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Abstract In the paper, we investigate a linear constraint optimization reformulation to a more general form of the ℓ1
regularization problem and give some good properties of it. We first show that the equivalence between the linear constraint
optimization problem and the ℓ1 regularization problem. Second, the KKT point of the linear constraint problem always exists
since the constraints are linear; we show that the half constraints must be active at any KKT point. In addition, we show that
the KKT points of the linear constraint problem are the same as the stationary points of the ℓ1 regularization problem. Based
on the linear constraint optimization problem, we propose a nonmonotone spectral gradient method and establish its global
convergence. Numerical experiments with compressive sense problems show that our approach is competitive with several
known methods for standard ℓ2-ℓ1 problem.
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1. Introduction

In recent years, many studies focus on the following ℓ1 regularization problem:

minϕ(x) := f(x) + µ∥x∥1, (1)

where f is continuously differentiable, µ is a given nonnegative regularization parameter and ∥ · ∥1 is the one-norm.
A particular case of (1) is the so-called ℓ2-ℓ1 problem

min
x∈Rn

1

2
∥Ax− b∥22 + µ∥x∥1, (2)

where A ∈ Rm×n is dense (usually m ≤ n), b ∈ Rm and n is large, which has attracted much attention in
signal/image denoising and data mining/classification [5, 9, 17].

Various types of algorithms have been proposed for solving (1). One of the most popular methods for solving
problem (3) is the class of iterative shrinkage-thresholding algorithms (ISTA), where each iteration involves a
matrix-vector multiplication involving A and AT followed by a shrinkage/soft-threshold step, see, e.g., [13, 21].
To accelerate the convergence, a two-step ISTA (TWISTA) algorithm was developed in [6], the sequential
subspace optimization techniques was added to ISTA [20], a faster shrinkage-thresholding algorithm, called
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FISTA was constructed in [4] and continuation schemes FPC was proposed in [24], respectively. To improve
practical performance of the above methods further, Wright, Nowak, and Figueiredo [35] introduced the sparse
reconstruction by separable approximation (SpaRSA) algorithm for solving (1). The rules for choosing this
parameter and the line search are quiet different. Hager, Phan and Zhang [25] analyzed the convergence rate of
SpaRSA and proposed an improved version of SpaRSA based on a cyclic version of the BB iteration and an
adaptive choice for the reference function value in the line search. Wen, Yin, Goldfarb and Zhang [33, 34] proposed
an abridged version of the active-set algorithm FPC AS for (3) by adding an active set (AS) step to FPC [24].

Another class algorithms such as interior point methods [11, 26, 30], projected gradient method [22] and
alternating direction method of multipliers SALSA [1, 8] are designed to solve the constrained optimization
reformulation of the ℓ1 regularized problem. Other algorithms for the ℓ1 minimization include coordinate-wise
descent methods [31]; Bergman iterative regularization based methods [36]; gradient methods [27] for minimizing
the more general function J(x) +H(x), where J is nonsmooth, H is smooth, and both are convex; a smoothed
penalty algorithm (SPA) [2]. We refer to papers [5, 9, 17] for a review on recent advances in this area.

The ℓ1 regularized problem (1) can be transformed a convex quadratic problem with linear inequality constraints.
Many standard interior points method [11, 26, 30] have been developed for solving the equivalent quadratic
program. However, some numerical results [22, 26, 35] show that interior point methods [11, 26, 30] is slow. In the
paper, we investigate a linear constraint optimization reformulation to the more general form of ℓ1 regularization
problem and give some good properties of it. We first show that the equivalence between the linear constraint
optimization reformulation and the ℓ1 regularization problem. Second, the KKT point of the linear constraint
problem always exists since the constraints are linear. We show that the half linear constraints must be active at any
KKT point. At last, we show that the KKT points of the linear constraint problem are the same as the stationary
points of the the ℓ1 regularization problem. Based on the linear constraint optimization problem, we propose a
projection gradient algorithm. To accelerate convergence of the algorithm, the Barzilar-Borwein steplength together
with nonmonotone line search technique is applied to the algorithm. The use of the projection gradient method
reduces the storage requirement of our method. Hence, the method can be used to solve large-scale problems. In
addition, the method has the following advantages: (a)The method is suitable for solving a more general problem
of (1); (b) the method based on a nonmonotone line search technique [23] is showed to be globally convergent;
(c)the main computational burden at each iterations involves matrix-vector multiplication involving A and AT ; (d)
preliminary numerical experiments show that the method is effective and competitive with the famous and existing
methods.

The remainder of the the paper is organized as follows. We investigate some interesting properties of the
reformulation in Section 2. In Section 3, we propose the algorithm and establish the global convergence of the
algorithm. Some numerical results are reported in Section 4 and conclusions are made in the last section.

Throughout the paper, ∥.∥ denotes the Euclidean norm of vectors. AT and xT denote the collections of columns
and entries of A and x, whose indices are in an index set T ⊂ {1, 2, 3, · · · , n}, respectively.

2. Equivalent Form and Properties

The first key step of our algorithm approach is to express (1) as a constraint optimization problem as in [26].
Specifically, the problem (1) can be transformed to the following problem with linear inequality constraints

min f(x) + µ
∑n

i=1 ui,

s.t.

{
ui + xi ≥ 0, i = 1, · · ·n,
ui − xi ≥ 0, i = 1, 2, · · · , n.

(3)

In this section, we shall show that the equivalence between the linear constraint optimization problem (3) and
the ℓ1 regularization problem (1). Second, the KKT point of the linear constraint problem always exists since the
constraints are linear; we shall show that the constraint must be active at any KKT points. At last, we shall show
that the KKT points of the linear constraint problem are the same as the stationary points of the ℓ1 regularization
problem.
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The following theorem shows the equivalent between (1) and problem (3).

Theorem 2.1
If x∗ is a solution of (1), then (|x∗|, x∗) is a solution of (3). Conversely, if (u∗, x∗) is a solution of (3), then x∗ is a
solution of (1).

Proof
Let x̄ be an any vector in Rn and choose ū such that (ū, x̄) is a feasible point of (3). Then we have ūi ≥ |x̄i|, for
i = 1, 2, · · · , n. Since x∗ is a solution of (1), we have

f(x̄) + µ

n∑
i=1

ūi ≥ f(x̄) + µ

n∑
i=1

|x̄i|

≥ f(x∗) + µ

n∑
i=1

|x∗i |,

which shows that (|x∗|, x∗) is a solution of (3). On the other hand, suppose that (u∗, x∗) is a solution of (3) and
x ∈ Rn is a any vector. We choose u ∈ Rn such that ui ≥ |xi| for i = 1, 2, · · · , n. Then (u, x) is a feasible point of
(3) and we thus have

f(x) + µ

n∑
i=1

ui ≥ f(x) + µ

n∑
i=1

|xi|

≥ f(x∗) + µ

n∑
i=1

u∗i

≥ f(x∗) + µ

n∑
i=1

|x∗i |.

Then the first inequality and third inequality imply that x∗ is a solution of (1).

Since the constraints in (3) are all linear, the KKT point of the linear constraint problem (3) always exists. The
following theorem about the first order necessary condition of (3) becomes obvious.

Theorem 2.2
Suppose that f : Rn → R is continuously differentiable and z = (u, x) is a local solution of the constrained
problem (3). Then there must exist multipliers λ1 ∈ Rn and λ2 ∈ Rn such that the following KKT conditions
hold: 

∇fi(x)− λ1i + λ2i = 0, i = 1, 2, · · · , n,
µ− λ1i − λ2i = 0, i = 1, 2, · · · , n,

min{λ1i , ui + xi} = 0, i = 1, 2, · · · , n,
min{λ2i , ui − xi} = 0, i = 1, 2, · · · , n.

(4)

The following theorem show that at any KKT point of (3), either constraint ui − xi ≥ 0 or ui + xi ≥ 0 must be
active for any i = 1, 2, · · · , n. That is, the half constraints of (3) must be active at any KKT point.

Theorem 2.3
Suppose that f : Rn → R is continuously differentiable and (u, x, λ1, λ2) is a KKT point of the constrained
problem (3). Then the equality ui = |xi| holds for all i = 1, 2, · · · , n. Moreover, we have

xi = 0 ⇐⇒ ui = 0.

Proof
We first prove that ui = |xi| holds for all i with xi = 0. By the constraint condition −ui ≤ xi ≤ ui, we get xi = 0
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if ui = 0. Suppose that xi = 0 for some i. By the KKT condition (4), we get that for all i = 1, 2, · · · , n

λ1iui = 0 and λ2iui = 0.

Furthermore, by µ = λ1i + λ2i , we get
µui = λ1iui + λ2iui = 0,

which shows ui = 0. If there exists an index i with xi ̸= 0 such that ui > |xi| > 0. By the KKT condition, we have
λ1i = 0 and λ2i = 0, which contradicts the condition µ = λ1i + λ2i > 0.

A point x is called a stationary point of (1) if it satisfies ∇fi(x) + µ = 0 if xi > 0,
∇fi(x)− µ = 0 if xi < 0,
|∇fi(x)| ≤ µ if xi = 0,

(5)

for i = 1, 2, · · · , n. The following theorem show that the KKT points of the linear constraint problem (3) are the
same as the stationary points of the ℓ1 regularization problem.

Theorem 2.4
Suppose that f : Rn → R is continuously differentiable and (u, x, λ1, λ2) is a KKT point of the constrained
problem (3). Then x is a stationary point of (1). Conversely, if x is a stationary point of (1), then there exist
multipliers λ1 and λ2 such that (|x|, x, λ1, λ2) is a KKT point of (3).

Proof
Suppose that (u, x, λ1, λ2) is a KKT point of (3). By Theorem 2.3, we have ui = |xi| for all i = 1, 2, · · · , n. By the
first, third and fourth equality of (4), we have

λ1i ≥ 0, λ2i ≥ 0 and |∇fi(x)| = |λ1i − λ2i | ≤ µ.

If xi > 0, then ui = xi. By the second, third, fourth inequality of (4), we get λ1i = 0 and λ2i = µ. By the first
inequality of (4), we get ∇fi(x) + µ = 0. If xi < 0, then ui = −xi. By the second, third and fourth inequality of
(4), we get λ2i = 0, λ1i = µ and ∇fi(x)− µ = 0. Thus, x is a stationary point of (1). Conversely, suppose that x is a
stationary point of (1). We let ui = |xi| for all i = 1, 2, · · · , n. If xi > 0, then we have ui = xi and ∇fi(x) + µ = 0.
In this case, we let λ1i = 0 and λ2i = µ which satisfy (5). If xi < 0, then we have ui = −xi and ∇fi(x)− µ = 0. In
this case, we let λ1i = µ and λ2i = 0 which satisfy (5). If xi = 0, we have ui = 0, it suffices to let λ1i and λ2i be any
positive constants that satisfy λ1i + λ2i = µ. Consequently, the KKT conditions (4) hold.

3. Algorithm and Convergence Result

3.1. Algorithm

In this section, we begin with some notation. Let Ω = {z = (u, x)T |ui + xi ≥ 0 and ui − xi ≥ 0, i =
1, 2, · · · , n, u ∈ Rn, x ∈ Rn} and PΩ(v) denote the projection of any vector v on the set Ω. We first gives the
explicit form of PΩ(v). Then, we propose the algorithm and give some convergence result. The following theorem
shows that Ω is a nonempty closed convex set.

Theorem 3.1
The set Ω is a nonempty closed convex set.

Proof
Clearly, the set Ω is a nonempty closed set. For any z1 = (u1, y1)

T ∈ R2n, z2 = (u2, y2)
T ∈ R2n and α ∈ (0, 1).
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Then we have 
u1 + y1 ≥ 0,
u1 − y1 ≥ 0,
u2 + y2 ≥ 0,
u2 − y2 ≥ 0.

Then, we get α(u1 + y1) + (1− α)(u2 + y2) ≥ 0 and α(u1 − y1) + (1− α)(u2 − y2) ≥ 0, which shows that
αz1 + (1− α)z2 ∈ Ω.

Above theorem shows that Ω is a nonempty closed convex set. Thus, we can compute the projection of any
vector v on the set Ω. The following theorem gives the explicit form of PΩ(v).

Theorem 3.2
Consider the optimal problem

PΩ(z) = argminv∈Ω
1
2∥z − v∥2 (6)

where z = (z1, z2)
T , PΩ(z) = (u, x)T and z1, z2, u, x ∈ Rn. Then, for i = 1, 2, · · · , n, we get that

(1) if {
z1(i) + z2(i) ≥ 0
z1(i)− z2(i) ≥ 0,

then {
u(i) = z1(i)
x(i) = z2(i).

(2) if {
z1(i) + z2(i) < 0
z1(i)− z2(i) < 0,

then {
u(i) = 0
x(i) = 0.

(3) if {
z1(i) + z2(i) ≥ 0
z1(i)− z2(i) < 0,

then {
u(i) = z1(i)+z2(i)

2

x(i) = z1(i)+z2(i)
2 .

(4) if {
z1(i) + z2(i) < 0
z1(i)− z2(i) ≥ 0,

then {
u(i) = z1(i)−z2(i)

2

x(i) = z2(i)−z1(i)
2 .

Proof
Define the Lagrange function of (6)

L(u, x, ρ1, ρ2) =
1

2
∥z1 − u∥2 + 1

2
∥z2 − x∥2 −

n∑
i=1

ρ1i (ui + xi)−
n∑

i=1

ρ2i (ui − xi)
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where ρ1 ∈ Rn and ρ2 ∈ Rn are multipliers. The KKT condition for (6) is as follows
∇Lx(u, x, ρ

1, ρ2)i = xi − (z2)i − ρ1i + ρ2i = 0, i = 1, 2, · · · , n,
∇Lu(u, x, ρ

1, ρ2)i = ui − (z1)i − ρ1i − ρ2i = 0, i = 1, 2, · · · , n,
min(ρ1i , ui + xi) = 0, i = 1, 2, · · · , n,
min(ρ2i , ui − xi) = 0, i = 1, 2, · · · , n.

(7)

Note that (6) is a convex optimization problem. Thus for any solution (u, x, ρ1, ρ2) of (7), (u, x) is a solution of
(6). We consider the following four cases. Case (i) if{

z1(i) + z2(i) ≥ 0
z1(i)− z2(i) ≥ 0,

then we let ρ1i = ρ2i = 0, u(i) = z1(i) and x(i) = z2(i) which satisfy (7).
Case (ii) if {

z1(i) + z2(i) < 0
z1(i)− z2(i) < 0,

then we let ρ1i = z1(i)+z2(i)
2 , ρ2i = z2(i)−z1(i)

2 and u(i) = x(i) = 0 which satisfy (7).
Case (iii) if {

z1(i) + z2(i) ≥ 0
z1(i)− z2(i) < 0,

then we let ρ1i = 0, ρ2i = z2(i)−z1(i)
2 and u(i) = x(i) = z1(i)+z2(i)

2 which satisfy (7).
Case (iv) if {

z1(i) + z2(i) < 0
z1(i)− z2(i) ≥ 0,

then we let ρ2i = − z1(i)+z2(i)
2 , ρ1i = 0, u(i) = z1(i)−z2(i)

2 and x(i) = − z1(i)+z2(i)
2 which satisfy (7).

Based on the above discussion, we propose the projection gradient method for (1) as follows.

Algorithm 1. (Projection Gradient Method)

Step 0. Given an initial point z0 = (u0, x0) ∈ Ω and positive constants M , αmin, αmax, η and δ ∈ (0, 1). Set
k := 0.
Step 1. Perform the convergence test and terminate with an approximate solution zk if the stopping criterion
is satisfied.
Step 2. Choose θk ∈ [αmin, αmax] and compute dk = PΩ(z

k − θk∇ϕ(zk))− zk.
Step 3. Determine αk := max{ηj , j = 0, 1, · · · } satisfying

ϕ(zk + αkdk) ≤ ϕkmax + δ(∇ϕ(zk))T dk,

where ϕkmax = max{ϕ(zk−j) : 0 ≤ j ≤ min(k,M − 1)}.
Step 4. Let the next iterate be zk+1 := zk + αkdk.
Step 5. Set k := k + 1 and go to Step 1.

To accelerate the projection gradient method, we shall apply the Barzilar-Borwein steplength to Algorithm 1.
To this aim, we briefly recall the Barzilar-Borwein method (for example, see [3, 15]). Consider the unconstrained
minimization problem

min
x∈Rn

G(x).

where G : Rn → R is continuously differentiable. The Barzilai-Borwein method is defined by

xk+1 = xk − αk
BB∇G(xk),
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where the scalar αk
BB is given by

αk
BB =

∥sk−1∥2

(sk−1)T yk−1
, (8)

where αk
BB is called the Barzilai-Borwein steplength [3], sk−1 = xk − xk−1 and yk−1 = ∇G(xk)−∇G(xk−1).

Due to its easy implementation, efficiency and low storage requirement, BB-type methods have widely been used in
many applications such as box constrained optimization [7, 14], nonlinear equations [12] and sparse reconstruction
[35, 22]. The Barzilai-Borwein steplength used in Algorithm 1 is defined by

θkBB =
∥zk+1 − zk∥2

(∇ϕ(zk+1)−∇ϕ(zk))T (zk+1 − zk)
.

Note that
∇ϕx(zk) = ∇f(xk) and ∇ϕu(zk) = µ(1, 1, · · · , 1)T

is a constant. Thus, we get

θkBB =
∥zk+1 − zk∥2

(∇f(xk+1)−∇f(xk))T (xk+1 − xk)
=

∥uk+1 − uk∥2 + ∥xk+1 − xk∥2

(∇f(xk+1)−∇f(xk))T (xk+1 − xk)
.

To avoid small and large values of θkBB , we project it in the interval [αmin, αmax], where αmin < αmax are given
positive constants. That is, we let

θkBB = min{αmax,max{αmin, θ
k
BB}}. (9)

For simplicity, we call Algorithm (1) with the steplength (9) used in step 2 of Algorithm (1) as the projection
Barzilai-Borwein algorithm and abbreviate it as PBB.

3.2. Convergence Result

In this section, we analyze the convergence of Algorithm 1. To this aim, we make the following assumptions on
the objective function.

Assumption 3.1

(i) The level set L(z0) = {z = (u, x)T ∈ R2n : ϕ(z) ≤ ϕ(z0)} is bounded.
(ii) f has continuous partial derivative on an open set that contains the level set L(z0).

The following theorem shows that every accumulation point of {zk} is a stationary point of (3). The proof of the
following theorem is similar to the one in [7] and hence was omitted.

Theorem 3.3
Assume that ϕ satisfies Assumption 3.1. Let {zk} be the sequence generated by Algorithm 1. If dk ̸= 0 for all k,
every accumulation point z∗ of {zk} is a stationary point of (3). Moreover, if f is convex, then every accumulation
point z∗ of {zk} is a solution of (3).

4. Numerical Experiments

In this section, we do some numerical experiments to test the performance of the proposed method and compare
it with the following three existing solvers, ℓ1 ℓs [26] FPC AS [33] and GPSR BB [22]. All codes are written
in MATLAB 7.0 and all tests described in this section were performed on a PC with Intel I5-3230 2.6GHZ CPU
processor and 4G RAM memory with a Windows operating system.

Experiments in [22, 24, 33, 35] have confirmed the effectiveness of continuation. Therefore, we embedded our
method in an adaptive continuation procedure. Specifically, we use the adaptive continuation procedure in [35]
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which was also used in GPSR BB [22]. We implemented Algorithm 1 with the following parameters M = 5,
αmin = 10−10, αmax = 1010, δ = 10−2 and η = 0.5 and implement the continuation procedure with the parameter
ς = 0.2. The initial point of all tested algorithms is the zero vector. The other three algorithms were run with default
parameters.

In Table 1, we summarize a list of symbols used in the subsequent tables and figures.

Table1. Summary of symbols used in all subsequent tables and figures.
m,n numbers of rows and columns of A, respectively
cpu cpu time
nnzx number of the nonzeros in the reovered solution
nMat total number of matrix-vector products involving A and AT

MSE the relative error between the recovered solution x and the exact sparsest solution xs, i.e., MSE= ∥x−xs∥
∥xs∥

4.1. ℓ2-ℓ1 problem

In this subsection, we consider a typical compressed sensing scenario, that is the problem (2), where the goal is to
reconstruct a lenghth-n sparse signal fromm observations, wherem < n. Them× nmeasure matrixA is obtained
by first filling it with independent samples of a standard Gaussian distribution and then orthonormalizing the rows.
These random matrices are generated by using MATLAB command randn. To generate the signal xs, we first
generated the support by randomly selecting T indices between 1 and n and then assigned a value to xi for each i
in the support by one of the following four methods:

Type 1: one (zero-one signal);
Type 2: the sign of a normally distributed random variable;
Type 3: a normally distributed random variable (Gaussian signal);
Type 4: a uniformly distributed random variable (−1, 1);

In this experiments, we tested the matrix A with size n = 4096 and m = round(0.1 ∗ n) or m = round(0.2 ∗ n)
and considered a range of degrees of sparseness: the number T of nonzero spikes in xs ranges from 1 to 30 for each
type of the elements in the support. The observation b is generated by b = Axs and the regularization parameter µ
is taken as µ = 0.05∥AT b∥∞. The above procedure yields a total of 240 problems. For each data set (xs, A, b), we
first ran ℓ1 ℓs and stored the final value of the objective function and then ran the other algorithms until they reach
the same objective function value.

Each component of signal xs and the final solution obtained by each tested method is considered as a nonzero
component when its absolute value is great than 0.001∥xs∥∞. We adopt the performance profiles by Dolan and
Moré [19] to evaluate the CPU time and the numbers of MSE, nMat and nnz. Figures 1-8 show the performance
profiles of the five methods relative to CPU time and the numbers of MSE, nMat and nnz. It shows that the PBB
method performs best for the 240 test problems and generally requires less CPU time and fewer numbers of nMat
and obtain less MSE and the same nnz as other algorithms.
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Figure 1. Performance profiles based on CPU
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Figure 4. Performance profiles based on nnz for
m = round(0.1n)

4.2. Group-separable regularizer

In this subsection, we examine the performance of the proposed methods using the group separable regularizers
[35] where

ϕ(x) =
1

2
∥Ax− b∥2 and ψ(x) = µ

n∑
i=1

∥x[i]∥1,

where x[1], x[2],· · · , x[m], are m disjoint subvectors of x and A ∈ R1024×4096 was obtained by the same way as that
in subsection 4.1. The vector xs has 4096 components, divided into k = 64 groups of length li = 64. To generate
xs, we randomly chose from one to eight groups and filled them with zero-mean Gaussian random samples of unit
variance, while all the other groups are filled with zeros. The target vector is b = Axs + e, where the noise e is a
Gaussian noise with mean zero and variance 10−4. The regularization parameter is chosen as suggested in [35]:
µ = 0.05∥AT b∥∞. We used the same stopping criterion as that in Section 4.1. We ran 10 test problems and gives
the average CPU time needed by the four methods in Table 2.
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Figure 5. Performance profiles based on CPU
time in log2 scale for m = round(0.1n)
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Figure 6. Performance profiles based on MSE in
log2 scale for m = round(0.1n)
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Figure 7. Performance profiles based on nmat for
m = round(0.1n)
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Figure 8. Performance profiles based on nnz for
m = round(0.1n)

Table 2. Statical data

Algorithm ℓ1 ls FPC AS GPSR BB PBB
CPU time 2.3494 0.4193 0.2925 0.2399

From Table 2, we can observe that PBB is much faster than the l1 ls method and are comparable to the FPC AS
and GPSR BB methods.

4.3. Image deblurring problem

In this subsection, we present results for one image restoration problems referred to as Cameraman (see Figure 7).
The images are 256× 256 grayscale images; that is, n = m = 2562 = 65536. The image restoration problem has
the form (3), where µ = 0.00005. We used the same stopping criterion as that in Section 4.1. In the test problem,
the FPC AS method fails to satisfy the stopping condition. So we do not report the CPU time and the obtained
image of it. Table 3 reports the average CPU time. The results in Table 3 and Figure 9 again indicate that PBB
yields much better performance for the test problem.

Table 3. Statical data
Algorithm ℓ1 ℓs GPSR BB PBB
CPU time 137.34 1.81 1.51
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Original image Blurred image l1_ls

PBB GPSR_BB

Figure 9. From top to bottom: original signal reconstruction via the minimization of (3) obtianed by ℓ1 ℓs, PBB and
GPSR BB

5. Conclusion

In the paper, we investigate a linear constraint optimization reformulation to a more general form of the ℓ1
regularization problem and given some good properties of it. We first show that the equivalence between the
linear constraint optimization problem and the ℓ1 regularization problem. Second, the KKT point of the linear
constraint problem always exists since the constraints are linear; we show that the half constraints must be active
at any KKT point. In addition, we show that the KKT points of the linear constraint problem are the same as the
stationary points of the ℓ1 regularization problem. Based on the linear constraint optimization problem, we propose
a nonmonotone spectral gradient Method. Under appropriate conditions, we showed that the method is globally
convergent. The numerical results in Section 4 demonstrated the effectiveness of the algorithm for solving some
standard ℓ2-ℓ1 problems.
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19. E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201-213.
20. M. Elad, B. Matalon and M. Zibulevsky, Subspace optimization methods for linear least squares with non-quadratic regularization,

Appl. Comput. Harmon. Anal., 23 (2007), pp. 346-367.
21. M.A. T. Figueiredo and R.D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003),

pp. 906-916.
22. M.A. T. Figueiredo, R.D. Nowak and S.J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing

and other inverse problems. IEEE J. Sel. Top. Signal Process., 1 (2007), pp. 586-597.
23. L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal., 23

(1986), pp.707-716.
24. E.T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for ℓ1 minimization: methodology and convergence, SIAM J. Optim., 19

(2008), pp. 1107-1130.
25. W.W. Hager, D.T. Phan and H. Zhang, Gradient-based methods for sparse recovery. SIAM J. Imaging Sci., 4 (2011), pp. 146-165.
26. S.J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, An interior-point method for large-scale ℓ1-regularized least squares, IEEE

J. Sel. Top. Signal Process., 1 (2007), pp. 606-617.
27. Y. Nesterov, gradient methods for minimizing composite objective function, 2007, CORE Discussion Paper 2007/76 [Online].

Available: http://www.optimization-online.org/DB HTML/2007/09/1784.html
28. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
29. S.M. Robinson, Linear convergence of ϵ-subgradient descent methods for a class of convex functions. Math. Program. 86 (1999), pp.

41-50.
30. M. Saunders, PDCO: Primal-Dual Interior Method for Convex Objectives 2002 [Online]. Available:

http://www.stanford.edu/group/SOL/ software/pdco.html
31. P. Tseng and S.W. Yun, A coordinate gradient descent method for nonsmooth separable minimization. Math. Program., 117 (2009),

pp. 387-423.
32. J. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform. Theory, 50 (2006), pp. 2231-2342
33. Z.W. Wen, W.T. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization,

and continuation. SIAM J. Sci. Comput., 32 (2010), pp. 1832-1857.
34. Z.W. Wen, W.T. Yin, H. Zhang and D. Goldfarb, On the convergence of an active-set method for ℓ1 minimization. Optim. Methods

Softw., 27 (2012), pp. 1127-1146.
35. J. Wright, R.D. Nowak and M.A.T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process., 57

(2009), pp. 2479-2493.
36. W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for ℓ1-minimization with applications to compressed

sensing, SIAM J. Imaging Sci., 1 (2008), pp. 1433–1468.

Stat., Optim. Inf. Comput. Vol. 4, September 2016


