.13), it leads to the result (4.12) for the case 2 ≤ r < n. The result

(4.12) for the case r = n can similarly be established.

Proof of the main Theorem 2
Using (3.5) in (4.5), we get

µ(k)
r:n − µ

(k)
r−1:n−1 =

(
n− 1

r − 1

)[
k

∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r

(
1− p

Q
+ f(x)

x1−β(1 + λxβ)

νβλ

)
dx

+ k

∫ ∞

P1

xk−1(F (x))
r−1

(1− F (x))
n−r

f(x)
x1−β(1 + λxβ)

νβλ
dx− (Qk

1 − P k
1 )p

r−1qn−r+1

]
=

(
n− 1

r − 1

)[
k
(Q− p)

Q

∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r

dx

+
k

νβλ

{∫ Q1

0

xk−β(F (x))
r−1

(1− F (x))
n−r

f(x)dx

+

∫ ∞

P1

xk−β(F (x))
r−1

(1− F (x))
n−r

f(x)dx

}
+

k

νβ

{∫ Q1

0

xk(F (x))
r−1

(1− F (x))
n−r

f(x)dx

+

∫ ∞

P1

xk(F (x))
r−1

(1− F (x))
n−r

f(x)dx

}
− (Qk

1 − P1
k)pr−1qn−r+1

]
,

which on simplification and using (3.12) gives

µ(k)
r:n−µ

(k)
r−1:n−1 =

k

nνβλ
µ(k−β)
r:n +

k

nνβ
µ(k)
r:n +

(
n− 1

r − 1

)
·
[
(Q− p)k

Q

∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r

dx− (Qk
1 − P1

k) pr−1qn−r+1

]
. (4.15)

Now, on using the definition of I(k)r:n as given in Lemma 2 and putting the values of Q1 and P1 in (4.15), we get

µ(k)
r:n − µ

(k)
r−1:n−1 =

k

nνβλ
µ(k−β)
r:n +

k

nνβ
µ(k)
r:n +

(Q− p)k

Q
I(k)r:n

−
(
n− 1

r − 1

)
pr−1qn−r+1

[[{
(1−Q)

−1
ν − 1

λ

} 1
β
]k

−
[{

(1− P )
−1
ν − 1

λ

} 1
β
]k]

,
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where the values of I(k)r:n , for different values of r, are given in (4.11) and (4.12).This completes the proof of (4.4).
Further, on putting k = β in (4.4), it reduces to (4.3).

Recursive Algorithm

Utilizing the knowledge of recurrence relations obtained above one can evaluate the moments of order statistics
from mid-truncated Burr XII distribution for β ∈ Z+, k ≥ β, ν > 1 and λ > 0. Algorithm is as following:

Case 1: For k = mβ, m ∈ Z+

From equation (4.2), we observe that µ(mβ)
1:n can be evaluated by the knowledge of µ((m−1)β)

1:n which in turn can
be evaluated with the knowledge of µ((m−2)β)

1:n and so on, and after the recursive use of (4.2), (m− 1) times, we
conclude that µ(mβ)

1:n comes out to be a function of parameter values only. Thus, if the parameters are known then
one can evaluate µ

(k)
1:n for all n and k in a simple recursive manner for this case, i.e., for k = mβ.

From equation (4.4), we observe µ
(mβ)
r:n can be evaluated by the knowledge of µ

(mβ)
r−1:n−1 and µ

((m−1)β)
r:n and

after (r − 2) iterations of equation (4.4) we conclude that to evaluate µ
(mβ)
r:n the required values are µ

(mβ)
1:n−r+1,

µ
((m−1)β)
2:n−r+2 , . . . , µ

((m−r+1)β)
r:n .

In particular, to calculate µ
(mβ)
2:n we require the values of µ(mβ)

1:n−1 and µ
((m−1)β)
2:n . As µ(mβ)

1:n−1 is already known and
after the recursive use of (4.2), (m− 1) times, we conclude that to evaluate µ

(mβ)
2:n , the required values are µ

(tβ)
1:n−1

for all t = 1, 2, 3, . . . ,m, which are already known.
Now for r = 3 to evaluate µ

(mβ)
3:n , for odd m, we require the values of µ

(mβ)
1:n−2, µ

((m−2)β)
1:n−2 , . . . , µ

(3β)
1:n−2 and

µ
((m−1)β)
2:n−1 , µ

((m−3)β)
2:n−1 , . . . , µ

(2β)
2:n−1 (which have already been calculated) and µ

(β)
3:n. Using equation (4.3) we can

evaluate µ(β)
3:n, thus by using the values calculated above and utilizing Theorem 2 we can calculate µ(mβ)

3:n for all odd
values of m.

Similarly for even values of m, one can evaluate µ
(mβ)
3:n , by utilizing the above calculated values. In this way one

can calculate µ
(mβ)
4:n , µ(mβ)

5:n , . . . in a recursive manner.

Case 2: when k ̸= mβ, m ∈ Z+

From equation (4.2) we observe that µ(k)
1:n can be evaluated by the knowledge of µ(k−β)

1:n and after the recursive use
of (4.2) (α− 1) times (where α is the greatest integer satisfying the condition (k − αβ) > 0), we conclude that
µ
(k)
1:n is a function of µ(k−αβ)

1:n . Thus in this case, by the knowledge of µ(k−αβ)
1:n one can evaluate values of µ(k)

1:n for
all n and k in a simple recursive manner.

From equation (4.3) we observe that to evaluate µ
(k)
r:n we should have the knowledge of only one value with

sample size n i.e. µ(k−αβ)
r:n (where α is the greatest integer satisfying the condition (k − αβ) > 0) and some

moments of lower orders. Using the above information one can calculate µ
(k)
2:n, µ(k)

3:n, . . . in a recursive manner.

5. Recurrence relations for product moments of order statistics from mid-truncated Burr XII distribution

Theorem 3
For 1 ≤ r < s ≤ n, x < y and j, k > 0, we have

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n =

k

(n− s+ 1)νβλ
µ(j,k−β)
r,s:n +

k

(n− s+ 1)νβ
µ(j,k)
r,s:n

+ C∗
r,s:n

[
k

(
1− p

Q

)∫ Q1

0

∫ Q1

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

× [1− F (y)]
n−s

f(x)dydx− (1− p)
n−r

Q1
k
s−r−1∑
i=0

(
s− r − 1

i

)
(−1)

i

(
p

q

)s−r−i−1

Stat., Optim. Inf. Comput. Vol. 7, March 2019



184 MID-TRUNCATED BURR XII DISTRIBUTION AND ITS APPLICATIONS IN ORDER STATISTICS

×
∫ Q1

0

xj [F (x)]
r+i−1

[1− F (x)]
s−r−i−1

f(x)dx

]
, (5.1)

where C∗
r,s:n =

n!

(r − 1)!(s− r − 1)!(n− s+ 1)!
.

Proof
To prove the above theorem, first we evaluate the following term,

E(j, r + i, s) =

∫ Q1

0

xj [F (x)]
r+i−1

[1− F (x)]
s−r−i−1

f(x)dx (say)

=

∫ Q1

0

xj [F (x)]
α−1

[1− F (x)]
s−α−1

f(x)dx, by taking r + i = α.

From equation (3.5) we know for x ≤ Q1

F (x) =
p

Q
− f(x)

x1−β(1 + λxβ)

νβλ

⇒ p

Q
− F (x) = f(x)

x1−β(1 + λxβ)

νβλ

⇒ νβλ

[
p

Q
− F (x)

]
xβ−1 = f(x)(1 + λxβ). (5.2)

Now consider,

E(j, α, s) + λE(j + β, α, s) =

∫ Q1

0

xj [F (x)]
α−1

[1− F (x)]
s−α−1

f(x)dx

+ λ

∫ Q1

0

xj+β [F (x)]
α−1

[1− F (x)]
s−α−1

f(x)dx

=

∫ Q1

0

xj [F (x)]
α−1

[1− F (x)]
s−α−1

f(x)(1 + λxβ)dx

= νβλ

∫ Q1

0

xj [F (x)]
α−1

[1− F (x)]
s−α−1

[
p

Q
− F (x)

]
xβ−1dx (using (5.2))

= νβλ

[
p

Q

∫ Q1

0

xj+β−1[F (x)]
α−1

[1− F (x)]
s−α−1

dx

−
∫ Q1

0

xj+β−1[F (x)]
α
[1− F (x)]

s−α−1
dx

]
= νβλ

[
p

Q

I
(j+β)
α:s−1(
s−2
α−1

) −
I
(j+β)
α+1:s(
s−1
α

) ],
where α = r + i, and

I(k)r:n =

(
n− 1

r − 1

)∫ Q1

0

xk−1(F (x))
r−1

(1− F (x))
n−r

dx,

which is evaluated in Lemma 2.

Proof of the main Theorem 3

Using equation (3.13), and letting C∗
r,s:n =

n!

(r − 1)!(s− r − 1)!(n− s+ 1)!
, consider

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n =

n!

(r − 1)!(s− r − 1)!(n− s)!
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×
[∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

+

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

]
− n!

(r − 1)!(s− r − 2)!(n− s+ 1)!

×
[∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[1− F (y)]
n−s+1

f(x)f(y)dydx

+

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[1− F (y)]
n−s+1

f(x)f(y)dydx

]
= C∗

r,s:n

[∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[
1− F (y)

]n−s

f(x)f(y)

×
{
(n− s+ 1)(F (y)− F (x))− (s− r − 1)(1− F (y))

}
dydx

+

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[1− F (y)]
n−s

f(x)f(y)

×
{
(n− s+ 1)(F (y)− F (x))− (s− r − 1)(1− F (y))

}
dydx

]
= C∗

r,s:n

[∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[1− F (y)]
n−s

f(x)f(y)

×
{
(n− r)F (y)− (n− s+ 1)F (x)− (s− r − 1)

}
dydx

+

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−2

[1− F (y)]
n−s

f(x)f(y)

×
{
(n− r)F (y)− (n− s+ 1)F (x)− (s− r − 1)

}
dydx

]
. (5.3)

Let

φ(x, y) = −[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

. (5.4)

Then,

∂φ(x, y)

∂y
= −(s− r − 1)[F (y)− F (x)]

s−r−2
[1− F (y)]

n−s+1
f(y)

+ (n− s+ 1)[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(y)

= [F (y)− F (x)]
s−r−2

[1− F (y)]
n−s

f(y)[(n− r)F (y)

− (n− s+ 1)F (x)− (s− r − 1)]. (5.5)

Putting the above value in (5.3), we get

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n = C∗

r,s:n

[∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1 ∂φ(x, y)

∂y
f(x)dydx

+

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1 ∂φ(x, y)

∂y
f(x)dydx

]
= C∗

r,s:n

[∫ Q1

0

xj [F (x)]
r−1

(∫ Q1

x

yk
∂φ(x, y)

∂y
dy

)
f(x)dx
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+

∫ ∞

P1

xj [F (x)]
r−1

(∫ ∞

x

yk
∂φ(x, y)

∂y
dy

)
f(x)dx

]
. (5.6)

Now, consider∫ Q1

x

yk
∂φ(x, y)

∂y
dy = Q1

kφ(x,Q1) + k

∫ Q1

x

yk−1[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

dy. (5.7)

From equations (5.4) and (3.9), we have

φ(x,Q1) = −[p− F (x)]
s−r−1

[1− p]
n−s+1

. (5.8)

Putting (5.8) in equation (5.7), we get∫ Q1

x

yk
∂φ(x, y)

∂y
dy = k

∫ Q1

x

yk−1[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

dy

−Q1
k[p− F (x)]

s−r−1
[1− p]

n−s+1
, (5.9)

also, ∫ ∞

x

yk
∂φ(x, y)

∂y
dy = k

∫ ∞

x

yk−1[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

dy. (5.10)

Putting (5.9) and (5.10) in equation (5.6), we get

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n = C∗

r,s:n

[∫ Q1

0

xj [F (x)]
r−1

{
k

∫ Q1

x

yk−1[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

dy

−Q1
k[p− F (x)]

s−r−1
[1− p]

n−s+1

}
f(x)dx

+

∫ ∞

P1

xj [F (x)]
r−1

{
k

∫ ∞

x

yk−1[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

dy

}
f(x)dx

]
= C∗

r,s:n

[
k

∫ Q1

0

∫ Q1

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

f(x)dydx

+ k

∫ ∞

P1

∫ ∞

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

f(x)dydx

−
∫ Q1

0

xjQ1
k[p− F (x)]

s−r−1
[1− p]

n−s+1
[F (x)]

r−1
f(x)dx

]
. (5.11)

Considering the last term of the above equation and writing (n− s+ 1) = (n− r)− (s− r − 1), we get

Q1
k[1− p]

n−s+1

∫ Q1

0

xj [p− F (x)]
s−r−1

[F (x)]
r−1

f(x)dx

= Q1
k[1− p]

n−r

∫ Q1

0

xj [p− F (x)]
s−r−1

(1− p)
s−r−1 [F (x)]

r−1
f(x)dx

= Q1
k[1− p]

n−r

∫ Q1

0

xj

(
p− F (x)

q

)s−r−1

[F (x)]
r−1

f(x)dx

= Q1
k[1− p]

n−r

∫ Q1

0

xj [F (x)]
r−1

(
p(1− F (x))

q
− F (x)

)s−r−1

f(x)dx.
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Expanding
(
p

q
(1− F (x))− F (x)

)s−r−1

binomially we get the above expression equal to

Q1
k[1− p]

n−r

∫ Q1

0

xj [F (x)]
r−1

s−r−1∑
i=0

(
s− r − 1

i

)
(−F (x))

i

(
p

q
(1− F (x))

)s−r−i−1

f(x)dx

= Q1
k[1− p]

n−r
s−r−1∑
i=0

(
s− r − 1

i

)(
p

q

)s−r−i−1

(−1)
i

∫ Q1

0

xj [F (x)]
r+i−1

[1− F (x)]
s−r−i−1

f(x)dx.

(5.12)

Putting (5.12) in (5.11), we get

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n

= C∗
r,s:n

[
k

∫ Q1

0

∫ Q1

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

f(x)dydx

+ k

∫ ∞

P1

∫ ∞

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s+1

f(x)dydx

−Q1
k[1− p]

n−r
s−r−1∑
i=0

(
s− r − 1

i

)(
p

q

)s−r−i−1

(−1)
i

∫ Q1

0

xj [F (x)]
r+i−1

[1− F (x)]
s−r−i−1

f(x)dx

]
.

(5.13)

Using (3.5) in (5.13), we get

µ(j,k)
r,s:n − µ

(j,k)
r,s−1:n = C∗

r,s:n

[
k

(
1− p

Q

)∫ Q1

0

∫ Q1

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)dydx

+
k

νβλ

∫ Q1

0

∫ Q1

x

xjyk−β [F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

+
k

νβ

∫ Q1

0

∫ Q1

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

+
k

νβλ

∫ ∞

P1

∫ ∞

x

xjyk−β [F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

+
k

νβ

∫ ∞

P1

∫ ∞

x

xjyk[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y)dydx

− (1− p)
n−r

Q1
k
s−r−1∑
i=0

(
s− r − 1

i

)
(−1)

i

(
p

q

)s−r−i−1 ∫ Q1

0

xj [F (x)]
r+i−1

× [1− F (x)]
s−r−i−1

f(x)dx

]
=

k

(n− s+ 1)νβλ
µ(j,k−β)
r,s:n +

k

(n− s+ 1)νβ
µ(j,k)
r,s:n

+ C∗
r,s:n

[
k

(
1− p

Q

)∫ Q1

0

∫ Q1

x

xjyk−1[F (x)]
r−1

[F (y)− F (x)]
s−r−1

× [1− F (y)]
n−s

f(x)dydx− (1− p)
n−r

Q1
k
s−r−1∑
i=0

(
s− r − 1

i

)
(−1)

i

(
p

q

)s−r−i−1

×
∫ Q1

0

xj [F (x)]
r+i−1

[1− F (x)]
s−r−i−1

f(x)dx

]
,
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which completes the proof of Theorem 3.

Remark 1
Proceeding in a similar manner as in Section 3, and considering the following baseline distributions, which are
particular cases of Burr XII distribution, namely

(i) Lomax distribution:

F (x) = 1−
[
1 +

x

a

]−ν

(ii) Weibull distribution:
F (x) = 1− e−xβ

(iii) Compound Weibull or Weibull–Gamma distribution:

F (x) = 1−
[
1 +

xβ

δ

]−ν

(iv) Weibull-Exponential distribution:

F (x) =
xβ/δ

(1 + xβ/δ)

(v) Log logistic distribution:

F (x) =
(x/a)

β

1 + (x/a)
β

(vi) Exponential distribution:
F (x) = 1− e−x

(vii) Rayleigh distribution:
F (x) = 1− e−x2/2

(viii) Generalized Rayleigh distribution:

F (x) = 1−[1+αx2/2]
−(1/α)

(ix) Generalized Pareto distribution:
F (x) = 1− [1 + px]

−(1/p),

we can construct the corresponding mid-truncated distributions and find corresponding recurrence relations for
moments of order statistics arising from these distributions.

Thus, the recurrence relations obtained in Sections 4 and 5 are also true for mid-truncated
Lomax (β = 1, λ = 1/a), Weibull (ν = 1/λ, λ → 0), Weibull-Gamma (λ = 1/δ), Weibull-Exponential (ν =
1, λ = 1/δ), Log logistic (ν = 1, λ = a−β), Exponential (ν = 1/λ, β = 1, λ → 0), Rayleigh (β = 2, ν = 1/(2λ),
λ → 0), Generalized Rayleigh (β = 2, ν = 1/α, λ = α/2) and Generalized Pareto (β = 1, ν = 1/p, λ = p)
distributions.

Remark 2
The results deduced for the mid-truncated Weibull distribution, so obtained, are in agreement with the results of
Okasha et al. [14].
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6. Characterization of mid-truncated distributions using order statistics

In this section we will use the conditional moments of order statistics to characterize mid-truncated distributions.
Let X1, X2, X3, . . . , Xn be a random samples of size n from the distribution defined in (3.3) and X1:n ≤

X2:n ≤ . . . ≤ Xn:n be the corresponding order statistics. Then the probability density function (pdf) of Xr:n

(1 ≤ r ≤ n) is given by fr:n(x) as defined by equation (3.10) and joint probability density function of Xr:n and
Xs:n (1 ≤ r < s ≤ n) is given by fr,s:n(x, y) as defined in (3.11).

Many authors have studied characterizations depending on order statistics. Among those Khan and Khan
[8] characterized Burr XII distribution through moments of order statistics. Lin [9] used product moments to
characterize power function, exponential and normal distributions. For extensive survey refer to Huang and Lin [7]
and Huang [6].

Next, we establish a theorem to characterize mid-truncated distributions based on order statistics.

Theorem 4
Let X be a random variable having probability density function as (2.1), then X is having mid-truncated distribution
iff

E(Xk
r+1:n|Xr:n = x) = xk +

k∆(x)

(1− F (x))
n−r ,

where

∆(x) =

∫ ∞

x

yk−1

[
1−

[
p

G(Q1)

∫ y

−∞
g(t)dt+

p

G(Q1)

∫ Q1

−∞
g(t)dt+

q

(1−G(P1))

∫ y

P1

g(t)dt

]]n−r

dy,

and F (x) is the cumulative distribution function of the mid-truncated random variable.

Proof
Necessary condition:

We have

E(Xk
r+1:n| Xr:n = x) =

Cr,r+1:n

Cr:n

[∫ ∞

x

yk(F (x))r−1(1− F (y))
n−r−1

f(x)f(y)

(F (x))r−1(1− F (x))
n−r

f(x)
dy

]
=

(n− r)

(1− F (x))
n−r

∫ ∞

x

yk(1− F (y))
n−r−1

f(y)dy,

where Xr+1:n = y. Integrating by parts, we get

E(Xk
r+1:n|Xr:n = x) =

(n− r)

(1− F (x))
n−r

(
−yk(1− F (y))

n−r

n− r

∣∣∣∣∞
x

+ k

∫ ∞

x

yk−1(1− F (y))
n−r

n− r
dy

)
= xk +

k

(1− F (x))
n−r

∫ ∞

x

yk−1

[
1−

[
p

G(Q1)

∫ y

−∞
g(t)dt+

p

G(Q1)

∫ Q1

−∞
g(t)dt

+
q

(1−G(P1))

∫ y

P1

g(t)dt

]]n−r

dy

= xk +
k∆(x)

(1− F (x))
n−r .

Hence necessary part is proved.

Sufficient condition:
Let

E(Xk
r+1:n|Xr:n = x) = xk +

k∆(x)

(1− F (x))
n−r ,
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then
(n− r)

(1− F (x))
n−r

∫ ∞

x

yk(1− F (y))
n−r−1

f(y)dy = xk +
k∆(x)

(1− F (x))
n−r .

Multiplying both sides by (1− F (x))
n−r, and differentiating both sides with respect to x, we get

− (n− r)xk(1− F (x))
n−r−1

f(x)

= kxk−1(1− F (x))
n−r − (n− r)xk(1− F (x))

n−r−1
f(x)

− kxk−1

[
1−

[
p

G(Q1)

∫ y

−∞
g(t)dt+

p

G(Q1)

∫ Q1

−∞
g(t)dt+

q

(1−G(P1))

∫ y

P1

g(t)dt

]]n−r

.

On simplification, we get

F (x) =
p

G(Q1)

∫ y

−∞
g(t)dt+

p

G(Q1)

∫ Q1

−∞
g(t)dt+

q

(1−G(P1))

∫ y

P1

g(t)dt.

This is the cumulative distribution function of the mid-truncated random variable.
Hence sufficient part is proved.
By applying the above theorem, X has mid-truncated Burr XII distribution iff

E(Xk
r+1:n|Xr:n = x) = xk +

k∆(x)

(1− F (x))
n−r ,

where

F (x) = p
1− (1 + λxβ)

−ν

1− (1 + λQβ
1 )

−ν I0<x≤Q1 +

(
1− q

(1 + λxβ)
−ν

(1 + λP β
1 )

−ν

)
IP1≤x<∞,

∆(x) =

∫ ∞

x

yk−1

[
1−

[
p

{
1 +

1− (1 + λxβ)
−ν

1− (1 + λQβ
1 )

−ν

}
+ q

{
(1 + λP β

1 )
−ν

− (1 + λyβ)
−ν

(1 + λP β
1 )

−ν

}]]n−r

dy,

I0<x≤Q1 =

{
1, 0 < x ≤ Q1

0, elsewhere,

and

IP1≤x<∞ =

{
1, P1 ≤ x < ∞
0, elsewhere.

7. Conclusion

In live models as discussed earlier in the paper, mid-truncated Burr distribution is quite effectively used when the
random variable is restricted to be observed on some sub intervals of the given specified range. Figures 1 and 2
depict the probability density function of Mid-truncated Burr distribution for different values of parameters and for
different points of truncation.

We have derived the recurrence relations for single moments and product moments of order statistics from mid-
truncated Burr XII distribution, and utilizing the knowledge of recurrence relations we can evaluate the moments
of order statistics using the recursive algorithm as discussed in Section 4. Using these moments, to investigate the
effect of the shape parameters β, ν and scale parameter λ on the mid-truncated Burr XII density function, we have
computed mean, variance, skewness and kurtosis for different values of the parameters, which are presented in
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Tables 1 to 3. From these tables we observe that by keeping any two parameters fixed, the increase in the value of
the third parameter results in the decrease of the values of the measures calculated.

Also, due to the flexibility of the considered distribution, i.e., mid-truncated Burr XII distribution, which
contains, as special sub models, mid-truncated Weibull distribution, mid-truncated exponential distribution, mid-
truncated log-logistic distribution, among others, in accommodating different forms of risk functions, this mid-
truncated Burr XII distribution is appropriate for a variety of problems modelling lifetime data.
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