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Abstract In SVMs community, the learning results are always a contlineof the
selected functions. SVMs have two mainly regularizatiordeis to find the combination
coefficients. The most popular model with input samples is norm-regularized the
classification function in a reproducing kernel Hilbert spdRKHS), and it is converted
to an optimization problem ilR™ by duality or representer theorem. Another important
model is generalized support vector machine(GSVM), in Whige coefficients of the
hypothesis is norm-regularized in the Euclidean sp&€e In this work, we analyze
the difference between them on computing stability, compornal complexity and the
efficiency of the Newton type algorithms, especially on #duced SVMs for large scale
training problems. Many typical loss functions are consde Our studies show that the
model of GSVM has more advantages than the other model. Sxpeeiments are given
to support our analysis.
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1. Introduction

Based on the Vanpnik and Chervonkis’ structural risk migiion principle
[1, 2], support vector machines (SVMs) are proposed as the catipoally
powerful machine learning methods for supervised learriihgy are the popular
methods in the past 10 more years, and widely used in clasificand regression
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problems, such as character identification, disease déggnéace recognition, the
time serial prediction, etc.

Historically, SVMs are motivated from a geometrical illegton, where an
optimal linear classification function with the maximal miar is found in the
feature kernel space. In this illustration, this optimak#r function may have an
offset and may not always come through the origin. But sorsearch results
show that, when a large feature kernel space is considdred|ltistrations with
offset have some flaws (se@]) except that cause an additional equality constraint
in the dual problem, and the investigation of the genertitimaperformance of
SVMs does not suggest that the offset offers any improverferdéuch kernel
space like Gaussian kernelq.[Roughly speaking, the offset only has advantage
on the linear classification problems, where the optimatdmclassification
function is found in input space directly, and has little adtages on the nonlinear
classification with kernel function.

In this work, the nonlinear problem with kernel function itudied. For
simplicity, we only take the SVMs without offset into accaws [3], [5] and
[6] do. Actually, the offset can be added with an extra attebliadded to every
sample §].

1.1. Representer theorem

Representer theorem is an important result in learning lpnobwhere many
samples are acted as the inputs of the problem. It statesthleasolution
(hypothesis) of the learning problem is a linear combimatiaf the input
samples (linear problem) or a linear combination of the &kfanctions of the
input samples (nonlinear problem). This property has irtgsdgrcomputational
implications in kernel version learning problem, becausean transform the
problems in a very high or infinite dimensional space into &didimensional
problems with the size of the input learning data, where thigeficombination
coefficients are solved according to the input data. Espgciaany learning
methods for linear problems can be kernelized to solve neal problems by
representer theorem. Many learning methods admit thi$y aaSVMs (Support
Vector machines]], 2]), PCA (Principal Component Analysis]), LDA (Fisher
linear Discriminant Analysisq]) etc.

Quantitatively  speaking, given an input samples sef =
{(x1,y1), (X2,¥2), -+, (Xm, Ym)} for samplex; € R and its labely; € {-1,1}, a
kernel learning classification problem is to learn a classiion functionf in a
reproduced kernel Hilbert spaces (RKHE)corresponding to a kernel function
k:R™x R™— R with a good generalized capacity. RKHBhas the reproducing
property that admitsf(x) = (f,k(-,x))m and (k(-,X),k(-,2))x = k(x,2) for all
f ¢ Handx,ze RY. It may be very high dimensions even infinite dimensionss thu
the learning problem oHl can not be solved efficiently. Owing to the representer

Stat., Optim. Inf. Comput.Vol. 1, December 2013.



84 S. ZHOU

theorem, the solutiof € H to the learning problem can be represented as

m

F() = aik(:,x). @)
j;J Xj

This is a finite linear combination of the basic hypothesiilinnstead to find an
optimal hypothesid in H, to solve the optimal combination coefficiemtsin (1)
is a well-defined finite dimensional problem&i".

Not all learning problems admit representer theorem. Th& fiesult on
representer theorem is introduced i), [L0], and generalized by1f]. A
guantitative versions of the representer theorem are priov3, 12. In [13] the
representer theorem is generalized to matrix version vg#tsal regularization
for collaborative filtering, a kind of multi-task learnindgarithm. In [14], a
necessary and sufficient condition for a learning problerth ai differentiable
regularizer to admit the representer theorem is given, suadsb generalized to a
learning problem with matrix samples as inputg][ Recently, [L5] gives another
kind of the necessary and sufficient conditions for a leayrafgorithm to be
kernelizable in the case when the instances are vectonmsnasiric matrices and
symmetric matrices, respectively.

1.2. Outline

This paper is organized as following: In Section 2, two esflategularization
models of SVMs are introduced and many types of loss functiod their
conjugate function are listed. In Section 3, a simple coispar between
two models with least squares loss is given, where the cdngpugtability
and the computational complexity are discussed. In Sectjoreduced SVMs
with different loss functions are analyzed and the corradp@ Newton-type
algorithms are discusssed,where SMW (Sherman-Morrisoneldury) identity
[16] is introduced to decrease the computational complexitioflel 2, but
cannot be used to decrease the complexity of Model 1. Seétigives some
experimental results to support our points. Section 6 cated the paper.

2. Two Regularization Modelsfor SVMs

There are two mainly regularization forms for SVMs. The firgidel regularizes
the classification functiorf on RKHS H namedModel 1 (M1 for short) as
follows:

ML mingeg geam 5 Il + 510 L(6), @
St Yi <f7k(7x|)>H+El = 17' = 1727"' , M,

whereA is the regularization parameter, the loss functionR — R U {+}
has some typical forms listed in Tablek : R™ x R™ — R is a kernel function
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with the reproducing property. The common used kernel fonstare Gaussian
kernelK (x,z) = exp( M) and polynomial kernek(x,z) = (x"z+ l)d with

parameteo andd respectively.

The second regularization form of SVMs is called the geiwzdl support
vector machine (GSVM), which was first proposed 17][with the hinge loss.
In [18, 19, 20, 21], GSVM is used to design some kinds of algorithms with
the squared hinge loss or the least squares loss. In GSVM Imonlg the
combinations coefficients of the hypothesi@ (1) are norm-regularized iR™.

A general form of GSVM fitting any loss function is given aslésting M odel 2
(M2 for short):

M2: ming ¢cem S1IBIP+ 37 L(&), 3)
st. ViYL Bik(xi, X)) +&i=1i=1,2,---,m

where we note the combination coefficientsfehich may be different with the
coefficientsa in (1) solved by M1.

At the first glance, optimization problem of M2)(is not well-defined, since it
will be solved in RKHSHI, a very high dimensional, even infinite dimensional,
space. However, it can be converted to a finite dimensionablem by the
representer theorem, 5, 22| or duality [2, 23, 24, 25, 26, 27, 28]. Both models
are specified in the following two subsections.

2.1. Regularization Model orH

M1 is the most popular model used in many research paperh, @@, 5,

22, 23, 24, 25, 26, 27, 28] and the references therein. There are two popular
techniques to simply M12) to a well-defined optimization problem. One is the
representer theorem and the other is the duality. Both tqubs agree that the
optimal hypothesis (classification function) is a finite donation of the basic
functions inH as ().

Duality [29] is used by many researchers to convéjtds a finite dimensional
optimization problem1, 2, 23, 24, 25, 26, 27, 28], but it always needs a concrete
loss function given in advance. Here we give a general dual.fo

The Lagrangian dual of M1 in problerg)is

max min ||f||H+ZL (&) — ZV (i (f k(G %))m +&i— 1), (4)

y feH,EcRM 2

which is equivalent to
mind —mind 41 11Z— 3 yyi(F.KCx))e b — 5 min{L(&) - y&}—e”
y fel 2 H iglyM ) 7X| H iZ]_ 2 i y| i e y s

wheree is an appropriate vector whose all entries are 1. Solvinditeeinner
minimization problem above, we gdt(:) = 3 Lsm. vyik(-,x), and the second
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inner minimization problem o§; is substituted by theonjugate function [29] of
loss functiorL(-), denoted ag* : R — R, U{+}, which is defined as

L*(v) = mljalx{uv— Lu}=— rrLin{L(u) — uv}.

Then Lagrangian dualj is simplified as the following optimization problem
m
m|n—y TYKYy—e'y+ ELL*(VI% (5)
i=

whereK is a symmetrical kernel matrix with its componé€t; = k(x;,x;), and

Y is a diagonal matrix witty = (y1,Y»,---,ym) ' as its diagonal elements. The
duality relationship maintains the resulf) (nduced by the representer theorem.
Tablel lists some popular loss and their conjugate functions.

Table 1. Popular loss functions and their conjugate funstio

Loss Function Conjugate function
N . J 0 0<v<1i
Hinge: L(u) = max{0,u} L*(v) = { s others
. max{o,u}, |u[ >3 dv(v—1), 0<v<1
Huber: Ls(u) = { %7 u<é - { +o00, others
- 2log(1-v)T YV, 0<v<1
] _1 _ SVs
Logistic: Lp(u) =  log(1+exp(pu)) { L others
. —v2 v>0
. 2 % _ =
Squared hinge: L(u) = 3 I max{0,u} L*(v) = { G v<0
p-normed: L(u) = £[u/P(1 < p< ) Lv=gM%s+5=1
Least squares: L(u) = 3u? L*(v) = %
Absolute: L(u) = |u L*(v) = V<1
" v >1

As for the representer theorem, pluggiagi6 (2) and eliminating the equalities
constraints, we have

I il -
angﬁ{]ln Ea Ka+I;L <l_yljzlajKl,] ) (6)

(6) is called primal SVM in §] and [22], and some algorithms are given according
to the different loss functions.

By the duality technique above, we can prove that the duataflpm @) has
the same form as5j. So @) and is equivalent to5) naturally but they have
different computational stability since the small paraanét appears different
place.
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2.2. Regularization Model ofR™ — GSVM

GSVM model @) also admits the learned classification function fds) =
> L1 Bik(-,xj), and it can also be rewritten as the following unconstraint
optimization problem

A2 o Rk
Jnin, 5 IRl +;L <l—y. jleJK.,J) (7)

In [17], Mangasarian stated that the regularikﬁlﬂ2 could be replaced by any
norm or seminorm functiog(f). It can easy show that the dual &) @nd @) has

the same dualityd) if [|3]|% is replaced agf3||z := BTKp.

2.3. The relationship of two regularization models

Compared problems] and problemT), it observes that the difference of M1 and
M2 is only on the first item of objective function, which is k=l the regularizer.
The former is induced from2j where the regularizer is; norm of f in RKHS
H, while the latter is regularized witky, norm of the coefficient§ in R™. All of
them can be specified as a optimization problem in finite Healh spac®&™ by
the representer theorem or the duality.

3. Related Modelswith Least Squares L oss

In this section, the difference of two models is analyzedlsvttie least squares
loss functiorL(u) = 2u? is used. At this situation, all models have the closed form
solutions and their differences can be compared analijtizathe computational
stability view.

3.1. The related models and their relationships

On the one hand, as soon as the conjugate function of thedgaates loss in
Tablelis plugged in the dual problens)induced byM 1, we have

_ 1. (1 .
min- Sy (XK+I> y=y'y. (8)

Its output classification function is
im _ 1
()= 3 HVKCx) with y' = A (K+AD) . ©)
1=

This model is called least squares Support Vector Machife§VM), which is
first setup in R5] where their model has an extra equality constraint cooeding
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to the offset of the classification function. There are nwusrapplicationsJ0]
on it because of its simplicity even though some researc@iB$hpve shown that
it has a little bit lower accuracy sometimes.

By the representer theorem, the optimization probl&mth the least squares
loss induced fronM 1 is
min %aT </\K+KKT>a—yTKa. (10)

acRM

Its output classification function is

fa(-) = ajk(.,x) (11)

INE

J

wherea* solves(AK +KKT)a = Ky.
On the other hand, with the least squares loss consider@} inl{ich is induced
by M2, we have

; 1.7 T T m
min 5 (KK +)\I),8 YKB+ 3. (12)

The corresponding output classification is
m
fg(-) = i;ﬁi*k('vxi) (13)

wheref* = (KK" +/\I)7l Ky.

Model (12) is called Proximal Support Vector Machine (PSVM), firstposed
in [21]. It is also generalized to deal with multi-classificatiawplem in 32] and
multi-surface classification problem i683]. Recently, some new results based on
it about nonparallel classification hyperplane are repljdd].

Let a* be the solution of0), y* be the solution of&) and3* be the solution
of (12). Comparing the related modelsQj, (8) and (L2), we have the following
conclusion:

Proposition3.1

a) For M1 with least squares loss, problefidf induced by representer theorem
may have multi-solutions (iK is singular) and problem8] induced by duality
has unigue solution. However, their output classificatiamctions are the same,
namelyfq(-) = f,(), and+y* is always one solution ofl().

b) For M 2 with least squares loss, the induced problé®) @lways has a unique
solution.

For a common kernel matrik, generally it ha®imax(K) > 1> omin(K), where
Omax(K) is the maximum eigenvalue &8f andomin(K) is the minimum eigenvalue
of K. Then we havex (A1 +K) < k(Al + KKT) < kK(AK+KK ), wherek (A) is
condition number of a matriA.
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Proposition3.2

From the computational view, the model derived by duality8h is the most
stable one and model of GSVMs ifd) is ranked second, and the model derived
by representer theorem iti@) is the worst one.

Thus for solving MI, the optimization problem induced by tiyatechnique
is more simple and stable than the problem induced by representer theorem
for a computational view. This explains why so many researdbcus on it
[35, 27, 36, 37, 38, 24, 39]. On the other hand, we have

Proposition3.3
The advantage of problemi @) over problem §) is that there may have a sparse
solution whileK is low rank or is approximated by a low rank matrix.

This is also very important. Such as, compressed sendlijgd very popular
research area, mostly focuses on studying the sparsewohtithe system of
linear equations or called sparse representation problem.

3.2. Disadvantage of duality models with reduced method

In Proposition3.2, it shows that the model induced by duality is the most stable
one when the whole training kernel matrix is available tinti@vVMs. However,
while the samples numben is larger enough, it is impractical to get the whole
kernel matrix to train SVMs based on duality. Fortunatetynse practical results
[41, 24] and the theory results3] show that the optimal output function is
always a sparsity linear combination of some basic functiomesponding to a
part of training samples. Namely, ii)( many combination coefficients are 0.
Although this is not true when least squared loss is used,jiitsipired researcher
to consider some reduced methods to get a well approximatatian of SVMs

[19, 31, 5, 27, 42] for large scale problems. In those methods, only some basic
functions corresponding to a subdet M of input samples are chosen to combine
the output classification functiohas

() =S ajk(-,x), (14)
() J; iK(sXj)

whereJ is sub-index set random chosen frdfwith |J] < 0.1|M| [19, 31, 42] or
well-chosen fromM with less cardinal9, 43, 22].

Only training SVMs on the subsek is not a good choice unless it is just
the optimalsupport vectorsset, which is always not known in advance. The
experimental results inlP] also illustrate that training SVMs only on a random
subset is very worse than on the whole set. So a wise methttfoeduced SVMs
is plugged (4) in M1 (2) or M2 (3) with m losses considered in the objective
function andm equality constraints, which is called RSVMs (Reduced SVMs)
[19, 31].

Stat., Optim. Inf. Comput.Vol. 1, December 2013.
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Solving this kind of reduced problem in primal is only|3 dimensional
problem, while the corresponding dual is stitl dimensional problem. This is
a barrier if we design the quadratic convergence rate dlgos like Newton-type
method on dual problem.

Of course there are some efficient algorithms at most witkalirconvergence

based on dual problemif, 45] such as SMO %4, 36], svmlignt [23 41].
And there are also some quadratic convergence rate algwigt, 28, 27, in
which the whole kernel matriK is pre-computed and factorized approximated as
K ~ GG' with a low rankG. In this paper, we focus on the Newton-type methods
for RSVMs neither the pre-factorized kernel matrix nor theoke kernel matrix.

As a conclusion, training the problem in dual space is not @dgzhoice for
reduced SVMs by Newton-type method. So, we only considembéypes primal
problems in the rest part of this work. One is regularizedibut converted to
finite optimal problem15) by (14). The other is the reduced version of GSV8] (
in the following (16).

4. Newton Methodsfor RSVM with Smooth L osses

In this section, we study training reduced SVMs with Newtgpe methods for
the primal problems with different loss functions, and tb&rhing results satisfies
(14) where with the index set C M is well-chosen or random chosen. ket |J|
be the reduced set size and it always sets0.1m.

Its the reduced form d¥11 (6) is as following

A m
min —aJTKJJaJ+ ZL(l—yiKiJaJ). (15)
ajeR" 2 &

wherea; € R" is a sub-vector ofr consisted by the elements afin the subsed,
Kij is a sub-matrix oK consisted by all the elements at the rows in subsetd
columns in subset.

And the reduced version &2 (GSVM) (7) is:

A AL
din 2B Bt 3 L(L-yiKofy). (16)

The only difference between %) and (L6) is also the first item in their objective
functions. For simplicity, two related reduced models angritten as:

A m
min=z'Bz+ $ L(1-vyiKiy2). (17)
zeR' 2 :

whereB=K;3,z=a;forMlandB=1I,z= f3; for M2.
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4.1. Setup of the Newton-type algorithms

Here we train RSVMs according tM1 and M2 by Newton-type algorithms
on different losses. The most popular and meaningful lossnige loss I(u) =
max{0,u}, but itis not differentiable and Newton-type methods doweik for it.
Some smooth loss functions are adopted to approximatelitidmgleast squares
loss[21, 25], squared hinge loskb, 46], Huber loss[2, 22, 47] and logistic loss
[19, 42]. Their concrete forms are listed in Talle

Given a smooth loss irl{), smooth Newton algorithm or semi-smooth Newton
[48] algorithm has quadratic convergence rate. It solves Neveguations to
update the current solution iteratively. Specifically, tatationt, for a givenZ,
let &' = 1—yiK;;Z and I' = {i € M|L(&!) > 0}. The Hessian matrixi* and the
gradientg! of the objective function in probleni() satisfy

H' = AB4+KytAKj), (18)
d = ABZ- Y yl'(&)Ky, (19)

i€l

whereA' := diag(L}(&}), -+, Lp(&R)), Al == Ay, for short,L’(-) andL”(-) be
the first and second derivatives of loss functigr).
NotingKi;Z =yi(1— &), the corresponding Newton equation can be written as

()\ B+ KJ,t/\}tKJT,l) 2=y (L"(EY(1— &) +L'(EH) Ky (20)

i€l

Let zbe the solution ofZ0). If the full Newton step is acceptable, then the next
Z2+1 = 7, otherwiseZ*! = (1 n)Z + nz wheren is chosen by an inexact or
exact line-search scheme. Experiments show that the &glistoften acceptable
for those convex problems and thacktracking Armijo line-searcis pretty well
while the full step fails.

Remark4.1

Our Newton scheme2() is equivalent to the traditional orté'd = —g', where
the new solutiord** = Z + nd with Newton directiond. The new version is
consistent with the least squares loss case(see the folieguationsd1)) and is
simple in computing the right hand side for most popular (&ss the right hand
side of the following equation2@) and @4) for details).

For a kernel matrixk € R™™, we always havek (AT-+KjtA'Kj) <
K (AK + Kyt A'K},¢). Roughly speaking, we conclude

Proposition4.2
The model {6) derived from M2 ismor e stable than the modelX(5) derived from
M1 from the computational view.
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4.2. Specification of algorithms with different smooth less

Following, the specification forms of2() are analyzed according to different
smooth loss, including the least squares loss, the squamgd loss, Huber loss
and the logistic loss.

4.2.1. Least squares lod#4/ith the least squares lods(u) = %uz, Newton
equation 20) is independent tar' and the closed solution td.{) is obtained by
solving the following system of linear equatiorisl);

(AB+KJMK}M>Z — Kywy. (1)

If B=Kj;for M1, the coefficients matrix of may be semi-positive definite but
not positive definite. Thus there needs a ridge added to thficdents matrix as

[43] does for the paper5]. However, ifB = I for M2, the coefficients matrix of

zis always positive definite. The performance of the clagsift®rresponding to

two models will be compared experimentally.

4.2.2. Squared hinge losd#/ith the squared hinge lodgu) = %max{o, u}?, the
objective function of problem1(7) is the piecewise quadratic functions. They
have no closed form solutions, but the minimizers can be dolop Newton
method within finite iterationg9, 20, 5, 46]. Precisely the resulted method should
be called semi-smooth Newton method, where the Newton mmsa@0) are
simplified as

(/\ B+ KJ|tKI|t)Z: KJ|ty|t. (22)

In [5, 43], they design a complicated procedure to iteratively updad¢ Cholesky
factorization ofAB+ KJpKlTJ with B = K3 to reduced computational complexity,
and the computational complexity of their algorithm peraten is less than
O(mr?). In their program 43], a ridge is added to the coefficients matrix to
overcome the potential singularity for M1. For simpliciity,this paper we use

H' = H 7 Ky Kjlitn — Ky K],

out J IE)ut7

(23)

to update the coefficients matrix of Newton equatidtij {teratively as {2, 46),
whereH'"1 = AB+ KMHKJTIH. And then Newton equationg%) is solved by\”
operator in Matlab, wherd, := {i|i € I',i ¢ I'"1}, 18, = {i[i ¢ I',i € I'""1}.
Since|l'] > |IL| + 15| always holds 46], the computational complexity of this
algorithm per iteration is also less th@q|I!|r?), and very less tha@®(mr?). This
scheme works better in the situation where the reduced smtd®omly selected in
advanced.

The only difference of two related models is the termBoin (22). GSVM
model (M2) is more stable than M1 because its Hessian mataxiefinite positive
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matrix all the time and an extra ridge is also added to theficoefits matrix of
Newton equations) for M1. Their classification performance will be compared
experimentally in SectioB.

4.2.3. Huber lossHuber loss function 0] is defined as Ls(u) :=
max{0,u} if |ul>9, _ :
5)2 ) for a given smooth parameted. It is clear
WEZ i Jul <3,
that 5Iirr(;LC;(u) = max{O,u}. In [47], some variations and generalizations are
—

given for the minimax problem.

With Huber loss, the objective function of problem7] is also a piecewise
quadratic function, then their minimizers can be found bybdm method within
finite iterations, but the experimental results in Sectishow that it always needs
more iterations than the algorithm with the squared hings.|d\t iterationt,
Newton equations2() are simplified as

()\ B+ 2—%KJ|tK£() Z= %K;ﬂtyn +KJ|t+Y|5r. (24)

where It = {i € M||&!| < 6} and I = {i € M|& > &}. Its Hessian matrix
H' = AB+ 2—15K3,t K;,Tlt can also be updated iteratively by the scheme similar as
(23):

HE:=H" 4 5 (KJli‘n K — Koy KJTI},U[) ; (25)

out

wherel! = {ili e 11i ¢ I""1}, 18 = {ili ¢ IY,i € 1"},

Tune the smoothing parameter 4. We need to tune the smoothing parameter
d. Setting a smald to solve @4) is not a good choice because it may face a big
condition number of Hessian matrkt!. The difference between the hinge loss
and Huber loss i 5(u) — max{x,0} < %, and the total approximate error is less

19|15 . L .
thanu. If a proper smoothing precisianis available, we can tun@n, = 2£:.
4 ||0|

At the beginning of the algorithm, we set a kg like & = 1, and reduce it by
& := 0.1_1 while the current solution is good under some criterionglfsas
gl < 1), and repeat the algorithm unéif < max{10~4, &yin} and||g!|| < ¢ for
a givene.

4.2.4. Logistical losd ogistical loss is also called the exponential entropy

function, which is defined dsy(u) := ;‘13 log(1+exp(pu)). In[42], a stable form is
given asLp(u) := max{u,0} + %) log(1+ exp(—|pul)) to overcome any potential

overflowing. With the Logistical losk,(u), (20) is simplified as

()\ B+ KJ,t/\}tK},l) 2= Ky ALK 2 + > L, (&K (26)

iell
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wherel!, := {i e M|L},(&) > 1} andl' := {i € M|L}(&') > 1} for a tiny number
7 like 10710, At:=diag(L}(&}), -, Lp(&r)) andAf; == Al L'(u) andL” (u) are

, _ min{lexp(pu} | » __ pexp(—plu)
caleulated asp(u) = "o’ Lo(W) = Eo oo

Tunethe parameter p. In order to make the Newton method working well, we
should sepp moderately such as = 10 at the beginning, thep:= 10p if ||d'|| is
small and repeat the algorithm ungil= 10* and||g!|| < ¢ for a givene.

4.3. SMW identity and the advantage of GSVM
Sherman-Morrison-Woodbury (SMW) identit¥€]

-1
(A+UDUT) 1=A1_AlU (D*1+UTA*1U) uTa 27)

can be used to reduce the computational complexity for ttiog (A +

UDU ")~1 while At is very simple and~1 +U "A~1U has a small size.
Based on the analysis above section, Hessian matrices afotinesponding

problems always have the fothJrUt/\}tUtT, whereUt € R™I"'l and diagonal

matrixAl, € Rl 1f B= I for solving M1 (GSVM), we can obtain the solution
of Newton equation40) by SMW identity 7) as

1
Az=bt Ut ()\ (/\}t)fl+u”ut) Ut st (28)

whereb! is the right hand side o2(). So while|It| < r, which always happens for
some kinds problem that has a sparse solution, the solufiblewton equation
(20) is obtained by Z8) with the complexityO(r|It|2), less tharO(r2), where the
second part of48) is computed from right to left. This trick is invalid B = Kj;

for solving the problem induced from M1 (KJ‘J1 is per-calculated, the total cost
for (28) is O(r?|1'|?) by SMW, very larger than that of M2). As a conclusion, we
have

Proposition4.3
If |It] < r, Newton-type algorithm based on M2 (GSVM) Hass computational
complexity than the similar algorithm based on M1.

Next we will compare these two models on the classificatiorfop@ance
experimentally.
5. Experimental Results

In this section, we perform some experiments to comparentbedlated models
with Newton-type method, and four kinds of popular smootslfunctions are
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considered. In Sectiob.1, a nonlinearly separable example called the “tried and
true” checkerboard datasétl] 37, 38, 18, 19, 46] is selected to train classification
surface with Newton-type methods based on two models, aBddtion5.2, some
practical datasets from machine learning repositofi€kdre adopted to evaluate
the models. All the experiments are run on a Personal Compittea Intel Core

i3 2100 CPU and a maximum of 4Gbytes of memory available figpralcesses.
The computer runs Windows 7 with Matlab 7.10.

5.1. Artificial Data with reduced methods

In this section, we give some sets of experiments on an #itifiataset to
compare the performance of two kinds of regularization witluced methods.
A nonlinearly separable example called the “tried and telefckerboard dataset,
first given in p1], which has often been used to show the effectiveness of
nonlinear kernel methods87, 38, 18, 19, 46], is selected to train classification
surface with Newton method based on two related models. dtéskerboard
dataset is generated by uniformly discretized the region99 x [0,199 to
200% = 40,000 points, and is labeled two classes “White” and “Black&gx
by 4 x 4 grids. Training sets are random sampled from the 40,006keikoard
data with different training size®, and the remainder of the goints are left in the
testing set. Kernel function is chosenkds, y) = exp(—y/||x —y||*) with y=0.001.

A ridge €I with € = 1078 is added to all Hessian matrices based on M1.

5.1.1. Comparing M1 and M2 with different smooth losseghis section, we
focus on comparing the performance of two models with diffiee smooth loss
functions. Two tables (Tabl2 and3) corresponding with the regularizér= 0.1
andA = 0.01 are given, where the averaged test errors, averagethgydime,
averaged iterations of Newton step and averaged numberainfng samples
satisfyingy; f(x;) < 1 are listed with standard deviations. All the results aee th
mean value on 20 random trials, and the standard deviatiergiven in brackets.
From the results in Tabl2 and Table3, we can get the following conclusions:

o Firstly, the results show that Newton method is very effitiensolve this
kind problems. The algorithms are stable for the problentis different size
training data since the changes of iteration are small feryeglgorithms on
different size problems. The training time is less than aatfinute even the
training data size as large as 25,000.

e On the test errors aspect, the results corresponding to &alaays better
than the results corresponding to M1 for the squared hing® logistical
loss and Huber loss. The only exception is on the least sgl@se, where
the test errors corresponding to M1 better than the restit42o but they
are all much worse than others, and we will specify it in Sebea5.1.2
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Table 2. Comparisons of two regularization with differemtoth loss functions. All the
results are the mean value on 20 random trials, and the sthddeiations are given in
brackets. “LS”, “SH”, “Log” and “Hub” are “Least Squares kJs“Squared Hinge loss”,
“Logistical loss” and “Huber loss” for short respectivelyl1+LS” means that the model
is based on M1 with least squares loss, and others have tliarsimeaning. § = 0.1)

Size—~ n=4,000 m=8,000 m=15,000 m=20,000 m=25,000
Model| r=300 r=600 r=1000 r=1000 r=1,000
Test error(%) on the test sets with 40006h samples.
M1+LS 2.92(0.39) 2.11(0.31)  1.46(0.27) 1.12(0.20) 1.05(0. 12)
M2+LS 3. 4150 41 2.96(0.30) 1. 90(0 28) 1.52(0.23) 1.11(0.2
M1+SH 1.19(0.23 0.55(0.12) 0.20(0.07) 0.11(0.04) 0.08 O
M2+SH 0.75(0.17) 0. 22(0.08) 0.06(0.03) 0.04(0.02) 0.03(0.02
M1+Hub | 1.80(0.24) 1.06(0.18) 0.53(0.11) 0.30(0.08) 0.22(0.08
M2+Hub | 1.29(0.20) 0. 38(0 12) 0.13(0.05) 0.09(0. 03) 0 07(0.03)
M1+Log 1.80(0.24) 1.06(0.18) 0.53(0.11) 0.30( O 28 .08)
M2+Log 1.29(0.20) 0.38(0.12) 0.13(0.05) 0.09(0. 03) O 07(0.03
Training time(s)
M1+LS 0.04(0.01) 0.22(0.03) 1.02(0.15) 1.43(0.21) 1.60(0.27)
M2+LS 0.03(0.01) 0. 19(0 02) 1.10(0.17)  1.39(0.18) 1.69(0.31)
M1+SH 0.22(0.01) 1.35(0.02) 5.31(0.07) 6.89(0.09) 8.48(0.11)
M2+SH 0.21(0.01)  1.28(0.02) = 5. 22(0 11) ~ 6.72(0.10) ~ 8.47(0. 21)
M1+Hub 0.74(0.04 3.62(0.25) 12.90(0.66) 15.45(0.80) 18.26(0.87)
M2+Hub | 0.57 (0 05) 2. 60(0 25) 8.05(0.66) 10.70(0.79)  13.01(O. 66
M1+Log 0.52(0.06) 2.58(0.40) 9.97(1.07) 11.36(0.68) 13.46(1.16
M2+Log | 0.42(0.05) 214(0.12) ° 7.56(0.41) ~ 9.74(0.61) 12.16(0.52
[terations of Newton step
M1+LS 1.0(0.0 1.0 E ; 1.050.0; 1 020 O; E 0;
M2+LS 1.0(0.0 1.0 1.0(0.0 1.0(0.0 0(0.0
M1+SH 10.8(0.6 12. 0 14.3(0.6) 1 0.1) 15 5(0 6)
M2+SH 10.450.5; 11.820.6) 13.4(0.7) 4.7 O 7) 15.7(0.7)
M1+Hub 84.8(5.7 86.8(9.0 90.0(6.1) 89 5(7.9 91.2(7. 1)
M2+Hub | 131.8(15.5) 138.9(17.1) 155.6(18.0) 153.8(18.6) 151.8(12.8)
M1+Log 46.3(4.5) 46.8(5.4) 49.6(5.4) 46.1(4. 9) 45.5(5.7)
M2+Log 54.4(8.2) 62.0(6.8) 64.3(11.8) 57.9(8.3) 60.2(12.5)
Numbers of Support Vectors(training samples satlsyiécque 2
M1+LS 2,480(19) 4,877(20) 9,009(34 % 11,865(40) 644(39)
M2+LS 2,672§20} 5,254(28) 9,716(34) 12,922(39) 16,112(34)
M1+SH 701(17 1,153(24) 1,757(20) 2,086(22) 2,398(19)
M2+SH 484(24) 641(18) 987(15) 1,180(28) 1,316(33)
M1+Hub 486(14) 809(18)  1,277(20)  1,573(22)  1,857(22)
M2+Hub 336(17) 440(15) 488(11) 573(16 658(14)
M1+Log 486(13) 809(18) 1277(20) 1573(22) 1857(22)
M2+Log 336(17)) 440(15) 488(11) 573(16) 657(14)

¢ On the training time and iterations aspects, the trainimg tof M1 and M2
is comparable for least squares loss while there needs odyiteration.
However, for other three loss, the algorithms based on M2lavays faster
than the algorithms based on M1. Especially, for the Hubss nd logistic
loss, the iterations of Newton step corresponding to M2 Biemwery longer
than that of M1, but the training time is not. The reason i$ MW identity
can be applied to M2 but cannot be applied to M1. Specificatlyhe first
several iterations, the cost to obtain the correspondingtdle direction

for all algorithms isO(rmax{|I!|?,r?}) =

O(r[1Y[?) since |IY] in (18) is
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Table 3. Comparisons of two regularization with differemto®th loss functions. All the
results are the mean value on 20 random trials, and the sthddeiations are given in
brackets. “LS”, “SH”, “Log” and “Hub” are “Least Squares kJs“Squared Hinge loss”,
“Logistical loss” and “Huber loss” for short respectivelyl1+LS” means that the model
is based on M1 with least squares loss, and others have tilarsimeaning. § = 0.01)

Size—~ m=4,000 m=8,000 m=15,000 m=2,0000 m=25,000
Model| r=300 r=600 r=1000 r=1000 r=1,000
Test error(%) on the test sets with 20006h samples.,

P

M1+LS 2.39(0.22 1.670.21) 0.89(0.19) 0.53(0.12) 0.37(0.08)
M2+LS 3.48(0.31 2.39(0.33) 1.71(0.23) 1.34(0.18) 1.23(0.17)
M1+SH 0.72(0.14 0.23(0.05) 0.09(0.03) 0.06(0.02) 0. 04%) .02)
M2+SH 0.35(0.09) 0.11(0.03) 0.05(0.02) 0.04(0.02) 0.02(0.02
M1+Hub | 1.01(0.18) 0.34(0.06) 0.22(0.07) 0.15(0.04) 0.11(0.05)
M2+Hub | 0.52(0.13) 0.19(0.05) 0. 10(0 03) 0.07(0.03) 0. 05(0 02
M1+Log 1.01(0.18) 0.34(0.06) 0.22(0.07) 0.15(0.04) 0.1 O 05)
M2+Log 0.52(0.13) 0.19(0.05) O 1 0(0.03) 0.07(0.03) 0.05(0.02
Training time(s)
M1+LS 0.03(0.01) 0.21(0.02) 0.93@.03) 1.21(0.04) 1.470.02)
M2+LS 0.03(0.01) 0. 20(0 02) 0.90(0.04)  1.17(0.03) 1.45(0.03
M1+SH 0.23(0.01) 1.46(0.06) 5.69(0.09) 7.49(0.29) 9.17(0.35)
M2+SH 0.2320.01 1.43(0.08) 5.43(0.06) 7.18(0.10) 9.13(0.20
M1+Hub | 0.76(0.05 3.79(0.20) 13.27(0.72) 15.72(0.69) 29.88(2.63)
M2+Hub 0.7920.09; 3.47(0.29) 10.45(1.09) 13.44(0.91) 17. 01(()1 .09
M1+Log 0.73(0.17 3.59(0.55) 13.17(1.59) 13.95(1.47) 5P,
M2+Log 0.48(0.04) 2.38(0.23) 9.24(1.26) 13.17(1.12) 16.44(2.23
lterations of Newton step
M1+LS 1.0 0.0; 1. OEO Og 1. OEO Og 1. 020 0; 1. OE0.0g
M2+LS 1.0(0.0 1.0(0.0 1.0(0.0 1.0(0.0 1.0(0.0
M1+SH 14.90.6) 16.8(0.5) 18.7(0.7) 20.6(0.8) 21 5(0 8
M2+SH 13.4(0.8) 16.8(1.3 22.9(1.3) 24.4(1.6) 26.6(2
M1+Hub | 114.7(9 114.3(6.7) 116.5(8.7 118.1(7.8)  120.2(21.6
M2+Hub | 218.6(25.4) 264.1(26.0) 275.1(32.6) 273.1(24.2) 280.3(31.4)

M1+Log 74.2(20.0 72.3(11.2) 72.8(13.1) 61.5(8.1) 62.0( 12281

M2+Log 80.6(11.8) 96.2(14.6) 108.6(19.6) 113.5(16.2) 106.7(19.
Numbers of Support Vectors(training samples satisfijé 2

M1+LS 2,328(19) 4,590(29) 8,552(34 11,411(36) 14,269 28)

M2+LS 2,604(24 5,138(27) 9,622(41) 12,826(45) 16, 074(562

M1+SH 357(18 504(16)  1,028(19)  1,284(15) 1,473(16)
M2+SH 275(20) 322(12) 341(9) 391(11 452(10)
M1+Hub 228(14) 366(11) 528(11) 619(11) 703(12)
M2+Hub 145(10) 154(7) 186(6) 224(6) 260(9)
M1+Log 228(14) 366(11) 528(11) 619(11) 704(10)
M2+Log 145(10) 154(7) 186(6) 224(6) 260(9)

larger than the reduced sizpand after several iterations, we hae < r,
hence the cost to solve Newton equations based on M2 can beegdo
O(r|1']?) by SMW identity, but the cost of the algorithms based on M1 is
still O(rmax{|1t|2,r2}) = O(r3).

e Algorithms based on M2 often have less number of training pdam
satisfiedy; f (X)) < 1(low-confidence training samples) than those based
on M1 have, wheref (-) is the resulted classification function. The only
exception is corresponding to least squares loss too, andillvepecify
it in Subsectiorb.1.2too.
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e Compared four types of loss function, the squared hingedetsthe best
generalization errors in all smooth losses. Its trainingethas only a little
longer than least squares loss which has the worst tesselomatter how
large the training set, there are a few iterations(less2tag(m)) of Newton
step needed.

e The advantages of the logistical loss and Huber loss arettiegitalways
get the least low-confidence training samples than otheysedally while
M2 is applied, there always has a small number of low-confideraining
samples on the resulted classification function. The resstirat those two
losses can converge to hinge losspif> +o(or & — 0), but the others
losses are not. We also notice that Huber loss has no any tagesnover
the logistical loss, so we do not recommend the further rekea on it.

The results in Tabl@ and Table3 show that M2 nearly wins all aspects, so we
can conclude that M2 has some advantages over M1. With the parameters
set, the algorithms based on M2 always faster than the #éhgasibased on M1.
The former are always more stable in computing while thetattten need a ridge
added to the Hessian matrix a&3] does for the papery] to keep the Newton
direction well-defined.

Although the data in Tabl@ and Table3 shows that M1 is better than M2
with theleast squared lossn the two aspects (Test errors and Number of support
vectors), in Sectiob.1.2we will show that the resulted classification curves based
on M1 have a strange behavior (drawback) but the curves lmasBt® hasn't.

Based on all those experiments, M2 plus squared hinge |dbe isest model
to train reduced SVM with Newton method, in which the redusetlis random
chosen. In Sectioh.1.3 we will do more experiments to compare the well-chosen
reduced scheme4B, 5] and rand-chosen schemé[ 31], where M1 and M2
equipped with square hinge loss are considered only.

5.1.2. Drawback of M1 with the least squares I0Hse experiments in Section
5.1.1 show that M2 has many advantages over M1 almost all aspectpex
that it equipped with the least squares loss function. Hezegive some plots
to compare the M1 and M2 with least squares loss in detailseijipped with
least squares loss is called LS-SVRE[ 30], and M2 equipped with least squares
loss is called PSVMZ1, 32, 33, 34]. Eight plots with different training data sizes
and regularizer paremeters are given in HigThe regularizer parameters are set
asA = 0.1 for Fig.1 (a}(d) andA = 0.01 for Fig.1 (e}(h).

Form Fig.1, it shows that the classification lines of two models coroesfing
to same size training data are very similar, and hence thetesracy are very
similar too, but the high confidence areas (satisfyirfdx) > 1 corresponding to
the red or dark red areas in the plots) are very differentM(PSVM), the high
confidence area is regular (Sé», (d), (g) and(h) in Fig. 1)-The more central
the grid, the higher the confidence, and the exception hapmdg on the corners.
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A=0. A=0. A=0. A=0.
(a) Ml(m:%,%OQr:BOO) (b) Ml(mzcl).%OOQr:IOO (C) M2(m:g&00,r:600) (d) Mz(m:géoom:looo)

0 150

(©) M1 =9 080r—600 (M ML(1=92000r—1000 (@) M2(3=3 0601600 (M) M2(}=39800r—1000)

Fig. 1. Comparison of M1 and M2 with least squares loss onlareoard problems.
The blank line is classification functiof(x) = 0 and the blue and green lines are support
lines corresponding td(x) = +1 respectively. The blue+” and the green ¢” are the
training samples satisfying f (x) < 1 corresponding tg; = +1 respectively. It shows
that M1 (Left 4 plots) has some kind of behavior (drawbackjhenclassification curves.

But for M1 (LS-SVM), the high confidence area is strange onrlgezvery grids
(Seda), (b), (e)and(f) in Fig. 1)-the central of the grids are not always in the high
confidence area, especially for the case with the regutgsemameteA = 0.01. It
shows that M1 has some kind of strange behavior (drawbackjedlassification
curves.

5.1.3. Comparing two reduced models on random-chosen slerd well-
chosen schemn this part, we perform some experiments to compare M1 and
M2 on the random-chosen (RC) reduced set scheme as in R&89M1, 42] and
well-chosen (WC) reduced set scheme as5in Qnly the squared hinge loss is
considered because it achieves the best performance iotimeif experiments.
The codes for well-chosen reduced set algorithms are gfbem the site 3]
which is based on M1. And we made a very minor modification faaj to M2.
For well-chosen scheme, the reduced set is augmented froptyeset
iteratively where a well designed technique (s8erj details) is abided to select
some samples which will be put into the reduced set until #iesize reached
rwc, Whereryc is set as 2% of the training sizeas the default value imp)] but
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limited by upper bound 200. For the comparison propose, wihegeduced size
rre = 2rwc for random-chosen scheme.

In [43], the Matlab code designed by Chapelle is very efficient, nelbe fast
rank 1 updating Cholesky factorization is used to updatétagsian matrix of the
problem corresponding to the current solution while actve samples added
into or deleted from the active set= {i € M|1—y;Kj;Z > 0}, and some powerful
codes are designed to select the basic samples into redetcddhe total cost per
iteration is less tha®(mr,c). His code is more than 200 lines in Maltab. The
total cost of the random-chosen schem®igl!|r3.) per iteration, which is also
less tharO(mr3). Maybe the cost per iteration of random-chosen schemegisriar
than that of well-chosen scheme singe = 2rywc. However our Matlab code for
the random-chosen scheme with squared hinge loss is siomeabout 30 lines.

Some experimental results are reported in Tablehere two different models
with two different reduced schemes are compared on the sduainge loss
situation. The regularizer parametdrs= 0.1 andA = 0.01 are considered.

Table 4. Comparison on two regularization with well-chd¥¢€) reduced scheme and
random-chosen(RC) reduced scheme with the squared hiagéunctions for different
size of training problemX = 0.1 (light part) andA = 0.01 (dark part)). All the values are
averaged on 20 random trials with the standard deviatiobsackets.

Train size+ | m=4,000 m=8,000 m=15,000 m=20,000 m=25,000
rrc=160 rrc=320 rrc=400 rrc=400 rrc=400

Models| rwc=80 rwc=160 rwc=200 rwc=200 rwc=200

Test errors(° 0) on the test sets with 400000 samples.
M1(Ac%Y) | 1.14(0.18) 0.50(0.09) 0.20(0.06) 0.13(0.05) 0.08(0.03)
M2(Ac%1) | 1.05(0.21) 0.27(0.08) 0.12(0.05) 0.07(0.03) 0.04(0.02)
M1 O1) | 1.32(0.18) 0.61(0.09) 0.24(0.07) 0.16(0.06) 0.10(0.03)
M2(4>1) | 1.30(0.24) 0.42(0.09) 0.16(0.05) 0.11(0.04) 0.07(0.02)
Training time(s)
M1(Ac%1) | 0.07(0.00) 0.49(0.02) 1.41(0.02) 1.91(0.03) 2.34(0.03)
M2(:%1) | 0.07(0.01) 0.46(0.01) 1.31(0.03) 1.78(0.03) 2.20(0.04)
M1 O1) | 0.47(0.06) 1.24(0.03) 2.56(0.05) 3.32(0.10) 4.06(0.09)
M2(}; 1) | 0.44(0.02) 1.25(0.04) 2.58(0.10) 3.33(0.11) 4.07(0.11)
Test errors(%) on the test sets with 4000 samples.
M1(A:%%%) | 0.71(0.17) 0.21(0.05) 0.09(0.03) 0.06(0.03) 0.03(0.02)
M2(£:%0%) | 0.50(0.16) 0.10(0.03) 0.06(0.02) 0.04(0.02) 0.03(0.01)
M1}, 20 | 0.78(0.20) 0.28(0.06) 0.12(0.04) 0.07(0.03) 0.04(0.02)
M2(3: 20 | 0.75(0.18) 0.14(0.05) 0.07(0.03) 0.05(0.02) 0.03(0.02)
Training time(s)

M1(Ac%0%) | 0.08(0.00) 0.52(0.02) 1.51(0.02) 2.02(0.02) 2.49(0.03)
M2(A:%%) | 0.07(0.00) 0.50(0.01) 1.46(0.04) 1.97(0.04) 2.43(0.05)
ML}, 20 | 0.46(0.01) 1.21(0.03) 2.40(0.07) 3.05(0.07) 3.78(0.09)
M2({,20%) | 0.44(0.01) 1.17(0.04) 2.56(0.06) 3.34(0.08) 4.19(0.14)
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From the results in Table, it shows that the random-chosen scheme is
comparable with the well-chosen scheme under our settifigstraining time of
the random-chosen scheme is less than the training time @féi-chosen scheme
while their test errors are comparable. It observes thalgrithms based on M2
with random-chosen scheme win all aspects: For every dathsg are the faster
ones and have the lowest test errors. Taking the simple imgai¢al of the random-
chosen scheme into consideration, we can conclude that ki2raindom-chosen
reduced scheme is the best model in the related models.

5.2. Benchmark data experiments comparison

Four large scale practical data sets of machine learnirapdats from the site of
[52] are adopted to evaluate the related algorithms. Theseadatalso appeared
in [5]. For simplicity, Gaussian kernel functiddx,y) = exp(—y||x — y||?) with
the different spread parametefis used for all datasets. Kernel spread parameters
y and regularizer parametess are roughly chosen by 10-fold cross-validation
withiny e {27°,274,..-,2°} andA € {1075,10°4,- -, 1}. The details of the data
sets and the corresponding selected parameters are lsteltoavs:

Adult—It is the version given by Platt which has 32,561 trainingreples and
16,281 test examples. Each example has 123 binary featméshe parameters
areA =1andy=2"%

Shuttle—It is a multi-class data set with seven classes includingb@rB
training examples and 14,500 test examples. Each exampl@ teatures. Here a
binary classification problem is solved to separate classrh the rest, and the
parameters used afe= 102 andy = 2*.

[JCNN—It has 49,990 training examples and 91,701 test examplash E
example is described by 22 features, and the parametersatsgd= 10* and
y=2"1

Vechile—It is the combined SensIT Vehicle in sitéd). It has 78,823 training
examples and 19,705 test examples in three classes. Eaatplexhas 100
features. Here the binary classification problem is traiteedifferentiate class
3 from the rest, and the parameters are sét as102 andy = 272,

Firstly, we compare the random-chosen(RC) scheme with-etesen(WC)
scheme of] on the selected datasets, where the reduced size of weskay c,
is set from 10 to 1000, and the reduced size of random-cheset asrc = 2rwc.
The plots of the test errors and training time according fiedint reduced sizes
are given in Fig2, where the test error plots are according to leflaxis(blue)
while training time plots are according to rigit-axis(red). All the values are
averaged on 10 trials.

It shows that the difference of the test errors on two schememall and it
will be diminished further if the parameteys@nd A) are set finely. However,
the training time of two schemes varies. We can classify ttatasets according
to their test errors: Adult and Vechile are belonging totfiadataset(test error
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Fig. 2. Comparison of Well-Chosen(WC) Scheme and Randoos€&€i(RC) Scheme on
large benchmark data sets.

larger than 10%), IJCNN is the “easy” dataset(test errowben 1% to 5% )
and the Shuttle is the “very easy” dataset(test error less €h5%). For “hard”
datasets, the training time of the algorithms based on R€msehis less thaé
of the training time based on WC scheme(See Fidifed and (b)). For “easy”
dataset, the training time of the algorithms based on RCrsehe abou% of the
training time based on WC scheme(See Fig(@). On the contrary, for “very
easy” dataset, the training time of the algorithms based @ atheme is less
than the training time based on RC scheme(See Figjalg For “hard” datasets,
the WC scheme ofj] may need to cost more time to select the proper basic
functions, hence needs more time to convergence. At thiatgin, RC scheme is
very efficient. Since the “very easy” dataset is scarce, weomanclude that RC
scheme is more efficient than WC scheme in most of cases.

In this set of experiments, the difference between M1 and $/129s. Next we
perform more experiments to compare them further. We onhsicler the RC
scheme.
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Following we give the experimental result on those 4 data w4th reduced
method to compare M1 and M2 further, where only the RC schemerisidered
and the reduced size is set roughly as@nd is limited by upper bound 2000.
The parameterg andA are set as above. The results in Tablare averaged on
10 random chosen reduced set. The averaged test errorseatrdithing time are
given with their standard deviations in brackets.

Table 5. Experimental results on the 4 benchmark data setsriepository $2]. All the
values are averaged on 20 random trials with the standardtibs in brackets.

Data Set| Adult Shuttle [JCNN Vechile

Test error(%)
M1+RC | 14.79(0.08) 0.07(0.005) 1.88(0.06) 11.63(0.07)
M2+RC | 14.76(0.06) 0.12(0.007) 1.27(0.18) 11.61(0.05)
Training time(s)
M1+RC 18.8(0.3) 389(1.0) 61.5(2.6) 91.9(5.6)
M2+RC 18.2(0.5) 45.1(1.7) 48.9(1.8) 85.4(2.5)

From the data in Tablé, M2 has a few advantages over M1. The algorithms
based on M2 are also faster than the algorithms based M1,hentks$t errors
achieved by M2 are better than those achieved by M1 on mostsgés. The only
exception is on the “easiest” data set “Shuttle” whose tesr avill be less than
0.1%.

6. Conclusions

There are two main regularization models of SVMs. One, disie M1 in this
paper, is the most popular model where the classificatiomtiom is norm-
regularized in a reproduced kernel Hilbert space. The ptiaaned as M2 in this
paper, is GSVM, where only the coefficients of the classificafunction is norm-
regularized in a Euclidean spaB&'. All of them are converted te dimension
optimization problem by the duality or the representer theo In this paper, we
study the difference of two models, where the quadraticalemence Newton
algorithms are used to train the models with difference fosstions in primal.

The experimental results in Section 5 reveal that, M2 winsdwlnearly all
aspects, and the classification plots in Figlirdso show that LS-SVM induced
from M1 has some kind of drawback on the classification cuwhe PSVM
induced from M2 has not. It also observes that the randonserneeduced set
scheme 19, 31, 42]is comparable with or sometimes better than the well-chose
reduced set schemB][for reduced SVMs with squared hinge loss.

As a conclusion, our studies support that M2 have more adgastover M1,
such as simple in computing the Hessian matrix, stable iirsplthe Newton
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direction and fast the algorithm etc. All of those reveat thraining SVMs with
reduced method, GSVMs with the random-chosen reducedesdtabetter choice

for

common users. This work gives a good explanation of GSVilllia valuable

to extend the using of GSVM.
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