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Abstract In this paper, we introduce the concept of generalized interval entropy measure of order α and type β for the
doubly truncated random variable. A characterization problem for the generalized interval entropy measure has been studied.
The exponential, the pareto and finite range distributions have been characterized in terms of the proposed entropy measure
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1. Introduction

In the literature, the problem of characterizing probability distributions has been investigated by many researchers,
refer to Galambos and Kotz [10] and Azlarov and Volodin [3] among others. The standard practice in modeling
statistical data is either to derive the appropriate model based on the physical properties of the system or to choose a
flexible family of distributions and then find a member of the family that is appropriate to the data. In both situations
it would be helpful if we find characterization theorems that explain the distribution using important measures of
indices.
In modeling and analysis of lifetime data, the average amount of uncertainty associated with the random variable
X , as given by Shannon entropy, is

H(X) = −
∫ ∞

0

f(x) log f(x)dx . (1)

Since the work of Shannon [19], the measure of entropy has been generalized in a number of different ways by
different researchers. A generalization of order α and type β of the entropy (1) is the Verma’s entropy [21] defined
as

Hβ
α(X) =

1

β − α
log

[∫ ∞

0

fα+β−1(x)dx

]
; β − 1 < α < β, β ≥ 1 (2)

When β = 1 and α −→ 1,Hβ
α(X) −→ H(X) given in (1). Varma’s entropy measure is much more flexible due to

the parameters α and β, enabling several measurements of uncertainty within a given distribution and increase the
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scope of application. The residual lifetime of the system when it is still operating at time t is Xt = (X − t|X > t);
Ebrahimi [8] proposed the entropy of the residual lifetime Xt as

H(X; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx , t > 0. (3)

Ebrahimi [8] showed that the dynamic measure (3) determines the underlying distribution function uniquely.
Similar results in case of a generalized residual entropy have been derived by Belzunce et al. [5] and Asadi et
al. [1]. Since the characterizations of distributions have numerous applications in reliability, characterizations in
terms of dynamic entropies of various distributions have been proposed in the literature, refer to, Nair and Rajesh
[14] and Asadi and Ebrahimi [2].
However, in many realistic situations, uncertainty is not necessarily related to the future but can also refer to the
past. Based on this idea, Di Crescenzo and Longobardi [6] introduced an entropy-based measure of uncertainty
in past life time X∗

t = [t−X|X ≤ t], and called it past entropy. The measures of uncertainty in context with past
lifetime distributions have been studied extensively in the literature, refer to, Di Crescenzo and Longobardi [7]
Nanda and Paul [15] and Kumar et al. [11].

In many situations, we only have information between two points, so we should study the statistical measures
under the condition of doubly truncated random variables. The doubly truncated measures are applicable
to engineering systems when the observations are measured after it starts operating and before it fails. If
the random variable X denotes the lifetime of a unit, then the random variable (X|t1 < X < t2); where
(t1, t2) ∈ D = {(u, v) ∈ ℜ2 : F (u) < F (v)} is called a doubly truncated lifetime variable. Another extension of
Shannon entropy is based on a doubly truncated random variable (X|t1 < X < t2), which is defined as

H(X; t1, t2) = −
∫ t2

t1

f(x)

F (t1)− F (t2)
log

f(x)

F (t1)− F (t2)
dx . (4)

Given that a system has survived up to time t1 and has been found to be down at time t2, then H(X; t1, t2) measure
the uncertainty about its lifetimes between t1 and t2. Sunoj et al. [20] have explored the use of information measures
for double truncated random variables. Furthermore, Misagh and Yari [12, 13] explored the use of weighted
information measures for doubly truncated random variables. For various results on doubly truncated random
variable, we refer to Kayal and Moharana [24], and Kundu [23].
Since generalized entropy plays an important role, in the field of reliability theory and survival analysis, when a
system has lifetime between two time points (t1, t2). The measure proposed for doubly truncated random variable
appears in quasar survey, where an investigator assumes that the apparent magnitude is doubly truncated. Also, the
times to progression for patients with certain disease who received chemotherapy, experienced tumor progression
and subsequently died, are doubly truncated. Motivated with this usefulness of the generalized entropy and the
interval entropy, in the present note, an attempt is made to derive some new characterizations to certain probability
distributions and families of distributions using generalized interval entropy, which are useful for modeling and
analysis of lifetime data.
The paper is organized as follows. In Section 2 , we propose the generalized interval entropy and show that the effect
of monotone transformations on it. Section 3 is devoted to the characterization result and uniform distribution has
been characterized through the generalized interval entropy. In Section 4, we characterize the lifetime distributions
based on relationship between the proposed dynamic entropy measure Hβ

α(X; t1, t2) and generalized failure rate
function, and also we derive an lower bound to the generalized interval entropy. Some stochastic comparison based
on generalized interval entropy are presented in Section 5.
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2. Generalized Interval Entropy

The generalized interval entropy of order α and type β of the doubly truncated random variable (X|t1 < X < t2)
is proposed as

Hβ
α(X; t1, t2) =

1

β − α
log

[∫ t2

t1

(
f(x)

F (t2)− F (t1)

)α+β−1

dx

]
;β − 1 < α < β, β ≥ 1. (5)

This can be rewritten as∫ t2

t1

fα+β−1(x)dx = (F (t2)− F (t1))
α+β−1 exp[(β − α)Hβ

α(X; t1, t2)] . (6)

When the system has the age t1, for different value of α and β, the generalized interval entropy Hβ
α(X; t1, t2)

provide the information spectrum of the system remaining life until age t2.
When, t2 → ∞, and t1 → 0, then (5) reduce respectively to generalized residual and past entropy measure, which
are given respectively as

Hβ
α(X; t1) =

1

β − α
log

(∫∞
t1

fα+β−1(x)dx

F
α+β−1

(t1)

)
(7)

and

H
β

α(X; t2) =
1

β − α
log

(∫ t2
0

fα+β−1(x)dx

Fα+β−1(t2)

)
(8)

refer to Baig and Dar [4].
Next we show that the effect of monotone transformations on generalized interval entropy defined in (5). In this
context we prove the following result.

Theorem 1
Let X be a non-negative and continuous random variables with p.d.f. f and distribution function F . Let Y = ϕ(X),
with ϕ be a strictly monotonic increasing, continuous and differentiable function, with derivative ϕ′. Then for all
0 < t1 < t2 < ∞, we have

Hβ
α(Y ; t1, t2) = Hβ

α(X;ϕ−1(t1), ϕ
−1(t2)) +

(
2− α− β

β − α

)
log ϕ

′
(x). (9)

Proof The probability density function of Y = ϕ(X) is g(y) = f(ϕ−1(y))
ϕ ′(ϕ−1(y)) . Thus

Hβ
α(Y ; t1, t2) =

1

β − α
log

[∫ t2

t1

(
g(y)

G(t2)−G(t1)

)α+β−1

dy

]
;β − 1 < α < β, β ≥ 1.

This gives

Hβ
α(Y ; t1, t2) =

1

β − α
log

[∫ t2

t1

(
f(ϕ−1(y))

F (ϕ−1(t2))− F (ϕ−1(t1))

)α+β−1(
1

ϕ′(ϕ−1(y))

)α+β−1

dy

]
.

By taking x = ϕ−1(y), we obtain

Hβ
α(Y ; t1, t2) =

1

β − α
log

[∫ ϕ−1(t2)

ϕ−1(t1)

(
f(x)

F (ϕ−1(t2))− F (ϕ−1(t1))

)α+β−1(
1

ϕ′(x)

)α+β−2

dx

]
. (10)
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This can be written as

Hβ
α(Y ; t1, t2) = Hβ

α(X;ϕ−1(t1), ϕ
−1(t2)) +

(
2− α− β

β − α

)
log ϕ

′
(x).

This prove the result.

Remark 1
For any absolutely continuous random variable X, define Y = aX + b, where a > 0 and 0 < b < t1 are constants.
Then

Hβ
α(Y ; t1, t2) = Hβ

α

(
X;

t1 − b

a
,
t2 − b

a

)
+

(
2− α− β

β − α

)
log a.

Thus generalized interval entropy defined in (5) is invariant under location but not under scale transformation.

Example 1
Pareto distribution plays a central role in various applications. It is used in the investigation of city population,
occurrence of natural resources, insurance risk, size of human settlements, reliability modeling and business failure.
It has been an important model in many socio-economic studies. Let X be a random variable having classical Pareto
distribution with pdf

f(x) =
θ

xθ+1
, x ≥ 1, θ > 0. (11)

Thus generalized interval entropy (5) of for classical Pareto distribution is given as

Hβ
α(X; t1, t2) =

1

β − α
log

(
θα+β−1

(t−θ
1 − t−θ

2 )α+β−1

∫ t2

t1

x−(θ+1)(α+β−1)dx

)
which gives,

Hβ
α(X; t1, t2) =

1

β − α
log

[(
θα+β−1

(θ + 1)(1− α− β) + 1

)(
t
(θ+1)(1−α−β)+1
2 − t

(θ+1)(1−α−β)+1
1

(t−θ
1 − t−θ

2 )α+β−1

)]
.

Example 2
Let X be a random variable follows the power distribution with cumulative distribution function (cdf)

F (x) =
(x
a

)b
, 0 < x < a, b > 0. (12)

Thus we expressed generalized interval entropy (5) for power distribution, which is given as follows

Hβ
α(X; t1, t2) =

1

β − α
log

[(
bα+β−1

ab(α+β−1)[(b− 1)(α+ β − 1) + 1]

)(
t
(b−1)(α+β−1)+1
2 − t

(b−1)(α+β−1)+1
1

(( t2a )
b − ( t1a )

b)α+β−1

)]
.

Example 3
If X is Folded Cramer Distribution with probability density function f(x) = θx

(1+θx)2 , and survival function
F̄ (x) = 1

(1+θx) , then generalized interval entropy (5) is

Hβ
α(X; t1, t2) =

1

β − α

[
log

(
1

( t2
1+θt2

− t1
1+θt1

)α+β−1

∫ t2

t1

(1 + θx)−2(α+β−1)dx

)]

=
1

β − α

[
log

(
1

( t2
1+θt2

− t1
1+θt1

)α+β−1
× (1 + θt2)

1−2(α+β−1) − (1 + θt1)
1−2(α+β−1)

1− 2(α+ β − 1)

)]
.
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3. Characterization Results Based on Hβ
α(X; t1, t2)

In this section we show that Hβ
α(X; t1, t2) uniquely determines the lifetime distribution function. In this context

we prove the following result. We first give the definition of general failure rate (GFR) functions, refer to Navarro
and Ruiz (1996, 2004).

Definition 1
The GFR functions of a doubly truncated random variable (X|t1 ≤ X ≤ t2) are given by hX

1 (t1, t2) =
f(t1)

F (t2)−F (t1)

and hX
2 (t1, t2) =

f(t2)
F (t2)−F (t1)

.

Theorem 2
Let X be a non-negative random variable having continuous density function f(x) and distribution function F (x).
Assume that Hβ

α(X; t1, t2) be increasing with respect to both coordinates t1 and t2. Then for each α and β,
Hβ

α(X; t1, t2) uniquely determines the distribution function F (x).

Proof On differentiating (6) with respect to t1 and t2, we obtain

hα+β−1
2 (t1, t2) = (α+ β − 1) exp{(β − α)Hβ

α(X; t1, t2)}h2(t1, t2)

+ (β − α) exp{(β − α)Hβ
α(X; t1, t2)}

∂

∂t2
Hβ

α(X; t1, t2), (13)

and

hα+β−1
1 (t1, t2) = (α+ β − 1) exp{(β − α)Hβ

α(X; t1, t2)}h1(t1, t2)

− (β − α) exp{(β − α)Hβ
α(X; t1, t2)}

∂

∂t1
Hβ

α(X; t1, t2). (14)

Hence for fixed and positive t1 and t2, h1(t1, t2) and h2(t1, t2) are solutions of g(xt2) = 0 and k(yt1) = 0, where

g(xt2) = xα+β−1
t2

− (α+ β − 1)xt2 exp{(β − α)Hβ
α(X; t1, t2)}

− (β − α) exp{(β − α)Hβ
α(X; t1, t2)}

∂

∂t2
Hβ

α(X; t1, t2), (15)

and

k(yt1) = yα+β−1
t1

− (α+ β − 1)yt1 exp{(β − α)Hβ
α(X; t1, t2)}

+ (β − α) exp{(β − α)Hβ
α(X; t1, t2)}

∂

∂t1
Hβ

α(X; t1, t2). (16)

Partial differentiating (15) and (16) with respect to xt2 and yt1 , we obtain

∂g(xt2)

∂xt2

= (α+ β − 1)xα+β−2
t2

− (α+ β − 1) exp{(β − α)Hβ
α(X; t1, t2)}, (17)

and
∂k(yt1)

∂yt1
= (α+ β − 1)yα+β−2

t1
− (α+ β − 1) exp{(β − α)Hβ

α(X; t1, t2)}. (18)

For extreme value of g(xt2) and k(yt1), we have ∂g(xt2
)

∂xt2
= 0 and ∂k(yt1

)

∂yt1
= 0, which gives as xt2 =(

exp{(β − α)Hβ
α(X; t1, t2)}

) 1
α+β−2 = yt1 , respectively. Furthermore, second order derivatives are

∂2g(xt2)

∂x2
t2

= (α+ β − 1)(α+ β − 2)xα+β−3
t2
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and
∂2k(yt1)

∂y2t1
= (α+ β − 1)(α+ β − 2)yα+β−3

t1
.

Case I: Let α+ β > 2, then ∂2g(xt2 )

∂x2
t2

=
∂2k(yt1 )

∂y2
t1

> 0. Thus both of g(xt2) and k(yt1) are minimized at xt2 and

yt1 respectively. Also, g(0) = −(β − α) exp{(β − α)Hβ
α(X; t1, t2)} ∂

∂t2
Hβ

α(X; t1, t2) < 0, since we assume that
Hβ

α(X; t1, t2) be increasing with respect to both coordinates t1 and t2, and g(∞) = ∞. Similarly k(0) > 0 and
k(∞) = ∞. Therefore, both the equations g(xt2) = 0 and k(yt1) = 0 have unique positive solutions h1(t1, t2) and
h2(t1, t2) respectively.

Case II: Let α+ β < 2, then ∂2g(xt2 )

∂x2
t2

=
∂2k(yt1 )

∂y2
t1

< 0. Thus both of g(xt2) and k(yt1) are maximized at xt2 and yt1

respectively. In the same way one can conclude that h1(t1, t2) and h2(t1, t2) are unique solutions of g(xt2) = 0,
and k(yt1) = 0 respectively. So, Hβ

α(X; t1, t2) determines the generalized failure rates hj(t1, t2), j = 1, 2
uniquely.

The characterization of specific distributions using relations between reliability measures has become of
increasing interest. Next we characterize uniform distribution in term of the generalized interval entropy (5). We
give the following theorem.

Theorem 3
A random variable X over (a, b), a < b, has uniform distribution if, and only if

Hβ
α(X; t1, t2) =

(
2− α− β

β − α

)
log(t2 − t1). (19)

Proof The ’only if’; part of the theorem is straight forward. Since in case of uniform distribution of X over (a, b)

F (x) =
x− a

b− a
and f(x) =

1

b− a
.

Substituting these in (5) and simplifying, we obtain

Hβ
α(X; t1, t2) =

(
2− α− β

β − α

)
log(t2 − t1).

To prove the ’if part’ let (19) be valid. Which gives∫ t2

t1

fα+β−1(x)dx = (t2 − t1)
2−α−β [F (t2)− F (t1)]

α+β−1. (20)

Differentiating (20) with respect to t1 and t2, we obtain

hα+β−1
1 (t1, t2) =

(2− α− β)

(t2 − t1)α+β−1
+ (α+ β − 1)h1(t1, t2)(t2 − t1)

2−α−β

and

hα+β−1
2 (t1, t2) =

(2− α− β)

(t2 − t1)α+β−1
+ (α+ β − 1)h2(t1, t2)(t2 − t1)

2−α−β .

Then, for any fixed t1 and arbitrary t2, hX
1 (t1, t2) is a positive solution of η(xt2) = 0, where

η(xt2) = {xt2}α+β−1 − (α+ β − 1)xt2(t2 − t1)
2−α+β −

{
2− α+ β

(t2 − t1)α+β−1

}
. (21)
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Similarly, for any fixed t2 and arbitrary t1, hX
2 (t1, t2) is a positive solution of ζ(yt1) = 0, where

ζ(yt1) = {yt1}α+β−1 − (α+ β − 1)yt1(t2 − t1)
2−α+β −

{
2− α+ β

(t2 − t1)α+β−1

}
. (22)

Differentiating both side of (21) and (22) with respect to xt2 and yt1 respectively, we get

hX
1 (t1, t2) = hX

2 (t1, t2) =
1

t2 − t1
(23)

Thus, if lifetime of a component is uniformly distributed in interval (a, b), then the generalized failure rate is,
hX
i (t1, t2) =

1
t2−t1

; for i = 1, 2. Thus result is prove.

4. Lifetime Distributions Based on Interval Entropy of Order α and Type β

In this section we characterize some specific lifetime distribution functions based on Hβ
α(X; t1, t2), the generalized

interval entropy of order α and type β. We will achieve this by considering a relation between Hβ
α(X; t1, t2) and

hX
i (t1, t2) for i = 1, 2, the general failure rate (GFR) function. We give the following result.

Theorem 4
Let X be a non-negative continuous random variable with survival function F̄ (t), general failure rate function
hX
i (t1, t2) for i = 1, 2 and generalized interval entropy Hβ

α(X; t1, t2) given by

(β − α)Hβ
α(X; t1, t2) = log

{
1

k

[
(1 + ct2)h

α+β−1
2 (t1, t2)− (1 + ct1)h

α+β−1
1 (t1, t2)

]}
, (24)

where k is constant hold for all (t1, t2) ∈ D. Then X has (i) an exponential distribution iff c = 0, (ii) a Pareto
distribution iff c < 0, and (iii) a finite range distribution iff c > 0 .

Proof (i) The p.d.f. and survival function of an exponential variable X with parameter θ > 0, are given respectively
by

f(x) = θe−θx and F̄ (x) = e−θx.

The general failure rate functions are

hi(t1, t2) =
f(ti)

F (t2)− F (t1)
=

θe−θti

e−θt1 − e−θt2
, i = 1, 2. (25)

The generalized interval entropy Hβ
α(X; t1, t2) is given by

(β − α)Hβ
α(X; t1, t2) = log

[∫ t2

t1

(
f(x)

F (t2)− F (t1)

)α+β−1

dx

]

= log

[∫ t2

t1

(
θe−θx

e−θt1 − e−θt2

)α+β−1

dx

]

= log

{
θα+β−1

−(α+ β − 1)θ

[
e−(α+β−1)θt2 − e−(α+β−1)θt1

]
(e−θt1 − e−θt2)α+β−1

}

= log

{
1

k

[
hα+β−1
2 (t1, t2)− hα+β−1

1 (t1, t2)
]}

,
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which is (24) for c = 0.
(ii) The p.d.f. of the pareto distribution is given by

f(x) = pq(1 + px)−(q+1), p , q > 0

and the survival function is
F̄ (x) = 1− F (x) = (1 + px)−q.

The general failure rate functions are

hi(t1, t2) =
f(ti)

F (t2)− F (t1)
=

pq(1 + pti)
−(q+1)

(1 + pt1)−q − (1 + pt2)−q
, i = 1, 2. (26)

Substituting in (5) and simplifying, we obtain

(β − α)Hβ
α(X; t1, t2) = log{ (pq)α+β−1

p[1− (q + 1)(α+ β − 1)]
×[

(1 + pt2)
1−(α+β−1)(q+1) − (1 + pt1)

1−(α+β−1)(q+1)
]

{(1 + pt1)−q − (1 + pt2)−q}α+β−1
}.

It can be rewritten as

(β − α)Hβ
α(X; t1, t2) = log

{
1

k

[
(1 + pt2)h

α+β−1
2 (t1, t2)− (1 + pt1)h

α+β−1
1 (t1, t2)

]}
, (27)

where k = p[1− (q + 1)(α+ β − 1)] and c = p > 0. Thus (24) holds.
(iii) The p.d.f. and survival function of the finite range distribution are given respectively by

f(x) = ab(1− ax)b−1, a , b > 0, and 0 ≤ x ≤ 1

a
,

and
F̄ (x) = 1− F (x) = (1− ax)b.

The general failure rate functions are

hi(t1, t2) =
f(ti)

F (t2)− F (t1)
=

ab(1− ati)
b−1

(1− at1)b − (1− at2)b
, i = 1, 2. (28)

Substituting in (5) and simplifying, we obtain

(β − α)Hβ
α(X; t1, t2) = log{ (ab)α+β−1

−a[1 + (b− 1)(α+ β − 1)]
×[

(1− at2)
1+(α+β−1)(b−1) − (1− at1)

1+(α+β−1)(b−1)
]

{(1− at1)b − (1− at2)b}α+β−1
}.

This gives

(β − α)Hβ
α(X; t1, t2) = log

{
1

k

[
(1− at2)h

α+β−1
1 (t1, t2)− (1− at1)h

α+β−1
2 (t1, t2)

]}
, (29)

where k = −a[1 + (b− 1)(α+ β − 1)] and c = −a < 0. Thus (24) holds.

Conversely, assume that (24) is valid. Using (5) in (24) and simplifying, we get

k

∫ t2

t1

fα+β−1(x)dx = (1 + ct2)f
α+β−1(t2)− (1 + ct1)f

α+β−1(t1). (30)
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Differentiate (30) with respect to t2 keeping t1 is fixed, we get

kfα+β−1(t2) = (α+ β − 1)(1 + ct2)f
α+β−2(t2)f

′(t2) + cfα+β−1(t2).

Dividing by fα+β−1(t2) both side and simplify, we obtain

f ′(t2)

f(t2)
=

(
k − c

α+ β − 1

)
1

1 + ct2
. (31)

Similarly, we get a relation differentiating with respect to t1, as t2 is fixed. Thus, finally we get

f ′(ti)

f(ti)
=

(
k − c

α+ β − 1

)
1

1 + cti
for(t1, t2) ∈ D i = 1, 2.

This gives
d

dt
log f(ti) =

(
k − c

α+ β − 1

)
1

1 + cti
, i = 1, 2. (32)

The Eq. (32) represents the underlying distribution is exponential if c = 0, Pareto distribution for c > 0, and finite
range distribution for c < 0. This proves the theorem.

4.1. A Lower Bound for Hβ
α(X; t1, t2)

In the following theorem we provide lower bound for the generalized interval entropy measure of order α and type
β based on monotonic behavior of the general failure rate (GFR) of the doubly truncated random variable.

Theorem 5
Let X be an absolutely continuous random variable with density f(x) and cumulative distribution function F (x).
(i) If hX

1 (t1, t2) is increasing in t1, then

Hβ
α(X; t1, t2) ≥

1

β − α
log hα+β−1

1 (t1, t2),

and (ii) If hX
2 (t1, t2) is decreasing in t2, then

Hβ
α(X; t1, t2) ≥

1

β − α
log hα+β−1

1 (t1, t2).

Proof From (5), we have

Hβ
α(X; t1, t2) =

1

β − α
log

[∫ t2

t1

(
f(x)

F (t2)− F (t1)

)α+β−1

dx

]

=
1

β − α
log

[∫ t2

t1

hα+β−1
1 (x, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)α+β−1

dx

]
. (33)

Since F (t2)−F (x)
F (t2)−F (t1)

≥ 0 for t1 < x, and by the assumption that GFR hX
1 (t1, t2) is increasing in t1, we have

hX
1 (x, t2) ≥ hX

1 (t1, t2), thus

Hβ
α(X; t1, t2) ≥

1

β − α
log

[∫ t2

t1

hα+β−1
1 (t1, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)α+β−1

dx

]
,

=
1

β − α

[
log hα+β−1

1 (t1, t2) + log

∫ t2

t1

(
F (t2)− F (x)

F (t2)− F (t1)

)α+β−1

dx

]
,

≥ 1

β − α
log hα+β−1

1 (t1, t2). (34)

The proof of the second part is similar to that of (i), using hX
2 (t1, x) ≤ hX

2 (t1, t2) for t2 > x. Hence omitted. This
completes the proof.
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5. Stochastic Comparison Based on Generalized Interval Entropy

Next, we present some stochastic comparison results as follows: Let X and Y be two absolutely continuous random
variables with distribution functions F and G. Let F and G denote their survival functions with probability density
functions f and g, respectively. Then
(i) A random variable X is said to be less than or equal to Y in dispersion ordering (denoted by X ≤d Y, if and
only if

g(G−1(u)) ≤ f(F−1(u)), ∀ 0 ≤ v ≤ u ≤ 1.

(ii) Let X and Y be two non-negative random variables. Then X is said to be smaller than Y in residual entropy
order (denoted as X ≤RE Y ) if H(X; t) ≤ H(Y ; t) for all t ≥ 0.

(iii) Let X and Y be two non-negative random variables. Then X is said to be smaller than Y in past
entropy order (denoted as X ≤PE Y ) if H̄(X; t) ≤ H̄(Y ; t) for all t ≥ 0.
For more details refer to Shaked and Shanthikumar [18], Ebrahimi and Pellerey [9] and, Nanda and Paul [15].
Ebrahimi [8] also introduced two new non-parametric classes of life distributions via monotonicity properties of
the uncertainly residual (past) lifetime function.

Definition 2
A random variable X is said to have decreasing (increasing) uncertainty of residual life (DURL (IURL)), if H(X; t)
is decreasing (increasing) in t ≥ 0.

Definition 3
A random variable X is said to have decreasing (increasing) uncertainty of past life (DUPL (IUPL)), if H̄(X; t) is
decreasing (increasing) in t ≥ 0.

The following stochastic orders based on generalized interval entropy of order α and type β could be defined
similarly.
A random variable X is said to be less than or equal to Y in Verma’s entropy ordering (denoted by X ≤V e Y ) if
Hβ

α(X) ≤ Hβ
α(Y ), ∀ β − 1 < α < β, β ≥ 1.

Theorem 6
If X and Y are two random variables such that X ≤d Y, then Hβ

α(X) ≤ Hβ
α(Y ).

Proof The probability integral transformation provides the following useful representation of the Verma’s entropy
measure (2) for the random variable X

Hβ
α(X) =

1

β − α
log

{∫ 1

0

fα+β−2(F−1(u))du

}
.

Since X ≤d Y we have∫ 1

0

{fα+β−2(F−1(u))− gα+β−2(G−1(u))}du ≥ 0, ∀ α+ β > 2,

∫ 1

0

{fα+β−2(F−1(u))− gα+β−2(G−1(u))}du ≤ 0, ∀ α+ β < 2,

since log is an increasing function, thus result follows.

Definition 4
A distribution function F (.) has decreasing (or, increasing) generalized interval entropy (DGIE (α, β))(or, IGIE
(α, β)), if H ′β

α (Y ; t1, t2) is decreasing (increasing) in t1, for fixed t2.

Definition 5
A distribution function F (.) has decreasing (or, increasing) generalized interval entropy (DGIE (α, β))(or, IGIE
(α, β)), if H ′β

α (Y ; t1, t2) is decreasing in t2, for fixed t1.
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In many cases of practical interest are would like to know whether the DGIE (IGIE) property of X is inherited by
a transformation of X . The following Theorem provides a partial answer.

Theorem 7
(a) If X is IGIE (α, β) and if ϕ is non negative, increasing and convex, then ϕ(X) is also IGIE (α, β).
(b) If X is DGIE (α, β) and if ϕ is non negative, increasing and concave, then ϕ(X) is also DGIE (α, β).

Proof From (10), we have

Hβ
α(Y ; t1, t2) =

1

β − α
log

[∫ ϕ−1(t2)

ϕ−1(t1)

(
f(x)

F (ϕ−1(t2))− F (ϕ−1(t1))

)α+β−1(
1

ϕ′(x)

)α+β−2

dx

]
.

This can be written as

(β − α)Hβ
α(Y ; t1, t2) = (1− α− β) log[F (ϕ−1(t2))− F (ϕ−1(t1))]

+ log

[∫ ϕ−1(t2)

ϕ−1(t1)

f(x)α+β−1ϕ′(x)2−α−βdx

]
. (35)

On differentiating (35) with respect to t1, keeping t2 is fixed, we get

(β − α)
∂Hβ

α(Y ; t1, t2)

∂t1
=

(α+ β − 1)f(ϕ−1(t1))

[F (ϕ−1(t2))− F (ϕ−1(t1))]ϕ′(t1)

− fα+β−1(ϕ−1(t1))[ϕ
′(ϕ−1(t1))]

2−α−β[∫ ϕ−1(t2)

ϕ−1(t1)
f(x)α+β−1[ϕ′(x)]2−α−βdx

] ,
or,

=
(α+ β − 1)h1,ϕ(ϕ

−1(t1), ϕ
−1(t2))

ϕ′(t1)

− [h1,ϕ(ϕ
−1(t1), ϕ

−1(t2))]
α+β−1

ϕ′(t1)
.

[ϕ′(ϕ−1(t1))]
2−α−β∫ ϕ−1(t2)

ϕ−1(t1)

(
f(x)

F (ϕ−1(t2))−F (ϕ−1(t1))

)α+β−1

[ϕ′(x)]2−α−βdx

,

where h1,ϕ(ϕ
−1(t1), ϕ

−1(t2)) =
f(ϕ−1(t1))

F (ϕ−1(t2))−F (ϕ−1(t1))
is the general failure rate (GFR) function of the doubly

truncated random variable (X|ϕ−1(t1) ≤ X ≤ ϕ−1(t2)). Let α+ β > 2, ϕ′(x) is an increasing function because
ϕ(x) is a convex function. So ϕ′(2−α−β)(x) is a decreasing function, that is

[ϕ′(x)]2−α−β ≤ [ϕ′(ϕ−1(t1))]
2−α−β , ∀ x > ϕ−1(t1).

Hence,

∂Hβ
α(Y ; t1, t2)

∂t1
≥ (α+ β − 1)h1,ϕ(ϕ

−1(t1), ϕ
−1(t2))

(β − α)ϕ′(t1)

− [h1,ϕ(ϕ
−1(t1), ϕ

−1(t2))]
α+β−1

(β − α)ϕ′(t1)
.

1∫ ϕ−1(t2)

ϕ−1(t1)

(
f(x)

F (ϕ−1(t2))−F (ϕ−1(t1))

)α+β−1

dx

,

=
1

ϕ′(t1)
{ (α+ β − 1)

(β − α)
h1,ϕ(ϕ

−1(t1), ϕ
−1(t2))

− [h1,ϕ(ϕ
−1(t1), ϕ

−1(t2))]
α+β−1

(β − α)
e(α−β)Hβ

α(X;ϕ−1(t1),ϕ
−1(t2))}.
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=
1

ϕ′(t1)
[H ′β

α (X;ϕ−1(t1), ϕ
−1(t2))] ≥ 0.

Similarly on differentiating (35) with respect to t2, keeping t1 is fixed, we get

∂Hβ
α(Y ; t1, t2)

∂t2
=

1

ϕ′(t2)
[H ′β

α (X;ϕ−1(t1), ϕ
−1(t2))] ≥ 0.

A similar result follow for α+ β < 2.

(b) The proof is similar to that of (a), hence omitted.

6. Conclusion

When a system has survived only between two time points (t1, t2), generalized interval entropy plays an important
role in the field of information theory and survival analysis. We discussed the generalized interval entropy
measure associated with various distributions, which play a vital role in reliability modeling. Also we characterize
some specific lifetime distribution using the relationship between proposed entropy Hβ

α(X; t1, t2), and reliability
measure. The characterizations, stochastic ordering and other properties obtained here prove the interest of these
concepts in measuring the uncertainty contained in a doubly truncated random variable. Also the results reported
generalize the existing results in context with interval entropy.

Acknowledgement

The authors would like to express their gratitude to the reviewers and the editor-in-chief for their valuable
comments, which have considerably improved the earlier version of the article.

REFERENCES

1. M. Asadi, N. Ebrahimi, and E. Soofi, Dynamic generalized information measures, Statistics and Probability Letters, vol. 71, no. 1,
pp. 85–98, 2005.

2. M. Asadi, and N. Ebrahimi, Residual entropy and its characterizations in terms of hazard function and mean residual life function,
Statistics and Probability Letters, vol. 49, no. 3, pp. 263–269, 2007.

3. T. Azlarov, and N. Volodin, Characterization problems associated with exponential distribution, Springer-Verlag, New York, 1986.
4. M. A. K. Baig, and J. G. Dar, Generalized residual entropy function and its applications, Europian Journal of Pure and Applied

Mathematics, vol. 1, no. 4 pp. 30–40, 2008.
5. F. Belzunce, J. Navarro, J. M. Ruiz, and Y. Aguila, Some results on residual entropy function, Metrika, vol. 59, no. 2, pp. 147–161,

2004.
6. A. Di Crescenzo, and M. Longobardi, Entropy-based measure of uncertainty in past lifetime distributions, Journal of Applied

Probability, vol. 39, no. 2, pp. 434–440, 2002.
7. A. Di Crescenzo, and M. Longobardi, A measure of discrimination between past lifetime distributions, Statistics and Probability

Letters, vol. 67, no. 2, pp. 173–182, 2004.
8. N. Ebrahimi, How to measure uncertainty about residual lifetime, Sankhya A , vol. 58, no. 1, pp. 48–57, 1996.
9. N. Ebrahimi, and F. Pellerey, New partial ordering of survival functions based on notation of uncertainty, Journal of Applied

Probability, vol. 32, pp. 202–211, 1995.
10. J. Galambos, and S. Kotz, Characterization of probability distributions: a unified approach with an emphasis on exponential and

related models, Lecture notes on Mathematics 675, Springer-Verlag, Berlin, 1978.
11. V. Kumar, H. C. Taneja, and R. Srivastava, A dynamic measure of inaccuracy between two past lifetime distribution, Metrika, vol.74,

no. 1, pp. 1–10, 2011.
12. F. Misagh, and G.H. Yari, On weighted interval entropy, Statistics and Probability Letters, vol. 81, no. 2, pp. 188–194, 2011.
13. F. Misagh, and G.H. Yari, Interval entropy and informative distance, Entropy, vol. 14, pp. 480–490, 2012.
14. K. R. M. Nair, and G. Rajesh, Characterization of probability distributions using the residual entropy function, Journal of the Indian

Statistical Association, vol. 36, pp. 157–166, 1998.
15. A. K. Nanda, and P. Paul, Some properties of past entropy and their applications, Metrika, vol. 64, no. 1, pp. 47–61, 2006.
16. J. Navarro, and J. M. Ruiz, Faliure rate function for doubly truncated random variables., IEEE Transactions on Information Theory,

vol. 45, pp. 685–690, 1996.

Stat., Optim. Inf. Comput. Vol. 6, December 2018



V. KUMAR, AND N. SINGH 559

17. J. Navarro, and J. M. Ruiz, Characterization from relationships between failure rate functions and conditional moments
communications in statistics: theory methods, vol. 33, no. 12, pp. 3159–3171, 2006.

18. M. Shaked, and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, New York, 1994.
19. C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, vol. 27, 379–432, 1948.
20. S.M. Sunoj, P. G. Sankaran, S. S. Maya, Characterization of life distribution using conditional exceptations of doubly (Interval)

truncated random variables, Communications in Statistics: Theory and Methods, vol. 38, no. 9, pp.1441–1452, 2009.
21. R. S. Verma, Generalization of Renyi’s entropy of order α, Journal of Mathematical Sciences, vol. 1, pp. 34–48, 1966.
22. S. Treanta Optimization on the distribution of population densities and the arrangement of urban activities, Statistics, Optimization

and Information Computing, vol.6, pp. 208-218, 2018.
23. C. Kundu, On weighted measure of inaccuracy for doubly truncated random variables, Communication in Statistics: Theory and

Methods, vol.46, pp. 3135–3147, 2017.
24. S. Kayal, and R. Moharana, Some Results on a doubly truncated generalized discrimination measure. 46, 3135-3147., Applications

of mathematics, vol.5, pp. 585–605, 2016.

Stat., Optim. Inf. Comput. Vol. 6, December 2018


