
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 4, June 2016, pp 183–193.
Published online in International Academic Press (www.IAPress.org)

Relaxed resolvent operator for solving a variational inclusion problem
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Abstract In this paper, we introduce a new resolvent operator and we call it relaxed resolvent operator. We prove that
relaxed resolvent operator is single-valued and Lipschitz continuous and finally we approximate the solution of a variational
inclusion problem in Hilbert spaces by defining an iterative algorithm based on relaxed resolvent operator. A few concepts
like Lipschitz continuity and strong monotonicity are used to prove the main result of this paper. Thus, no strong conditions
are used. Some examples are constructed.
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1. Introduction and Preliminaries

Variational inequality is an inequality involving a functional, which has to be solved for all possible values
of a given variable, belonging usually to a convex set. The theory of variational inequalities was initially
developed to deal with equilibrium problems, precisely the Signorini problem. After that it has been extended
and generalized to study a wide class of problems arising in mechanics, physics, optimization and control, non-
linear programming, economics, finance, regional structural,transformation, elasticity, and applied sciences, etc.,
see e.g., [1, 2, 4, 12, 15, 16, 17, 18, 19, 20] and references therein.

A useful and important generalization of variational inequalities is called a variational inclusion which was
introduced by Hassouni and Moudafi [10] and includes mixed variational inequalities as special cases. Many
problems concerning variational inclusions are solved by using the concept of maximal monotonicity and its
generalized concepts such as H-monotonicity [6], H-accretivity [5] etc., see e.g., [7, 8, 9, 13, 21] and references
therein. Most of the splitting methods are based on the resolvent operator of the form [I + λM ]−1, where M is a
set-valued monotone mapping, λ is a positive constant and I is the identity mapping.

In this paper, we introduce a new resolvent operator of the form [(I −H) + λM ]−1, where H is a relaxed
Lipschitz continuous mapping, M is a set-valued monotone mapping, λ is a positive constant and I is an identity
mapping. We call this new resolvent operator as relaxed resolvent operator and prove that it is single-valued and
Lipschitz continuous. We define an iterative algorithm based on relaxed resolvent operator to solve a variational
inclusion problem. Convergence of the iterative sequences generated by the iterative algorithm is also discussed.
Some examples are constructed.
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Throughout this paper, we suppose that X is a real Hilbert space endowed with a norm ∥ · ∥ and an inner product
⟨·, ·⟩, d is the metric induced by the norm ∥ · ∥, 2X (respectively,CB(X)) is the family of all nonempty (respectively,
closed and bounded) subsets of X, and D(·, ·) is the Hausdorff metric on CB(X) defined by

D(P,Q) = max

{
sup
x∈P

d(x,Q), sup
y∈Q

d(P, y)

}
,

where d(x,Q) = inf
y∈Q

d(x, y) and d(P, y) = inf
x∈P

d(x, y).

The following definitions are needed in the sequel.

Definition 1.1
A mapping g : X → X is said to be

(i) Lipschitz continuous if, there exist a constant λg > 0 such that

∥g(x)− g(y)∥ ≤ λg∥x− y∥,∀x, y ∈ X;

(ii) monotone,if
⟨g(x)− g(y), x− y⟩ ≥ 0, ∀x, y ∈ X;

(iii) strongly monotone if, there exists a constant ξ > 0 such that

⟨g(x)− g(y), x− y⟩ ≥ ξ∥x− y∥2, ∀x, y ∈ X;

(iv) relaxed Lipschitz continuous if, there exists a constant r > 0 such that

⟨g(x)− g(y), x− y⟩ ≤ −r∥x− y∥2,∀x, y ∈ X.

.

Definition 1.2
A mapping N : X ×X ×X → X is said to be Lipschitz continuous with respect to first argument if, there exists
a constant λN1 such that

∥N(x1, x2, x3)−N(y1, x2, x3)∥ ≤ λN1∥x1 − y1∥, ∀x1, y1, x2, x3 ∈ X.

Similarly, we can define the Lipschitz continuity of N in rest of the arguments.

Definition 1.3
A set-valued mapping A : X → CB(X) is said to be D-Lipschitz continuous if, there exists a constant δA such
that

D(A(x), A(y)) ≤ δA∥x− y∥, ∀x, y ∈ X.

2. Relaxed Resolvent operator

We begin this section with the introduction of relaxed resolvent operator and demonstrate some of its properties.

Definition 2.1
Let H : X → X be a mapping and I : X → X be an identity mapping. Then, a set-valued mapping M : X → 2X

is a said to be (I −H)-monotone if, M is monotone, H is relaxed Lipschitz continuous and

[(I −H) + λM ](X) = X,

where λ > 0 is a constant.
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Definition 2.2
Let H : X → X be relaxed Lipschitz continuous mapping and I : X → X be an identity mapping. Suppose
that M : X → 2X is a set-valued, (I −H)-monotone mapping. The relaxed resolvent operator R(I−H)

λ,M : X → X
associated with I ,H and M is defined by

RI−H
λ,M (x) = [(I −H) + λM ]−1(x), ∀x ∈ X, (1)

where λ > 0 is a constant.

Example 2.1
Let X = S2, the space of all 2× 2 real symmetric matrices equipped with inner product ⟨A,B⟩ = tr(A ·B),
∀A,B ∈ X , and let α, β be two positive real numbers such that β ≤ α. Let H : X → X be a mapping defined
by

H

([
x1 a
a x2

])
=

[
−αx1 a
a −αx2

]
, ∀x1, x2, a ∈ R.

For x =

[
x1 a
a x2

]
∈ X , we calculate,

⟨H(x)−H(y), x− y⟩

=

⟨[
−α(x1 − y1) 0

0 −α(x2 − y2)

]
,

[
(x1 − y1) 0

0 (x2 − y2)

]⟩
= tr

([
−α(x1 − y1) 0

0 −α(x2 − y2)

]
.

[
(x1 − y1) 0

0 (x2 − y2)

])
= −α(x1 − y1)

2 − α(x2 − y2)
2

= −α[(x1 − y1)
2 + (x2 − y2)

2]

≤ −β[(x1 − y1)
2 + (x2 − y2)

2].

Also,

∥x− y∥2 = ⟨x− y, x− y⟩

=

⟨[
x1 − y1 0

0 x2 − y2

]
,

[
x1 − y1 0

0 x2 − y2

]⟩
= tr

([
x1 − y1 0

0 x2 − y2

]
.

[
x1 − y1 0

0 x2 − y2

])
= (x1 − y1)

2 + (x2 − y2)
2.

From above it follows that

⟨H(x)−H(y), x− y⟩ ≤ −β∥x− y∥2, ∀x, y ∈ X.

i.e., H is β-relaxed Lipschitz continuous.
Suppose that M : X → 2X is defined by

M

([
x1 a
a x2

])
=

[
αx1 a
a αx2

]
, ∀x1, x2, a ∈ R.
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We calculate

⟨M(x)−M(y), x− y⟩

=

⟨
M

([
x1 a
a x2

])
−M

([
y1 a
a y2

])
,

[
x1 − y1 0

0 x2 − y2

]⟩
=

⟨[
α(x1 − y1) 0

0 α(x2 − y2)

]
,

[
x1 − y1 0

0 x2 − y2

]⟩
= tr

([
α(x1 − y1) 0

0 α(x2 − y2)

]
.

[
x1 − y1 0

0 x2 − y2

])
= α(x1 − y1)

2 + α(x2 − y2)
2,

which implies that

⟨M(x)−M(y), x− y⟩ ≥ 0, ∀x, y ∈ X.

i.e., M is monotone.

Now, we show that for λ = 1, every element x =

[
αx1 a
a αx2

]
∈ 2X has a pre-image y =

[
αx1

1+2α a

a αx2

1+2α

]
∈

X.

[(I −H) +M ](y) = (I −H)(y) +M(y)

= y −H(y) +M(y)

=

[
αx1

1+2α a

a αx2

1+2α

]
−

[
−α2x1

1+2α a

a −α2x2

1+2α

]
+

[
α2x1

1+2α a

a α2x2

1+2α

]

=

[
α(1+2α)x1

1+2α a

a α(1+2α)x2

1+2α

]

=

[
αx1 a
a αx2

]
∈ 2X .

It follows that

[(I −H) +M ](X) = X,

i.e., M is (I −H)-monotone mapping.

Now, we prove some of the properties of relaxed resolvent operator defined by (1).

Theorem 2.2
Let H : X → X be a r-relaxed Lipschitz continuous mapping, I : X → X be an identity mapping and M : X →
2X be a set-valued (I −H)-monotone mapping. Then the operator [(I −H) + λM ]−1 is single-valued, where
λ > 0 is a constant.

Proof
For any z ∈ X and a constant λ > 0, let x, y ∈ [(I −H) + λM ]−1(z). Then,

λ−1[z − (I −H)(x)] ∈ M(x);

λ−1[z − (I −H)(y)] ∈ M(y).

Stat., Optim. Inf. Comput. Vol. 4, June 2016



IQBAL AHMAD, MIJANUR RAHAMAN, RAIS AHMAD 187

Since M is monotone, we have

⟨−(I −H)(x) + z + (I −H)(y)− z, x− y⟩ ≥ 0;

−⟨(I −H)(x)− (I −H)(y), x− y⟩ ≥ 0;

−⟨x−H(x)− y +H(y), x− y⟩ ≥ 0;

⟨x−H(x)− y +H(y), x− y⟩ ≤ 0;

⟨x−H(x)− y +H(y), x− y⟩ ≤ 0;

⟨x− y, x− y⟩ − ⟨H(x)−H(y), x− y⟩ ≤ 0.

Since H is r-relaxed Lipschitz continuous, we have

0 ≥ ⟨x− y, x− y⟩ − ⟨H(x)−H(y), x− y⟩ ≥ ∥x− y∥2 + r∥x− y∥2 ≥ 0,

it follows that (1 + r)∥x− y∥2 = 0, which implies that x = y. Thus [(I −H) + λM ]−1 is single-valued.

Theorem 2.3
Let H : X → X be a r-relaxed Lipschitz continuous mapping, I : X → X be an identity mapping and M : X →
2X be a set-valued, (I −H)-monotone mapping. Then the resolvent operator RI−H

λ,M : X → X is 1
[1+r] -Lipschitz

continuous, i.e.,

∥RI−H
λ,M (x)−RI−H

λ,M (y)∥ ≤ 1

[1 + r]
∥x− y∥, ∀x, y ∈ X.

Proof
Let x and y be any given point in X. If follow from (1) that

RI−H
λ,M (x) = [(I −H) + λM ]−1(x),

RI−H
λ,M (y) = [(I −H) + λM ]−1(y).

(2)

It follows that
1

λ

[
x− (I −H)(RI−H

λ,M (x))
]
∈ M

(
RI−H

λ,M (x)
)
,

1

λ

[
y − (I −H)(RI−H

λ,M (y))
]
∈ M

(
RI−H

λ,M (y)
)
.

(3)

Since M is (I −H)-monotone i.e., M is monotone, we have

1

λ

⟨
x− (I −H)(RI−H

λ,M (x))− (y − (I −H)(RI−H
λ,M (y))), RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
≥ 0,

1

λ

⟨
x− y − {(I −H)(RI−H

λ,M (x))− (I −H)(RI−H
λ,M (y))}, RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
≥ 0.

(4)

It follows that ⟨
x− y,RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
≥

⟨
(I −H)(RI−H

λ,M (x))− (I −H)(RI−H
λ,M (y)), RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
. (5)
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By Cauchy-Schwartz inequality, (5) and r-relaxed Lipschitz continuity of H, we have∥∥∥x− y
∥∥∥∥∥∥RI−H

λ,M (x)−RI−H
λ,M (y)

∥∥∥
≥

⟨
x− y,RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
≥

⟨
RI−H

λ,M (x)−H(RI−H
λ,M (x))−RI−H

λ,M (y) +H(RI−H
λ,M (y)), RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
=

⟨
RI−H

λ,M (x)−RI−H
λ,M (y), RI−H

λ,M (x)−RI−H
λ,M (y)

⟩
−⟨

H(RI−H
λ,M (x))−H(RI−H

λ,M (y)), RI−H
λ,M (x)−RI−H

λ,M (y)
⟩

≥
∥∥∥RI−H

λ,M (x)−RI−H
λ,M (y)

∥∥∥2

+ r
∥∥∥RI−H

λ,M (x)−RI−H
λ,M (y)

∥∥∥2

= (1 + r)
∥∥∥RI−H

λ,M (x)−RI−H
λ,M (y)

∥∥∥2

. (6)

Thus, we have ∥∥∥RI−H
λ,M (x)−RI−H

λ,M (y)
∥∥∥ ≤ 1

[1 + r]
∥x− y∥,

i.e., the relaxed resolvent operator RI−H
λ,M is 1

[1+r] -Lipschitz continuous.

In support of Theorem 2.2, we have the following example.

Example 2.4
Let X = R2 with usual inner product. Let H : X → X be a mapping defined by

H(x) = (−2x1,−4x2), ∀x = (x1, x2) ∈ X,

and the mapping M : X → 2X be defined by

M(x) = (4x1, 2x2), ∀x = (x1, x2) ∈ X.

Then, it easy to check that H is 2-relaxed Lipschitz continuous and M is monotone. In addition, it is easy to verify
that for λ = 1, [(I −H) + λM ](X) = X, which shows that M is (I −H)-monotone mapping. Hence, the relaxed
resolvent operator R(I−H)

λ,M : X → X associated with I , H and M is of the form:

RI−H
λ,M (x) =

(x1

7
,
x2

7

)
, ∀x = (x1, x2) ∈ X. (7)

It is easy to see that the relaxed resolvent operator defined by (2.7) is single-valued.
Now, we prove that RI−H

λ,M is Lipschitz continuous.∥∥∥RI−H
λ,M (x)−RI−H

λ,M (y)
∥∥∥ =

∥∥∥(x1

7
,
x2

7

)
−
(y1
7
,
y2
7

)∥∥∥
=

∥∥∥(x1 − y1
7

,
x2 − y2

7

)∥∥∥
=

[
(x1 − y1)

2

49
+

(x2 − y2)
2

49

] 1
2

=
1

7

[
(x1 − y1)

2 + (x2 − y2)
2
] 1

2

≤ 1

3
∥x− y∥.

Hence, the resolvent operator RI−H
λ,M is 1

3 -Lipschitz continuous.
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3. Formulation of the problem and iterative algorithm

In this section, we formulate a variational inclusion problem and an iterative algorithm based on relaxed resolvent
operator to approximate the solution of our problem.

Let X be a real Hilbert space and H, g : X → X, N : X ×X ×X → X be the single-valued mappings,
I : X → X be an identity mapping. Suppose that A,B,C : X → CB(X) and M : X ×X → 2X are the set-valued
mappings such that M is (I −H)-monotone. We consider the problem of finding x ∈ X, u ∈ A(x), v ∈ B(x),
w ∈ C(x) and g(x)

∩
domM(., x) ̸= ∅ such that

0 ∈ N(u, v, w) +M(g(x), x). (8)

When C ≡ 0, N(u, v, .) = N(u, v), then problem (8) reduces to find x ∈ X, u ∈ A(x), v ∈ B(x) such that

0 ∈ N(u, v) +M(g(x), x). (9)

Problem (9) was introduced and studied by Kazmi and Khan [11].

In addition if M(g(x), x) = M(g(x)), then a similar analogue of problem (9) was introduced and studied by
Chang, Cho, Lee and Jung [3], Chang [2], Chang, Jim and Kim [4].

It is clear that for suitable choices of mappings involved in the formulation of problem (8), one can obtain many
variational inclusion problems studied in recent past.

By applying the relaxed resolvent operator, we establish an equivalence result for variational inclusion problem
(8) and a nonlinear equation.

Lemma 3.1
Let x ∈ X, u ∈ A(x), v ∈ B(x) and w ∈ C(x) is a solution of variational inclusion problem (3.1) if and only if
(x, u, v, w) satisfies the equation:

g(x) = RI−H
λ,M(.,x)[(I −H)g(x)− λN(u, v, w)], (10)

where
RI−H

λ,M(.,x) = [(I −H) + λM(., x)]−1,

and λ > 0 is a constant.

Proof
The proof is a direct consequence of Definition 2.2.

Theorem 3.2 (Nadler’s Theorem [14])
Let (X, d) be a complete metric space. If F : X → CB(X) is a set-valued contraction mapping, then F has a fixed
point.

Based on Lemma 3.1 and Theorem 3.2, we construct an iterative algorithm for finding approximate solutions of
problem (8).

Iterative Algorithm 3.1
Let g,H : X → X, N : X ×X ×X → X are the single-valued mappings, I : X → X be an identity mapping,
and A,B,C : X → CB(X) are the set-valued mappings be such that for each x ∈ X, Q(x0) ⊆ g(x), where
Q : X → 2X be a set-valued mapping defined by

Q(x) =
∪

u∈A(x)

∪
v∈B(x)

∪
w∈C(x)

[RI−H
λ,M(.,x)[(I −H)g(x)− λN(u, v, w)]], (11)

where M : X ×X → 2X be a set-valued mapping such that a fixed x ∈ X, M(., x) is (I −H)-monotone.
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For any given x0 ∈ X, u0 ∈ A(x0), v0 ∈ B(x0), and w0 ∈ C(x0), let

z0 = RI−H
λ,M(.,x0)

[(I −H)g(x0)− λN(u0, v0, w0)] ⊆ Q(x0) ⊆ g(X).

Hence, there exist x1 ∈ X such that z0 = g(x1). Since u0 ∈ A(x0) ∈ CB(X), v0 ∈ B(x0) ∈ CB(X) and w0 ∈
C(x0) ∈ CB(X), by Theorem 3.2 there exist u1 ∈ A(x1), v1 ∈ B(x1) and w1 ∈ C(x1) such that

∥u1 − u0∥ ≤ D(A(x1), A(x0)),

∥v1 − v0∥ ≤ D(B(x1), B(x0)),

∥w1 − w0∥ ≤ D(C(x1), C(x0)).

Let
z1 = RI−H

λ,M(.,x1)
[(I −H)g(x1)− λN(u1, v1, w1)] ⊆ Q(x1) ⊆ g(X).

Hence, there exist x2 ∈ X such that z1 = g(x2). Continuing the above process inductively, we can define the
iterative sequences {xn}, {un}, {vn} and {wn} by the following scheme:

g(xn+1) = RI−H
λ,M(.,xn)

[(I −H)g(xn)− λN(un, vn, wn)], (12)

un+1 ∈ A(xn+1), ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)), (13)

vn+1 ∈ B(xn+1), ∥vn+1 − vn∥ ≤ D(B(xn+1), B(xn)), (14)

wn+1 ∈ C(xn+1), ∥wn+1 − wn∥ ≤ D(C(xn+1), C(xn)), (15)

where λ > 0 is a constant and n = 0, 1, 2, · · · .

4. Existence and convergence result

In this section, we prove an existence and convergence result for variational inclusion problem (8).

Theorem 4.1
Let X be a real Hilbert space and g,H : X → X be the single-valued mappings such that g is strongly monotone
with constant ξ, Lipschitz continuous with constant λg and H is relaxed Lipschitz continuous with constant r
and Lipschitz continuous with constant λH . Suppose that N : X ×X ×X → X is a single-valued mapping such
that N is Lipschitz continuous in all the three arguments with constants λN1 , λN2 and λN3 , respectively and
A,B,C : X → CB(X) be the set-valued mappings such that A is D-Lipschitz continuous with constant λA, B
is D-Lipschitz continuous with constant δB and C is D-Lipschitz continuous with constant δC . Suppose that set-
valued mapping M : X ×X → 2X is such that for a fixed x ∈ X,M(., x) is (I −H)-monotone with respect to the
first arguments, where I : X → X is the identity mapping and for each x ∈ X, Q(x) ⊆ g(x), where Q is defined
by (11). Suppose that there exists constants λ > 0 and h > 0 such that the following conditions hold:∥∥∥RI−H

λ,M(.,x)(z)−RI−H
λ,M(.,y)(z)

∥∥∥ ≤ h∥x− y∥, ∀x, y, z ∈ X, (16)

and
λg + λHλg + λλN1δA + λλN2δB + λλN3δC < [ξ(1 + r)− h]. (17)

Then, there exist x ∈ X, u ∈ A(x), v ∈ B(x) and w ∈ C(x) such that variational inclusion problem (8) is solvable.
Moreover, xn → x, un → u, vn → v and wn → w, as n → ∞, where {xn}, {un}, {vn} and {wn} are the sequences
defined in iterative Algorithm 3.1.
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Proof
Using the strong monotonicity of g with constant ξ, we have

∥g(xn+1)− g(xn)∥∥xn+1 − xn∥ ≥ ⟨g(xn+1)− g(xn), xn+1 − xn⟩
≥ ξ∥xn+1 − xn∥2,

which implies that

∥xn+1 − xn∥ ≤ 1

ξ
∥g(xn+1)− g(xn)∥. (18)

By iterative Algorithm 3.1, Theorem 2.2 and condition (16), we have

∥g(xn+1)− g(xn)∥

=
∥∥∥RI−H

λ,M(.,xn)
[(I −H)g(xn)− λN(un, vn, wn)]−RI−H

λ,M(.,xn−1)
[(I −H)g(xn−1)

−λN(un−1, vn−1, wn−1)]
∥∥∥

=
∥∥∥RI−H

λ,M(.,xn)
[(I −H)g(xn)− λN(un, vn, wn)]−RI−H

λ,M(.,xn)
[(I −H)g(xn−1)

−λN(un−1, vn−1, wn−1)] +RI−H
λ,M(.,xn)

[(I −H)g(xn−1)

−λN(un−1, vn−1, wn−1)]−RI−H
λ,M(.,xn−1)

[(I −H)g(xn−1)− λN(un−1, vn−1, wn−1)]
∥∥∥

≤
∥∥∥RI−H

λ,M(.,xn)
[(I −H)g(xn)− λN(un, vn, wn)]

−RI−H
λ,M(.,xn)

[(I −H)g(xn−1)− λN(un−1, vn−1, wn−1)]
∥∥∥+

∥∥∥RI−H
λ,M(.,xn)

[(I −H)g(xn−1)

−λN(un−1, vn−1, wn−1)]−RI−H
λ,M(.,xn−1)

[(I −H)g(xn−1)− λN(un−1, vn−1, wn−1)]
∥∥∥

≤ 1

[1 + r]
∥(I −H)g(xn)− λN(un, vn, wn)− ((I −H)g(xn−1)− λN(un−1, vn−1, wn−1))∥

+h∥xn − xn−1∥. (19)

Since g is Lipschitz continuous with constant λg, H is a Lipschitz continuous with constant λH , N is Lipschitz
continuous in all three arguments with constants λN1 , λN2 , λN3 , respectively and A, B, C are D-Lipschitz
continuous with constants δA, δB and δC , respectively, we have

∥(I −H)g(xn)− (I −H)g(xn−1)− λ(N(un, vn, wn)−N(un−1, vn−1, wn−1))∥
≤ ∥(I −H)g(xn)− (I −H)g(xn−1)∥+ λ∥N(un, vn, wn)−N(un−1, vn−1, wn−1)∥
≤ ∥g(xn)− g(xn−1)∥+ ∥H(g(xn))−H(g(xn−1))∥+ λ∥N(un, vn, wn)−

N(un−1, vn, wn) +N(un−1, vn, wn) +N(un−1, vn−1, wn)−N(un−1, vn−1, wn)

−N(un−1, vn−1, wn−1)∥
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≤ ∥g(xn)− g(xn−1)∥+ ∥H(g(xn))−H(g(xn−1))∥+ λ∥N(un, vn, wn) +

N(un−1, vn, wn)∥+ λ∥N(un−1, vn, wn)−N(un−1, vn−1, wn)∥+
λ∥N(un−1, vn−1, wn)−N(un−1, vn−1, wn−1)∥

≤ λg∥xn − xn−1∥+ λHλg∥xn − xn−1∥+ λλN1
∥un − un−1∥+

λλN2∥vn − vn−1∥+ λλN3∥wn − wn−1∥
≤ λg∥xn − xn−1∥+ λHλg∥xn − xn−1∥+ λλN1D(A(xn), A(xn−1)) +

λλN2D(B(xn), B(xn−1)) + λλN3D(C(xn), C(xn−1))

≤ λg∥xn − xn−1∥+ λHλg∥xn − xn−1∥+ λλN1δA∥xn − xn−1∥+
λλN2δB∥xn − xn−1∥+ λλN3δC∥xn − xn−1∥

≤ [λg + λHλg + λλN1δA + λλN2δB + λλN3δC ]∥xn − xn−1∥. (20)

Using (20), (19) becomes

∥g(xn+1)− g(xn)∥ ≤
[
[λg + λHλg + λλN1δA + λλN2δB + λλN3δC ]

[1 + r]
+ h

]
∥xn − xn−1∥. (21)

Using (21), (18) becomes

∥xn+1 − xn∥ ≤ θ∥xn − xn−1∥,

where

θ =
1

ξ

[
λg + λHλg + λλN1δA + λλN2δB + λλN3δC ]

[1 + r]
+ h

]
. (22)

By condition (17), we have 0 ≤ θ < 1, thus {xn} is a Cauchy sequence in X and as X is complete, there exists
x ∈ X such that xn → x as n → ∞. From (13), (14) and (15) of Algorithm 3.1 and D-Lipschitz continuity of A,B
and C with constants δA, δB and δC , respectively, we have

∥un+1 − un∥ ≤ D(A(xn+1), A(xn)) ≤ δA∥xn+1 − xn∥; (23)

∥vn+1 − vn∥ ≤ D(B(xn+1), B(xn)) ≤ δB∥xn+1 − xn∥; (24)

∥wn+1 − wn∥ ≤ D(C(xn+1), C(xn)) ≤ δC∥xn+1 − xn∥. (25)

It is clear from (23), (24) and (25) that {un}, {vn} and {wn} are also Cauchy sequences in X, so there exist u, v
and w in X such that un → u, vn → v and wn → w. By using the continuity of the operators I, N, M, g, A, B, C,
H, RI−H

λ,M(.,x) and iterative Algorithm 3.1, we have

g(x) = RI−H
λ,M(.,x)[(I −H)g(x)− λN(u, v, w)].

By Lemma 3.1, we conclude that (x, u, v) is a solution of problem (3.1). It remains to show that u ∈ A(x), v ∈ B(x)
and w ∈ C(x). In fact

d(u,A(u)) ≤ ∥u− un∥+ d(un, A(x))

≤ ∥u− un∥+D(A(xn), A(x))

≤ ∥u− un∥+ δA∥xn − x∥ → 0, as n → ∞.

Hence u ∈ A(x). Similarly, we can show that v ∈ B(x) and w ∈ C(x). This completes the proof.
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5. Conclusion

The resolvent operator techniques are applicable to solve several problem related to variational inequalities
(inclusions), optimization problems, complementary problems etc..The aim of this work is to introduce a new type
of resolvent operator based on relaxed Lipschitz continuity and monotonicity, and we call it as relaxed resolvent
operator. We prove that relaxed resolvent operator is single valued and Lipschitz continuous. We define an iterative
algorithm to approximate the solution of a variational inclusion problem. In our opinion, many other problems
occurring in applied sciences may be solved by using relaxed resolvent operator in a different frame work.
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