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Abstract The objective of present article is to study the behavior of Bayes prediction
length of interval under Two - Sample Bayes prediction scenario. A repairable system is
considered here with assumption that the repair hazard rate increases monotonically as
time parameter increases. Based on right item censoring criterion, the Bayes prediction
length of interval and Highest Posterior Density (HPD) intervals have been obtain here
for underlying model.
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1. Introduction

The prediction of future ordered observations shows, how long a sample of units
might run until all fail in life testing. In many applications, technical systems
or sub - systems have k − out− of − n structure, which has been extensively
investigated in the literature. For such a system, the system consisting of n
components or subsystems, of which only k need to be functioning and the
system success k is less than n. The k − out− of − n model is commonly used
in reliability theory. In this model, the failure of any component of the system
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does not influence the components still at work. It also finds wide applications
in both industrial and military systems. These systems include the multi display
system in cockpits, the multi-engine system in an airplane, and the multi-purpose
system in a hydraulic control system.

The (n− 1)− out− of − n : G is a system that consists of n components
and works if and only if (n− 1) components among the n work simultaneously.
The system and each of its components can in only one of two states: working or
failed. When a component fails, it kept under repair and other components stay in
the working state with adjusted rates of failure. After repair, a component works
as new and its actual lifetime is the same as initially. If the failed component
is repair before another component fails, the (n− 1) components recover their
initial lifetime. The lifetime and time of repair are independent.

For example, in the communications system with three transmitters, the average
message load may be such that at least two transmitters must be operational at
all times or critical messages may be lost. The transmission subsystem functions
as a 2− out− of − 3 : G system. The k − out− of − n system model may also
represent systems with spares.

We consider here 1− out− of − n : G, system which consists of n components
of the same kind with independent and identically distributed life - length. The
system is observed under an inspection policy where inspection is made at the
completion of a repair if it starts at the beginning of a repair. This leads us to a
situation where separate observations on the unit’s performance and on repair
facility are not feasible. Thus, available records are the number of failures that
occurred in a time interval between two repair epochs i.e., the time instant at
which a repair completes. Recently, Prakash [7] studied some Bayes estimators
for 1− out− of − n : G, Repairable System.

James [5] studies reliabilities for consecutive k − out− of − n : F systems
with component failures having (k − 1) step Markov dependence. The reliability
function and failure rate of k − out− of − n system of components, with
and without incorporating the environmental effect have discussed by Gupta
[4]. Tian et al. [11] was discussed about the application of k − out− of − n
structure in a very popular type of redundancy in fault tolerant systems, with
wide applications in various types of systems. Gherda & Boushaba [3] present
an analysis of a repairable (n− 1)− out− of − n : G, system with failure and
repair times arbitrarily distributed. Formulas for computing the minimal signature
of k − out− of − n systems based on their modules are derived by Da et al.
[2]. Recently, an efficient method is proposed for exact reliability evaluation of
k − out− of − n systems with identical components subject to phased mission
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requirements and imperfect fault coverage by Xing et al. [12].

Few of those who have been extensively studied recently about the predictive
inference for the future observations are Raqab & Madi [9], Nigm et al. [6],
Sarhan & Tadj [10], Ahmad et al. [1] and Prakash & Singh [8].

The objective of present article is to predict the nature of future behavior of
an observation when sufficient information of the past and present behavior of an
event or an observation is known or given. We present here a Bayesian statistical
analysis to predict the future order statistic from the considered repairable
model under right censored (ordered) data. The One - Sided interval and interval
of Central coverage under Two - Sample Bayes prediction scenario has been
considered here. The model and prior distribution are described in Section 2. In
Sections 3, the Bayes prediction lengths of interval are obtain. In next section
the Highest Posterior Density (HPD) intervals are obtained. The last section
includes an illustration of the proposed methods under a simulated dataset with a
concluding subsection.

2. Description of The Model Under Study

A brief description about the considered 1− out− of − n : G repairable system
is based on following assumptions:

The system consists with n units and having a repair facility. Initially one
unit starts operating and the remaining (n− 1) are kept as inactive standbys. As
soon as a unit fails, it goes for repair and a standby unit is put on the operation.
The repair policy is based on First Come First Serves (FCFS), it is always open,
and the repairs are perfect with negligible switch over time.

The failure time distribution of the online units and repair time distribution
of units under repair are assume general, independent of each other and both are
increasing failure rate (IFR) distributions. The state of the system is defined by
the number of non - operative units in the system at the time t(> 0). Further, the
state n is called the down state of the system.

The system is observed under an inspection policy where inspection is made at
the completion of a repair provided that it starts at the beginning of a repair. This
leads us to a situation where separate observations on the unit’s performance
and on repair facility are not feasible. Thus, available records are the number of
failures that occurred in the time interval between two repair epochs i.e., the time
instant at which a repair completes.
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Let, X(t) = i; i = 0, 1, 2, ..., n be the number of non - operative units at
time t. We put a system on test and the system is observed continuously until n
repairs are over. Let the system be in state i(= 1, 2, ..., n− 1) initially whenever a
first repair starts and states of the process are recorded at the completion of each
repair. The hazard rate ρik(t) of the system in the state k if it was in the state i is
given as

ρik(t) =
nik

u+ 1
tv ; u+ 1 > nik, v > 0. (1)

Here, u be the number of units failed when system transits from state i to state k.
It is also noted that the hazard rate decreases with u increases. Hazard rate after re
- parameterization

ρ(t) = θtv ; θ =
nik

u+ 1
. (2)

In life testing, fatigue failures and other kinds of destructive test situations, the
observations usually occurred in ordered manner such a way that weakest items
failed first and then the second one and so on. Let us suppose that n items are put to
test under the considered repairable model without replacement and only k items
are fully measured, while the remaining (n− k) items are censored. These (n− k)
censored lifetimes will be ordered separately. This is called as right item censoring
scheme. The n ordered items x(1), x(2), ..., x(k), ..., x(n) are put to test under the
model without replacement and in which k orders items are fully measured.
Using the right censoring criterion, the likelihood function is thus obtained as

L
(
x(1), x(2), ..., x(k)|θ

)
=

(
k∏

i=1

f
(
x(i); θ

))
.

(
n∏

i=k+1

f
(
x(i); θ

)
ρ
(
x(i)

) )

= θk

(
k∏

i=1

xv
(i)

)
e−θT1 ; T1 =

1

v + 1

n∑
i=1

xv+1
(i) . (3)

Here, T1 is a sufficient statistic for parameter θ and the maximum likelihood (ML)
estimate of the parameter θ is

θ̂ML = kT−1
1 .

From a Bayesian viewpoint, there is clearly no way in which one can say that
one prior is better than other. It is more frequently the case that, we select to
restrict attention to a given flexible family of priors, and we choose one from that
family, which seems to match best with our personal beliefs. One of best choices
for selecting the prior distribution is conjugate prior. We consider here Gamma
density as a natural family of conjugate prior for parameter θ and is given as

π (θ) =
βα

Γ (α)
θα−1 exp (−βθ) ; α > 0, β > 0, θ > 0. (4)

Stat., Optim. Inf. Comput. Vol. 1, December 2013.



TWO SAMPLE BAYES PREDICTION SCENARIO 33

3. Bayes Prediction Intervals Under Two - Sample Scenario

Since x(1), x(2), ..., x(k) be the first k fully measured items are observed from,
a sample of size n of the considered model. Let y(1), y(2), ..., y(m) is the second
(unobserved) items censored data of size m drawn independently from sample
of size N of the same model, then first sample is referred as informative (past)
sample, while the second one is referred as the future sample. Based on an
informative item failure censored sample, our aim is to predict the jth order
statistic in the future sample. This technique is called as Two-Sample Bayes
prediction technique.

Now, the Bayes predicative density of the future observation Y is denoted
by h (y|x) and obtained by simplifying

h (y|x) =
∫
θ

f (y; θ) · π (θ|x) dθ . (5)

Here, π (θ|x) be the posterior density of the parameter θ and obtained with respect
to the prior density given in equation (4). Hence, the Bayes predictive density is
given by

h (y|x) = (α+ k) (T1 + β)
α+k

yv
(
T1 + β +

yv+1

v + 1

)−α−k−1

. (6)

Basically, predictive density h (y|x) expresses the plausibility of y given x and
π (θ). Based on Bayes predictive density of future observation Y, the cumulative
density function is thus obtained as

G (y|x) = P (Y ≤ y) = 1−
(
1 +

yv+1

(v + 1) (T1 + β)

)−α−k

. (7)

If we consider m future observations, then probability density function of the jth

ordered future observation is

ϕ (Yj) = j
(
m
j

)
(G (y|x))j−1

(1− (G (y|x)))m−j
h (y|x) . (8)

Now, the Bayes prediction limits with coverage (1− ε) is defined for a future
random variable Y as

P (l1 ≤ Y ≤ l2) = 1− ε,

where l1 and l2 are lower and upper Bayes prediction limits for random variable
Y, and (1− ε) is called the confidence prediction coefficient.

To find the prediction limits for Yj , the jth smallest of a set of m future
observations under probability density function (8), we choose l1j and l2j such as,

P (l1j ≤ Yj ≤ l2j) = 1− ε.
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3.1. One - Sided Bayes Prediction Limits

The expressions for one - sided 100 (1− ε)% Bayes prediction limits of the jth

future observations are obtain by solving

j
(
m
j

) ∫ l1

0

Zj−1 (1− Z)
m−j

dZ =
ε

2

and

j
(
m
j

) ∫ l2

0

Zj−1 (1− Z)
m−j

dZ = 1− ε

2
, (9)

where li = 1−
(
1 +

lv+1
ij

(v+1)(T1+β)

)−α−k

and i = 1, 2; j = 1, 2, ...,m.

The Bayes prediction limits for first future observation are obtained, by solving
(9), for j = 1 as

l11 =

{
(v + 1) (T1 + β)

(((
1− ε

2

)1/m)−1/(α+k)

− 1

)} 1
v+1

and

l21 =

{
(v + 1) (T1 + β)

(((ε
2

)1/m)−1/(α+k)

− 1

)} 1
v+1

.

The Bayes prediction length of intervals for the smallest (first one) future
observation is

I1 = l21 − l11. (10)

Similarly, the Bayes prediction limits for last future observation are obtained, by
solving (9), for j = m as

l1m =

{
(v + 1) (T1 + β)

((
1−

(ε
2

)1/m)−1/(α+k)

− 1

)}1/(v+1)

and

l2m =

{
(v + 1) (T1 + β)

((
1−

(
1− ε

2

)1/m)−1/(α+k)

− 1

)}1/(v+1)

.

Also, the Bayes prediction length of intervals for largest (last one) future
observation is given as

Im = l2m − l1m. (11)
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3.2. The Central Coverage Bayes Prediction Limits

The central coverage Bayes prediction limits are obtain by solving following
equations for the jth future observations

j
(
m
j

) ∫ l1

0

Zj−1 (1− Z)
m−j

dZ =
1− ε

2

and

j
(
m
j

) ∫ l2

0

Zj−1 (1− Z)
m−j

dZ =
1 + ε

2
(12)

For smallest future observations, the central coverage Bayes prediction limits are
obtain as

l11C =
{
(v + 1) (T1 + β)

(
ω
−1/(α+k)
1 − 1

)}1/(v+1)

; ω1 =

(
1 + ε

2

)1/m

and

l21C =
{
(v + 1) (T1 + β)

(
ω
−1/(α+k)
2 − 1

)}1/(v+1)

; ω2 =

(
1− ε

2

)1/m

.

Similarly, the central coverage Bayes prediction limits for the largest future
observations are

l1mC =
{
(v + 1) (T1 + β)

(
(1− ω2)

−1/(α+k) − 1
)}1/(v+1)

and

l2mC =
{
(v + 1) (T1 + β)

(
(1− ω1)

−1/(α+k) − 1
)}1/(v+1)

.

Hence, the length of Bayes prediction intervals under the central coverage are
given respectively as

I1C = l21C − l11C . (13)

and
ImC = l2mC − l1mC . (14)

4. Highest Posterior Density (HPD) Intervals

In this section, our objective is to provide highest posterior density (HPD) interval
for the unknown parameter θ of the considered model under the right censoring
criterion. Since, the posterior density π (θ|x) corresponding to the parameter θ is
unimodel. Thus, 100 (1− ε)% HPD interval [H1,H2[ for the parameter θ must
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satisfy the following equations simultaneously.∫ H2

H1

π (θ|x) dθ = 1− ε (15)

and
π (H1|x) = π (H2|x) . (16)

Now, the expression (15) & (16) rewritten as∫ H2(T1+β)

H1(T1+β)

1

Γ (α+ k)
e−zzα+k−1dz = 1− ε

⇒ 1

Γ (α+ k)
[γ {(α+ k) ,H2 (T1 + β)} − γ {(α+ k) , H1 (T1 + β)}] = 1− ε

(17)
and (

H2

H1

)α+k−1

= e−(H1−H2)(T1+β). (18)

Solve simultaneously the equations (17) and (18) to obtain the highest posterior
density limits H1 and H2.

5. Numerical Analysis

We illustrate the procedure by presenting a complete analysis under a simulated
data set. A data set of 10, 000 random samples has been drawn from the considered
model for a different set of parametric values. The considered value of the sample
size n is 15 with censored sample size k(= 4, 8, 12) with numerical values of
the parameter θ(= 4, 6, 8). The constant v is considered to be fixed at unity. The
values of the prior parameters (α, β) are taken in the combination of (α, β) =
(0.25, 0.50) , (1, 1) , (4, 2) , (9, 3) . The values of the prior parameters α and β
meets the criterion that the prior variance should be unity.

5.1. Bayes Prediction Length of Intervals

Using above considered parametric values, the Bayes prediction length of intervals
have been calculated and presented them in the Tables 1− 2 for the size of future
observation m (= 4) with confidence level ε = 99%, 95%, 90%.

It is observed from Table 1 that, the Bayes prediction lengths of intervals tend
to closer (wider) as ε (k) increases when other parametric values are considered to
be fixed. The prediction length of intervals expended also when prior parameters
(α, β) or, parameter θ increases for other fixed parametric values.
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Table 1. One - Sided Bayes Prediction Length of Intervals

n = 15 First Future Observation Last Future Observation
k θ (α, β) ⇓ ε ⇒ 99 % 95 % 90 % 99 % 95 % 90 %

0.25, 0.50 0.5722 0.4237 0.3954 0.6834 0.5258 0.5000
0404 01, 01 0.8476 0.6238 0.5804 1.0147 0.7806 0.7369

04, 02 1.0522 0.7761 0.7217 1.2588 0.9697 0.9186
09, 03 1.3737 1.0147 0.9411 1.6471 1.2657 1.1977

0.25, 0.50 0.6199 0.4585 0.4258 0.7447 0.5734 0.5421
0408 01, 01 0.8876 0.6561 0.6092 1.0641 0.8193 0.7746

04, 02 1.0914 0.8069 0.7475 1.3080 1.0068 0.9518
09, 03 1.4138 1.0444 0.9677 1.6934 1.3034 1.2318

0.25, 0.50 0.8163 0.6030 0.5600 0.9340 0.7258 0.6903
0804 01, 01 1.2178 0.8950 0.8268 1.4174 1.0733 1.0218

04, 02 1.5202 1.1117 1.0388 1.7614 1.3411 1.2706
09, 03 1.9927 1.4520 1.3569 2.2954 1.7465 1.6588

0.25, 0.50 0.8975 0.6586 0.6108 1.0403 0.7918 0.7500
0808 01, 01 1.2906 0.9414 0.8746 1.4876 1.1296 1.0717

04, 02 1.5820 1.1549 1.0753 1.8266 1.3886 1.3165
09, 03 2.0523 1.4976 1.3932 2.3640 1.7974 1.7055

0.25, 0.50 1.6259 1.1776 1.0542 1.7312 1.3019 1.1876
1204 01, 01 2.3035 1.6670 1.4925 2.4512 1.8424 1.6810

04, 02 2.8222 2.0418 1.8275 3.0037 2.2585 2.0595
09, 03 3.6441 2.6367 2.3605 3.8788 2.9158 2.6590

0.25, 0.50 1.6561 1.1984 1.0726 1.7628 1.3250 1.2084
1208 01, 01 2.3419 1.6949 1.5171 2.4930 1.8741 1.7091

04, 02 2.8684 2.0758 1.8580 3.0535 2.2953 2.0934
09, 03 3.7033 2.6799 2.3987 3.9420 2.9633 2.7024

The central coverage Bayes prediction lengths of intervals are presented in
Table 2. It is noted that the Bayes prediction length of intervals tend to wider
as k (for k = 4, 8 only) increases for small (α, β). Other, behaviors are similar as
seen in case of one - sided Bayes prediction length of interval. It is also seen that
the central coverage prediction length of interval closer to one - sided prediction
length of interval for all considered parametric values. It is further noted that when
confidence level decreases length of intervals also decreases. This shows that the
lengths of intervals are robust.

Further, the length of intervals tend to wider when m increases. This is a natural,
since the prediction of future order statistic that is far away from the last observed
value and has less accuracy than that of other future order statistics.
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Table 2. Central Coverage Bayes Prediction Length of Intervals

n = 15 First Future Observation Last Future Observation
k θ (α, β) ⇓ ε ⇒ 99 % 95 % 90 % 99 % 95 % 90 %

0.25, 0.50 0.5088 0.3767 0.3515 0.6076 0.4675 0.4445
0404 01, 01 0.7535 0.5546 0.5160 0.9022 0.6940 0.6551

04, 02 0.9355 0.6900 0.6416 1.1192 0.8621 0.8167
09, 03 1.2213 0.9022 0.8367 1.4644 1.1252 1.0648

0.25, 0.50 0.5453 0.4033 0.3745 0.6551 0.5044 0.4769
0408 01, 01 0.7808 0.5772 0.5358 0.9360 0.7207 0.6814

04, 02 0.9601 0.7098 0.6575 1.1506 0.8856 0.8373
09, 03 1.2437 0.9187 0.8512 1.4896 1.1465 1.0835

0.25, 0.50 0.7258 0.5361 0.4979 0.8303 0.6453 0.6137
0804 01, 01 1.0827 0.7957 0.7351 1.2601 0.9543 0.9084

04, 02 1.3516 0.9884 0.9235 1.5660 1.1923 1.1297
09, 03 1.7717 1.2909 1.2064 2.0407 1.5528 1.4748

0.25, 0.50 0.7895 0.5793 0.5373 0.9151 0.6965 0.6597
0808 01, 01 1.1353 0.8281 0.7694 1.3086 0.9937 0.9427

04, 02 1.3916 1.0159 0.9459 1.6068 1.2215 1.1581
09, 03 1.8054 1.3173 1.2255 2.0795 1.5811 1.5003

0.25, 0.50 1.4456 1.0470 0.9373 1.5391 1.1574 1.0559
1204 01, 01 2.0479 1.4820 1.3269 2.1793 1.6380 1.4945

04, 02 2.5091 1.8153 1.6248 2.6705 2.0080 1.8310
09, 03 3.2399 2.3442 2.0986 3.4485 2.5923 2.3640

0.25, 0.50 1.4568 1.0541 0.9435 1.5506 1.1656 1.0630
1208 01, 01 2.0601 1.4909 1.3345 2.1930 1.6486 1.5034

04, 02 2.5232 1.8260 1.6344 2.6860 2.0190 1.8414
09, 03 3.2576 2.3574 2.1101 3.4676 2.6067 2.3772

5.2. HPD Intervals

With above considered parametric values, the HPD limits have been obtain
and presented them in Table 3 for different coverage probability level ε =
99%, 95%, 90%.

It is observed from table that the HPD length of interval becomes narrower as
prior parameter (α, β) or parameter θ increases. Similar trend also has been seen
when censored sample size k increase when other parametric values are considered
to be fixed. Further, the HPD length of interval becomes wider as the coverage
probability ε increases.
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Table 3. Highest Posterior Density (HPD) Limits

n = 15 H1 H2

k θ (α, β) ⇓ ε ⇒ 99 % 95 % 90 % 99 % 95 % 90 %
0.25, 0.50 0.8774 0.8658 0.85432.1336 2.0649 1.9983

0404 01, 01 0.8613 0.8500 0.83872.0410 1.9753 1.9117
04, 02 0.8490 0.8378 0.82671.9670 1.9037 1.8424
09, 03 0.7969 0.7863 0.77591.8464 1.7870 1.7295

0.25, 0.50 0.9995 0.9863 0.97331.6215 1.5079 1.4500
0408 01, 01 0.9921 0.9789 0.96601.6030 1.4944 1.4401

04, 02 0.9872 0.9741 0.96121.5882 1.4820 1.4290
09, 03 0.9366 0.9241 0.91191.5067 1.4060 1.3557

0.25, 0.50 0.9953 0.9823 0.96922.1053 2.0375 1.9718
0804 01, 01 0.9772 0.9642 0.95152.0140 1.9491 1.8864

04, 02 0.9631 0.9504 0.93781.9410 1.8785 1.8179
09, 03 0.9042 0.8921 0.88031.8220 1.7633 1.7065

0.25, 0.50 1.1518 1.1365 1.12151.5694 1.4595 1.4034
0808 01, 01 1.1433 1.1280 1.11311.5515 1.4464 1.3938

04, 02 1.1375 1.1224 1.10751.5372 1.4344 1.3831
09, 03 1.0793 1.0649 1.05091.4583 1.3609 1.3121

0.25, 0.50 1.0052 0.9920 0.97882.0634 1.9969 1.9326
1204 01, 01 0.9870 0.9739 0.96101.9739 1.9104 1.8489

04, 02 0.9728 0.9599 0.94721.9023 1.8411 1.7818
09, 03 0.9132 0.9009 0.88911.7857 1.7282 1.6726

0.25, 0.50 1.1623 1.1469 1.13171.5178 1.4114 1.3573
1208 01, 01 1.1537 1.1382 1.12321.5004 1.3987 1.3479

04, 02 1.1479 1.1327 1.11751.4866 1.3873 1.3375
09, 03 1.0890 1.0746 1.06041.4103 1.3161 1.2689

Remark: In the case when the censored sample size k (= 15) , the censoring
criterion is reduces to the complete sample size criterion and hence all the result
are valid for complete sample case.

6. Conclusion

In present article, we study the behavior of Bayes prediction length of interval and
HPD intervals based on Two - Sample Bayes prediction scenario for a repairable
system. The system is considered here with assumption that repair hazard rate
increases monotonically as time parameter increases.
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Based on simulation study, it is observed that the Bayes prediction lengths of
intervals tend to be closer as coverage probability increases. Similar properties
also have been seen in case of Central coverage Bayes prediction length of interval.
It is also seen that the Central coverage prediction length of interval closer to
the One - Sided prediction length of interval for all considered parametric values.
When confidence level decreases the length of intervals also decreases. This shows
that the lengths of intervals are robust. It is also noted that the Highest Posterior
Density (HPD) length of interval becomes wider as the coverage probability ε
increases.
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