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Abstract In this paper we consider directed cographs, which are defined by Bechet et al. in [3] using the disjoint union,
series, and order composition, from an algorithmic point of view. Applying their recursive structure we give dynamic
programming algorithms to show that for every directed cograph the size of a largest edgeless subdigraph, the size of a
largest subdigraph which is a tournament, the size of a largest semicomplete subdigraph, and the size of a largest complete
subdigraph can be computed in linear time. Our main results show that the hamiltonian path, hamiltonian cycle, regular
subdigraph, and directed cut problem are polynomial on directed cographs.
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1. Introduction

Undirected cographs have been introduced in the 1970s by a number of authors under different notations, such as
hereditary Dacey graphs (HD graphs) in [16], D∗-graphs in [12], 2-parity graphs in [5], and complement reducible
graphs (cographs) in [13]. Cographs can be characterized as the set of graphs without an induced path with four
vertices [6]. From an algorithmic point of view the following definition is very useful. (a) Every single vertex is
a cograph. (b) If G1, . . . , Gk are cographs, then the disjoint union of the graphs G1, . . . , Gk is a cograph. (c) If
G1, . . . , Gk are cographs, then the join of the graphs G1, . . . , Gk is a cograph. By this definition every cograph can
be represented by a tree structure, denoted as cotree. The leaves of the cotree represent the vertices of the graph and
the inner nodes of the cotree correspond to the operations applied on the subexpressions defined by the subtrees.
For every graph G one can decide in linear time, whether G is a cograph and in the case of a positive answer
construct a cotree for G, see [7] or [11]. Using the cotree a lot of hard problems have been shown to be solvable in
polynomial time when restricted to cographs. Such problems are clique, independent set, partition into independent
sets (chromatic number), partition into cliques, hamiltonian cycle, isomorphism [6], and vertex disjoint paths [10].
On the other hand, the achromatic number problem is NP-complete for cographs [4].

Directed cographs were introduced in 1997 by Bechet et al. in [3] as follows. (a) Every single vertex is a
directed cograph. (b) If G1, . . . , Gk are directed cographs, then the disjoint union of the graphs G1, . . . , Gk is a
directed cograph. (c) If G1, . . . , Gk are directed cographs, then the series composition of the graphs G1, . . . , Gk is
a directed cograph. (d) If G1, . . . , Gk are directed cographs, then the order composition of the graphs G1, . . . , Gk

is a directed cograph. Also every directed cograph can be defined by a tree structure, denoted as di-cotree. The
leaves of the di-cotree represent the vertices of the graph and the inner nodes of the di-cotree correspond to the
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operations applied on the subexpressions defined by the subtrees. Also for every directed graph G one can decide
in linear time, whether G is a directed cograph and in the case of a positive answer construct a di-cotree for G,
see [8]. Directed cographs can be characterized by eight forbidden induced digraphs [8]. Calculus of directed
cographs were also considered in connection with pomset logic in [14]. The algorithmic use of directed cographs
has been shown in [2] using their decomposability into acyclic digraphs and semicomplete graphs and also by flow
techniques (cf. Section 4.11.3 in [1]).

In this paper we use the recursive structure of directed cographs to give new dynamic programming solutions for
the following problems. We show that for every directed cograph a largest edgeless subdigraph, a largest subdigraph
which is a tournament, a largest semicomplete subdigraph, and a largest complete subdigraph can be computed in
linear time. Further we show that the hamiltonian path, hamiltonian cycle, regular subdigraph, and directed cut
problem are polynomial on directed cographs. For general digraphs all these problems are NP-hard.

Our approach can be applied to a lot of further digraph problems. The aim of this paper is not to complete the list
of digraph problems which can be solved by dynamic programming on directed cographs, but to show that all these
problems can be handled by dynamic programming solutions using the same scheme. We are also not interested in
bounding the running time which is sometimes given by a polynomial of higher degree. Such considerations are
only interesting if anybody really has to implement the solutions.

2. Preliminaries

2.1. Digraphs

A directed graph or digraph is a pair G = (V,A), where V is a finite set of vertices and A ⊆ {(u, v) | u, v ∈
V, u ̸= v} is a finite set of ordered pairs of distinct† vertices called directed edges or arcs. For a vertex v ∈ V ,
the sets N+

G (v) = {u ∈ V | (v, u) ∈ A} and N−
G (v) = {u ∈ V | (u, v) ∈ A} are called the set of all out-neighbours

and the set of all in-neighbours of v. The outdegree of v, out-degG(v) for short, is the number of out-neighbours of
v and the indegree of v, in-degG(v) for short, is the number of in-neighbours of v in G. A digraph G′ = (V ′, A′)
is a subdigraph of digraph G = (V,A) if V ′ ⊆ V and A′ ⊆ A. If every arc of A with both end vertices in V ′ is
in A′, we say that G′ is an induced subdigraph of digraph G and we write G′ = G[V ′]. For some directed graph
G = (V,E) its complement digraph is defined by co-G = (V, {(u, v) | (u, v) ̸∈ E, u, v ∈ V, u ̸= v}). For some
given digraph G = (V,E), we define its underlying undirected graph by ignoring the directions of the edges, i.e.
u(G) = (V, {{u, v} | (u, v) ∈ E, u, v ∈ V }).

2.2. Directed Cographs

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint directed graphs.

• The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ . . .⊕G2, is the graph with vertex set V1 ∪ . . . ∪ Vk and
arc set E1 ∪ . . . ∪ Ek.

• The series composition of G1, . . . , Gk, denoted by G1 ⊗ . . .⊗Gk, is defined by their disjoint union plus all
possible arcs between vertices of Gi and Gj for all 1 ≤ i, j ≤ k, i ̸= j.

• The order composition of G1, . . . , Gk, denoted by G1 ⊘ . . .⊘Gk, is defined by their disjoint union plus all
possible arcs between vertices of Gi and Gj for all 1 ≤ i < j ≤ k.

The class of directed cographs has been defined recursively in [3].

(i) Every digraph on a single vertex ({v}, ∅), denoted by •, is a directed cograph.

(ii) If G1, . . . , Gk are directed cographs, then the disjoint union G1 ⊕ . . .⊕Gk is a directed cograph.

†Thus we do not consider directed graphs with loops.
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(iii) If G1, . . . , Gk are directed cographs, then the series composition G1 ⊗ . . .⊗Gk is a directed cograph.

(iv) If G1, . . . , Gk are directed cographs, then the order composition G1 ⊘ . . .⊘Gk is a directed cograph.

Obviously for every directed cograph we can define a tree structure, denoted as di-cotree. The leaves of the di-
cotree represent the vertices of the graph and the inner nodes of the di-cotree correspond to the operations applied
on the subexpressions defined by the subtrees. For every directed cograph one can construct a di-cotree in linear
time, see [8].

Since the disjoint union ⊕, the series composition ⊗, and the order composition ⊘ are associative, we can
recursively transform every di-cotree T into a binary di-cotree T ′ for G.

Lemma 1
Every cotree T can be transformed into an equivalent binary di-cotree T ′, such that every inner vertex in T ′ has
exactly two sons.

Example 1 (Directed cograph)
Table I shows the definition of a directed cograph and its di-cotree.

cograph expression Xi digraph defined by Xi

X1 = •

X2 = X1 ⊘X1

X3 = X2 ⊕X1

X4 = X1 ⊗X1

X5 = X3 ⊘X4

Table I. Directed cograph expressions X1, . . . , X5, the defined digraphs, and a di-cotree for the directed cograph defined by
expression X5.

Lemma 2
For every directed cograph its complement digraph is a directed cograph.

Proof
Let G be a directed cograph and X be a cograph expression for G. An expression c(X) for the complement graph
co-G can recursively be defined as follows. If X = •, then c(X) = •. If X = X1 ⊕X2, then c(X) = c(X1)⊗
c(X2). If X = X1 ⊗X2, then c(X) = c(X1)⊕ c(X2). If X = X1 ⊘X2, then c(X) = c(X2)⊘ c(X1).

An obvious but important property of directed cographs is that they are hereditary, that is, every induced
subdigraph of a directed cograph is a directed cograph. The proof follows, since an expression X ′ for an induced
subdigraph G′ can be obtained from an expression X of original graph G by restricting X to the vertices of G′.

Lemma 3
The set of directed cographs is hereditary.
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Regarding the algorithmic use of special digraphs it is often helpful to know whether they are transitive or at
least quasi transitive (cf. Section 6.7 in [1]). A digraph G is transitive if for every pair of arcs (x, y) and (y, z) with
x ̸= z the arc (x, z) also belongs to G. A digraph G is quasi transitive if for every pair of arcs (x, y) and (y, z)
with x ̸= z at least one of the arcs (x, z) and (z, x) also belongs to G. By the simple (X1 ⊕X3)⊗X2 expression,
where X1 consists of one vertex x, X2 consists of one vertex y, and X3 consists of one vertex z the following result
follows.

Lemma 4
The set of directed cographs is not transitive and not quasi transitive.

In the next sections we give new and efficient algorithms for problems on directed cographs. By Lemma 1 and
[8] we can assume that we are given our directed input cograph as a binary di-cotree. As an introductory example,
we briefly consider the task of finding a subdigraph of special arc sets.

3. Independent Sets and Cliques

Let G = (V,E) be a digraph. G is edgeless if for all u, v ∈ V , u ̸= v, none one of the two pairs (u, v) and (v, u)
belongs to E. G is a tournament if for all u, v ∈ V , u ̸= v, exactly one of the two pairs (u, v) and (v, u) belongs to
E. G is semicomplete if for all u, v ∈ V , u ̸= v, at least one of the two pairs (u, v) and (v, u) belongs to E. G is
(bidirectional) complete if for all u, v ∈ V , u ̸= v, both of the two pairs (u, v) and (v, u) belong to E. The problems
of finding a subdigraph of maximal size with one of these four properties P can be summarized as follows.

Name DIRECTED P -SET

Instance A directed graph G = (V,E) and a positive integer k.
Question Is there a subdigraph (V ′, E′) with property P on k vertices in G?

Let G be our directed input cograph defined by some expression X . Table II shows how we can recursively
compute the size F (X) of a largest edgeless subdigraph (column 2), a largest subdigraph which is a tournament
(column 3), a largest semicomplete subdigraph (column 4), and a largest complete subdigraph (column 5)
in digraph defined by expression X from the subexpressions X1 and X2. Operation + means that F (X) =
F (X1) + F (X2) and operation max means that F (X) = max{F (X1), F (X2)}.

edgeless tournament semicomplete complete
F (•) 1 1 1 1
F (X1 ⊕X2) + max max max
F (X1 ⊗X2) max max + +
F (X1 ⊘X2) max + + max

Table II. The table shows the operations to compute size F (X) of a largest edgeless subdigraph, largest subdigraph which is
a tournament, largest semicomplete subdigraph, and largest complete subdigraph in digraph defined by expression X from
the subexpressions X1 and X2.

Theorem 1
For every directed cograph on n vertices the size of a largest edgeless subdigraph, the size of a largest subdigraph
which is a tournament, the size of a largest semicomplete subdigraph, and the size of a largest complete subdigraph
can be computed in O(n) time.

Besides computing the sizes of the special vertex sets we additionally can compute a vertex set of this size
following Table II. If the entry in the table is 1, we store the corresponding vertex. For + we store the union of the
sets of the involved subexpressions. And for max we store the set of maximum size among the sets of the involved
subexpressions. The correctness follows since on the one hand all computed vertex sets induce a subdigraph of the
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given property. On the other hand a larger set of the given property is not possible. In the case of + is this obvious
by the size of the subdigraph and in the case of max the considered operation does not allow to choose vertices
from both involved subdigraphs in order to fulfill the property, so it is best possible to choose the larger subdigraph.

4. Directed Cut

Name DIRECTED CUT

Instance A directed graph G = (V,E) and a positive integer k.
Question Is there a partition of V into V1 and V2, such that |{(v1, v2) ∈ E | v1 ∈ V1, v2 ∈ V2}| ≥ k?

Let G = (V,E) be our directed input cograph defined by some binary expression X . Let F (X) to be the set of all
triples (i, x, n− i) for all disjoint partitions of V = {u1, . . . , un} into V1 = {u1, . . . , ui} and V2 = {ui+1, . . . , un}
such that x is the number of directed edges starting from vertices in V1 and ending in vertices in V2. Then F (X)
has at most (|V |+ 1) · (|E|+ 1) · (|V |+ 1) ∈ O(|V |2 · |E|) triples.

The following observations show that F (•) is computable in O(1) time, and F (X1 ⊕X2), F (X1 ⊗X2), and
F (X1 ⊘X2), are computable in polynomial time from F (X1) and F (X2).

1. F (•) = {(1, 0, 0), (0, 0, 1)}
Given a single vertex graph, we allow this vertex to be in V1 or in V2 of our partition.

2. F (X1 ⊕X2) = {(n′
1 + n′′

1 , x
′ + x′′, n′

2 + n′′
2) | (n′

1, x
′, n′

2) ∈ F (X1), (n
′′
1 , x

′′, n′′
2) ∈ F (X2)}.

For the disjoint union operation, we know the sizes of vertex sets in every partition V ′
1 ∪ V ′′

1 of the vertex set
of the graph defined by X1 and also the sizes of vertex sets in every partition V ′

2 ∪ V ′′
2 of the vertex set of the

graph defined by X2. To realize the disjoint union, we store the size of the sets V ′
1 ∪ V ′

2 and V ′′
1 ∪ V ′′

2 . Since
no additional edges are inserted, the number of edges is the sum of those of the two involved subdigraphs.

3. F (X1 ⊗X2) = {(n′
1 + n′′

1 , x
′ + x′′ + n′

1 · n′′
2 + n′

2 · n′′
1 , n

′
2 + n′′

2) | (n′
1, x

′, n′
2) ∈ F (X1), (n

′′
1 , x

′′, n′′
2) ∈

F (X2)}
For the series operation, we perform the same combination of the sizes of the computed partitions. Since
all possible edges are inserted in both directions, the number of relevant edges for the new partition V1 ∪ V2

is the sum of those of the two involved subdigraphs, i.e. x′ from V ′
1 to V ′′

1 and x′′ from V ′
2 to V ′′

2 plus the
number of new edges from V ′

1 to V ′′
2 , i.e. n′

1 · n′′
2 plus the number of new edges from V ′

2 to V ′′
1 , i.e. n′

2 · n′′
1 .

4. F (X1 ⊘X2) = {(n′
1 + n′′

1 , x
′ + x′′ + n′

1 · n′′
2 , n

′
2 + n′′

2) | (n′
1, x

′, n′
2) ∈ F (X1), (n

′′
1 , x

′′, n′′
2) ∈ F (X2)}

For the order operation, we perform the same combination of the sizes of the computed partitions. Since only
edges from V1 to V2 are inserted, the number of relevant edges for the new partition V1 ∪ V2 is the sum of
those of the two involved subdigraphs, i.e. x′ from V ′

1 to V ′′
1 and x′′ from V ′

2 to V ′′
2 plus the number of new

edges from V ′
1 to V ′′

2 , i.e. n′
1 · n′′

2 .

There is a partition of the vertex set of directed cograph G into two disjoint sets V1, V2, such that there are at
least r directed edges starting from vertices in V1 and ending in vertices in V2, if and only if there is some triple
(n1, x,n2) ∈ F (X) such that x ≥ r.

Theorem 2
The directed cut problem for directed cographs on n vertices and m arcs is computable in O(n2 ·m) time.

5. Directed Hamiltonian Path and Hamiltonian Cycle

Name DIRECTED HAMILTONIAN PATH

Instance A directed graph G = (V,E).
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Question Is there a simple directed path on |V | vertices in G?

In order to solve the directed hamiltonian path and also the directed hamiltonian cycle problem on directed
cographs one may consider the fact that directed cographs are totally decomposable into acyclic digraphs and
semicomplete graphs (cf. Corollary 7.2 in [2]) and that for those digraphs both problems can be solved in
polynomial time (cf. Section 6.7 in [1]). We next give different dynamic programming solutions.

Let G = (V,E) be our directed input cograph and X be a binary expression for G. For every partition of G
into directed paths we want to store the number of these paths. To this end, for every subset E′ ⊆ E such that
the underlying undirected graph u(G′) of subdigraph G′ = (V,E′) contains no cycles and every vertex in G′ has
indegree and outdegree at most 1, we define an integer nE′ as follows. Integer nE′ is the number of directed path
v1, . . . , vr, r ≥ 1, in G′, where in-deg(v1) = 0 and out-deg(vr) = 0. Let F (X) be the set of all integers nE′ for all
such subsets E′ ⊆ E. Since 1 ≤ nE′ ≤ |V |, we know that F (X) has at most |V | integers.

Example 2 (F (X))
Let G = (V,E) be some digraph defined by some cograph expression X . Figure 1 shows two examples for
subdigraphs G′ = (V,E′) such that the underlying undirected graph u(G′) of G′ contains no cycles and every
vertex in G′ has indegree and outdegree at most 1. These graphs lead the values 3 and 5 for nE′ . That is,
F (X) = {. . . , 3, 5, . . .}.

Figure 1. Two examples for subdigraphs G′ = (V,E′) such that the underlying undirected graph of G′ contains no cycles
and every vertex in G′ has indegree and outdegree at most 1.

The following observations show that F (•) is computable in O(1) time, and F (X1 ⊕X2), F (X1 ⊗X2), and
F (X1 ⊘X2), are computable in polynomial time from F (X1) and F (X2).

1. F (•) = {1}
A single vertex graph corresponds to one path.

2. F (X1 ⊕X2) = {n1 + n2 | n1 ∈ F (X1), n2 ∈ F (X2)}
For the disjoint union operation, no additional edges are inserted and thus we add the number of paths of the
graph defined by X1 and the graph defined by X2.

3. F (X1 ⊗X2) can be obtained as follows. Since we insert all new edges from the graph defined by X1 to
the graph defined by X2 and all edges from the graph defined by X2 to the graph defined by X1, we can
glue a number of paths from X1 and a number of paths from X2 to one new path. Both numbers may differ
at most by one. We start with the set of triples D = {0} × F (X1)× F (X2) and for every existing triple
(n, n′, n′′) ∈ D we insert into D the triples

• (n+ 1, n′ − 1, n′′) in order to pick one path of X1,

• (n+ 1, n′, n′′ − 1) in order to pick one path of X2,

• (n+ 1, n′ − x, n′′ − x) in order to pick x ≤ n′ paths from X1 and x ≤ n′′ paths from X2 and glue them
together by the edges inserted by the series operation,

• (n+ 1, n′ − x, n′′ − x− 1) in order to pick x ≤ n′ paths from X1 and x+ 1 ≤ n′′ paths from X2 and
glue them together by the edges inserted by the series operation, and
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• (n+ 1, n′ − x, n′′ − x+ 1) in order to pick x ≤ n′ paths from X1 and x− 1 ≤ n′′ paths from X2 and
glue them together by the edges inserted by the series operation.

The last three operations are applied for all x meeting the stated conditions.

Then D gets at most (|V |+ 1)3 triples and thus is computable in polynomial time. F (X1 ⊗X2) =
{n | (n, 0, 0) ∈ D}

4. F (X1 ⊘X2) can be obtained as follows. Since we now only insert all new edges from the graph defined by
X1 to the graph defined by X2, we can glue one path from F (X1) and one path from F (X2) to one new path.
We start with the set of triples D = {0} × F (X1)× F (X2) and for every existing triple (n, n′, n′′) ∈ D we
add into D the three triples

• (n+ 1, n′ − 1, n′′) in order to pick one path of X1,

• (n+ 1, n′, n′′ − 1) in order to pick one path of X2, and

• (n+ 1, n′ − 1, n′′ − 1) in order to pick one path from X1 and one path from X2 and glue them together
by one of the edges inserted by the order operation.

Then D gets at most (|V |+ 1)3 triples and thus is computable in polynomial time. F (X1 ⊘X2) =
{n | (n, 0, 0) ∈ D}

There is a directed hamiltonian path in digraph defined by expression X if and only if 1 ∈ F (X).

Theorem 3
The directed hamiltonian path problem for directed cographs is computable in polynomial time.

Name DIRECTED HAMILTONIAN CYCLE

Instance A directed graph G = (V,E).
Question Is there a simple directed cycle on |V | vertices in G?

Let G be our directed input graph defined by some directed cograph expression X . Obviously G can only contain
a directed hamiltonian cycle, if there are two cograph expressions X ′ and X ′′, such that expression X is obtained
by X = X ′ ⊗X ′′. In order to decide whether there is a directed hamiltonian cycle in digraph G we can apply the
same data structure F (X) as for the hamiltonian path problem. There is a directed hamiltonian cycle in digraph
defined by expression X if and only if there exists some integer x, such that x ∈ F (X ′) ∩ F (X ′′). By Theorem 3
we conclude the following result.

Theorem 4
The directed hamiltonian cycle problem for directed cographs is computable in polynomial time.

6. Regular Subdigraph

Let G = (V,E) be a directed graph and d be some fixed integer. G is d-in-regular, if in-deg(v) = d for every v ∈ V ,
G is d-out-regular, if out-deg(v) = d for every v ∈ V , and G is d-regular, if G is d-in-regular and d-out-regular.

Name d-REGULAR SUBDIGRAPH

Instance A directed graph G = (V,E).
Question Is there a d-regular subdigraph (V ′, E′) of G?

For d = 1 this problem is trivial since such a subdigraph exists unless G is acyclic. For d ≥ 2 the problem is NP-
complete [9]. The related problem of finding a spanning d-regular subdigraph (V,E′) can be solved in polynomial
time using an algorithm based on flows (cf. Section 4.11.3 in [1]). In order to give a dynamic programming
approach, we next apply the recursive definition of a directed cograph.
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Let G = (V,E) be our directed input cograph defined by some cograph expression X . For a subdigraph G′ =
(V,E′), E′ ⊂ E, of G let M be the multiset such that for every vertex u of V , M has a pair (in-deg(u), out-deg(u)),
where in-deg(u) and out-deg(u) is the indegree and outdegree, respectively, of u in the subdigraph G′. For some
fixed integer d, let F (X) be the set of all mutually different multisets M for all subdigraphs of G in which all
vertices have indegree at most d and outdegree at most d. Then F (X) has at most (|V |+ 1)(d+1)2 mutually different
multisets each with at most |V | pairs (d1, d2), where d1 and d2 are integers from 0 to d.

The following observations show that F (•) is computable in O(1) time, and F (X1 ⊕X2), F (X1 ⊗X2), and
F (X1 ⊘X2), are computable in polynomial time from F (X1) and F (X2).

1. F (•) = {⟨(0, 0)⟩}
A single vertex has indegree and outdegree 0.

2. F (X1 ⊕X2) = {M′ ∪M′′ | M′ ∈ F (X1),M′′ ∈ F (X2)}
For the disjoint union operation, no additional edges are inserted and thus we combine every subdigraph of
the graph defined by X1 and subdigraph of the graph defined by X2.

3. F (X1 ⊗X2) can be obtained as follows. Since we insert all new edges from the graph defined by X1 to
the graph defined by X2 and all edges from the graph defined by X2 to the graph defined by X1, we
can increase the indegree and outdegree of the vertices in graph defined by X1 by the vertices in graph
defined by X2, see (a), and increase the indegree and outdegree of the vertices in graph defined by X2

by the vertices in graph defined by X1, see (b). It suffices to do this up to our bound of d. We start
with set D = {⟨⟩} × F (X1)× F (X2) and insert into D all triples that can be obtained from some triple
(M,M′,M′′) ∈ D by

(a) removing a pair (d′1, d′2) from M′ and choosing r, 0 ≤ r ≤ d− d′2, pairs

(d′′1,1, d
′′
2,1), . . . , (d

′′
1,r, d

′′
2,r)

from M′′ and s, 0 ≤ s ≤ d− d′1, pairs

(d′′1,r+1, d
′′
2,r+1), . . . , (d

′′
1,r+s, d

′′
2,r+s)

from M′′ such that d′′1,t < d for t = 1, . . . , r and d′′2,t < d for t = r + 1, . . . , r + s, and inserting
(d′1 + s, d′2 + r) into M and changing every (d′′1,t, d

′′
2,t) into (d′′1,t + 1, d′′2,t) for t = 1, . . . , r and every

(d′′1,t, d
′′
2,t) into (d′′1,t, d

′′
2,t + 1) for t = r + 1, . . . , r + s without removing them from M′′.

(b) removing a pair (d′′1 , d′′2) from M′′ and choosing r, 0 ≤ r ≤ d− d′′2 , pairs

(d′1,1, d
′
2,1), . . . , (d

′
1,r, d

′
2,r)

from M′ and s, 0 ≤ s ≤ d− d′′1 , pairs

(d′1,r+1, d
′
2,r+1), . . . , (d

′
1,r+s, d

′
2,r+s)

from M′ such that d′1,t < d for t = 1, . . . , r and d′2,t < d for t = r + 1, . . . , r + s, and inserting
(d′′1 + s, d′′2 + r) into M and changing every (d′1,t, d

′
2,t) into (d′1,t + 1, d′2,t) for t = 1, . . . , r and every

(d′1,t, d
′
2,t) into (d′1,t, d

′
2,t + 1) for t = r + 1, . . . , r + s without removing them from M′.

F (X1 ⊗X2) = {M | (M, ⟨⟩, ⟨⟩) ∈ D}

4. F (X1 ⊘X2) can be obtained as follows. Since we now only insert all new edges from the graph defined by
X1 to the graph defined by X2, we only can increase the outdegree of the vertices in graph defined by X1

by the vertices in graph defined by X2, see (a), and increase the indegree of the vertices in graph defined by
X2 by the vertices in graph defined by X1, see (b). Again, it suffices to do this up to our bound of d. We
start with set D = {⟨⟩} × F (X1)× F (X2) and insert in D all triples that can be obtained from some triple
(M,M′,M′′) ∈ D by
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(a) removing a pair (d′1, d′2) from M′ and choosing r, 0 ≤ r ≤ d− d′2, pairs

(d′′1,1, d
′′
2,1), . . . , (d

′′
1,r, d

′′
2,r)

from M′′ such that d′′1,t < d for t = 1, . . . , r and inserting (d′1, d
′
2 + r) into M and changing every

(d′′1,t, d
′′
2,t) into (d′′1,t + 1, d′′2,t) for t = 1, . . . , r without removing them from M′′.

(b) removing a pair (d′′1 , d′′2) from M′′ and choosing s, 0 ≤ s ≤ d− d′′1 , pairs

(d′1,1, d
′
2,1), . . . , (d

′
1,s, d

′
2,s)

from M′ such that d′2,t < d for t = 1, . . . , s, and inserting (d′′1 + s, d′′2) into M and changing every
(d′1,t, d

′
2,t) into (d′1,t, d

′
2,t + 1) for t = 1, . . . , s without removing them from M′.

F (X1 ⊘X2) = {M | (M, ⟨⟩, ⟨⟩) ∈ D}

There is a d-regular subdigraph in the directed cograph defined by X if and only if there is some M ∈ F (X)
such that for all (d1, d2) ∈ M, d1 = d2 = d or d1 = d2 = 0 and there is at least one (d1, d2) ∈ M with d1 = d and
d2 = d. We conclude the following result.

Theorem 5
The d-regular subdigraph problem for directed cographs on n vertices is computable in O(nd2

) time.

7. Conclusions and Outlook

Since the algorithmic use of directed cographs seems to be nearly unexploited until now, we introduced new
and efficient dynamic programming solutions for well known digraph problems using dynamic programming on
directed cographs.

There are several interesting open questions. (a) For the non-linear time solutions: Can we find linear time
algorithms for the problems on directed cographs? (b) On undirected cographs the hamiltonian cycle problem can
be solved using the so called scattering number, see [12]. It would be interesting whether it is possible to define a
similar number in order to decide the problem on directed graphs. (c) Are there any natural problems which can be
solved in polynomial time on undirected cographs and its directed version becomes NP-hard on directed cographs?
(d) Can we give a polynomial-time algorithm for the oriented vertex coloring (cf. [15] for a definition) problem on
directed corecursively graphs?
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