
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, September 2023, pp 811–828.
Published online in International Academic Press (www.IAPress.org)

Estimation problem for continuous time stochastic processes with
periodically correlated increments

Maksym Luz 1, Mikhail Moklyachuk 2,*

1BNP Paribas Cardif in Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Ukraine

Abstract We deal with the problem of optimal estimation of the linear functionals constructed from unobserved values of
a continuous time stochastic process with periodically correlated increments based on past observations of this process.
To solve the problem, we construct a corresponding to the process sequence of stochastic functions which forms an
infinite dimensional vector stationary increment sequence. In the case of known spectral density of the stationary increment
sequence, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal
estimates of the functionals. Formulas determining the least favorable spectral densities and the minimax (robust) spectral
characteristics of the optimal linear estimates of functionals are derived in the case where the sets of admissible spectral
densities are given.
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1. Introduction

In this article, we study the prediction problem for the continuous time stochastic processes ξ(t), t ∈ R, with
periodically correlated increments ξ(d)(t, τT ) = ∆d

Tτξ(t) of order d and period T , where ∆sξ(t) = ξ(t)− ξ(t− s).
The resent studies, for example, by Basawa et al. [1], Dudek et al. [4], Reisen et al. [28], show a constant interest
to the non-stationary models and robust methods of estimation.

Kolmogorov [13], Wiener [32] and Yaglom [34] developed effective methods of solution of interpolation,
extrapolation (prediction) and filtering problems for stationary stochastic sequences and processes. For a particular
problem, they found an estimate x̃(t) constructed from available observations that minimizes the mean square error
∆(x̃(t), f) = E|x(t)− x̃(t)|2 in the case where the spectral density f(λ) of the stationary process or sequence x(t)
is exactly known and fixed. Such estimates are called optimal linear estimates within this article.

The developed classical estimation methods are not directly applicable in practice since the exact spectral
structure of the processes is not usually available. In this case the estimated spectral densities can be considered as
the true ones. However, Vastola and Poor [31] showed with the help of the concrete examples, that such substitution
can result in a significant increase of the estimate error. Therefore it is reasonable to consider the estimates, called
minimax-robust, which minimize the maximum of the mean-square errors for all spectral densities from a given
set of admissible spectral densities simultaneously. The minimax-robust method of extrapolation was proposed by
Grenander [8] who considered an estimation of the functional Ax =

∫ 1

0
a(t)x(t)dt as a game between two players,
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one of which minimizes ∆(Ãx, f) by Ãζ and another one maximizes it by f . The game has a saddle point under
proper conditions:

max
f

min
Ãx

∆(Ãx, f) = min
Ãx

max
f

∆(Ãx, f) = ν.

For more details see the further study by Franke and Poor [5] and the survey paper by Kassam and Poor [11].
A wide range of results has been obtained by Moklyachuk [19, 20, 22]. These results have been extended on the
vector-valued stationary processes and sequences by Moklyachuk and Masyutka [24].

The concept of stationarity admits some generalizations, a combination of two of which – stationary dth
increments and periodical correlation – is in scope of this article. Random processes with stationary dth increments
x(t) were introduced by Yaglom and Pinsker [27]. The increment sequence x(d)(t, τ) = ∆d

τx(t) generated by
such process is stationary by the variable t, namely, the mathematical expectations Eξ(n)(t, τ) and Eξ(n)(t+
s, τ1)ξ

(n)(t, τ2) do not depend on t. Yaglom and Pinsker [27] described the spectral representation of such process
and the spectral density canonical factorization, and they also solved the extrapolation problem for these processes.
The minimax-robust extrapolation, interpolation and filtering problems for stochastic processes with stationary
increments were investigated by Luz and Moklyachuk [16].

Dubovetska and Moklyachuk [3] derived the classical and minimax-robust estimates for another generalization
of stationary processes – periodically correlated (cyclostationary) processes, introduced by Gladyshev [7]. The
correlation function K(t, s) = Ex(t)x(s) of such processes is a T -periodic function: K(t, s) = K(t+ T, s+ T ),
which implies a time-dependent spectrum. Periodically correlated processes are widely used in signal processing
and communications (see Napolitano [26] for a review of recent works on cyclostationarity and its applications).

In this article, we deal with the problem of the mean-square optimal estimation of the linear functionals
Aξ =

∫∞
0

a(t)ξ(t)dt and ANT ξ =
∫ (N+1)T

0
a(t)ξ(t)dt which depend on the unobserved values of a continuous

time stochastic process ξ(t) with periodically stationary d-th increments from its observations at points t < 0.
The similar problems for discrete time processes have been studied by Kozak and Moklyachuk [14], Luz and
Moklyachuk [17, 18]. In section 2, we describe a presentation of a continuous time periodically stationary process
as a stationary H-valued sequence. This approach is extended on the periodically stationary increments in the
subsection 3.1. In subsection 3.2, the maximum mean square error of the estimate is derived. The classical
prediction (or extrapolation) problem is solved in subsection 3.3. Particularly, formulas for calculating the mean-
square errors and the spectral characteristics of the optimal linear estimates of the functionals Aξ and ANT ξ
are derived under the condition of spectral certainty. In subsection 4, we present our results on minimax-robust
prediction for the studied processes: relations that determine the least favourable spectral densities and the minimax
spectral characteristics derived for some classes of spectral densities.

2. Continuous time periodically correlated processes and generated vector stationary sequences

In this section we present a brief review of periodically correlated processes and describe an approach to be applied
in the next section to develop a spectral theory for periodically correlated increment process.

Definition 2.1 (Gladyshev [7])
A mean-square continuous stochastic process ζ : R → H = L2(Ω,F ,P), with Eζ(t) = 0, is called periodically
correlated (PC) with period T , if its correlation function K(t, s) = Eζ(t)ζ(s) for all t, s ∈ R and some fixed T > 0
is such that

K(t, s) = Eζ(t)ζ(s) = Eζ(t+ T )ζ(s+ T ) = K(t+ T, s+ T ).

For a periodically correlated stochastic process ζ(t), one can construct the following sequence of stochastic
functions [2], [23]

{ζj(u) = ζ(u+ jT ), u ∈ [0, T ), j ∈ Z}. (1)

Sequence (1) forms a L2([0, T );H)-valued stationary sequence {ζj , j ∈ Z} with the correlation function

Bζ(l, j) = ⟨ζl, ζj⟩H =

∫ T

0

E[ζ(u+ lT )ζ(u+ jT )]du =

∫ T

0

Kζ(u+ (l − j)T, u)du = Bζ(l − j),
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where Kζ(t, s) = Eζ(t)ζ(s) is the correlation function of the PC process ζ(t). If we chose the following
orthonormal basis in the space L2([0, T );R)

{ẽk =
1√
T
e2πi{(−1)k[ k2 ]}u/T , k = 1, 2, 3, . . . }, ⟨ẽj , ẽk⟩ = δkj , (2)

the stationary sequence {ζj , j ∈ Z} can be represented in the form

ζj =

∞∑
k=1

ζkj ẽk,

where

ζkj = ⟨ζj , ẽk⟩ =
1√
T

∫ T

0

ζj(v)e
−2πi{(−1)k[ k2 ]}v/T dv.

The sequence {ζj , j ∈ Z}, or the corresponding to it a vector sequence

{ζ⃗j = (ζkj , k = 1, 2, . . . )⊤, j ∈ Z},

is called a generated by the process {ζ(t), t ∈ R} vector stationary sequence. Components {ζkj} : k = 1, 2, . . . ; j ∈
Z of the generated stationary sequence {ζj , j ∈ Z} satisfy the following relations [10], [19]

Eζkj = 0, ∥ζj∥2H =

∞∑
k=1

E|ζkj |2 ≤ Pζ = Bζ(0), Eζklζnj = ⟨Rζ(l − j)ẽk, ẽn⟩.

The correlation function Rζ(j) of the generated stationary sequence {ζj , j ∈ Z} are correlation operator functions.
The correlation operator Rζ(0) = Rζ is a kernel operator and its kernel norm satisfies the following limitations:

∥ζj∥2H =

∞∑
k=1

⟨Rζzẽk, ẽk⟩ ≤ Pζ .

The generated stationary sequence {ζj , j ∈ Z} has the spectral density function f(λ) = {fkn(λ)}∞k,n=1, that is
positive valued operator functions of variable λ ∈ [−π, π), if its correlation function Rζ(j) can be represented in
the form

⟨Rζ(j)ẽk, ẽn⟩ =
1

2π

∫ π

−π

eijλ⟨f(λ)ẽk, ẽn⟩dλ.

We finish our review by the statement, that For almost all λ ∈ [−π, π) the spectral density f(λ) is a kernel operator
with an integrable kernel norm

∞∑
k=1

1

2π

∫ π

−π

⟨f(λ)ẽk, ẽk⟩dλ =

∞∑
k=1

⟨Rζ ẽk, ẽk⟩ = ∥ζj∥2H ≤ Pζ .

3. Extrapolation problem for stochastic processes with periodically correlated dth increments

3.1. Stochastic processes with periodically correlated dth increments

For a given stochastic process {ξ(t), t ∈ R}, consider the stochastic dth increment process

ξ(d)(t, τ) = (1−Bτ )
dξ(t) =

d∑
l=0

(−1)l
(
d

l

)
ξ(t− lτ), (3)

with the step τ ∈ R, generated by the stochastic process ξ(t). Here Bτ is the backward shift operator: Bτξ(t) =
ξ(t− τ), τ ∈ R.

We prefer to use the notation ξ(d)(t, τ) instead of widely used ∆d
τξ(t) to avoid a duplicate with the mean square

error notation.
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814 ESTIMATION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

Definition 3.1
A stochastic process {ξ(t), t ∈ R} is called a stochastic process with periodically stationary (periodically
correlated) increments with the step τ ∈ Z and the period T > 0 if the mathematical expectations

Eξ(d)(t+ T, τT ) = Eξ(d)(t, τT ) = c(d)(t, τT ),

Eξ(d)(t+ T, τ1T )ξ
(d)(s+ T, τ2T ) = D(d)(t+ T, s+ T ; τ1T, v2T )

= D(d)(t, s; τ1T, τ2T )

exist for every t, s ∈ R, τ1, τ2 ∈ Z and for some fixed T > 0.

The functions c(d)(t, τT ) and D(d)(t, s; τ1T, τ2T ) from the Definition 3.1 are called the mean value and the
structural function of the stochastic process ξ(t) with periodically stationary (periodically correlated) increments.

For the stochastic process {ξ(t), t ∈ R} with periodically correlated increments ξ(d)(t, τT ) and the integer step
τ , we follow the procedure described in the Section 2 and construct a sequence of stochastic functions

{ξ(d)j (u) := ξ
(d)
j,τ (u) = ξ

(d)
j (u+ jT, τT ), u ∈ [0, T ), j ∈ Z}. (4)

Sequence (4) forms a L2([0, T );H)-valued stationary increment sequence {ξ(d)j , j ∈ Z} with the structural
function

Bξ(d)(l, j) = ⟨ξ(d)l , ξ
(d)
j ⟩H =

∫ T

0

E[ξ(d)j (u+ lT, τ1T )ξ
(d)
j (u+ jT, τ2T )]du

=

∫ T

0

D(d)(u+ (l − j)T, u; τ1T, τ2T )du = Bξ(d)(l − j).

Making use of the orthonormal basis (2) the stationary increment sequence {ξ(d)j , j ∈ Z} can be represented in the
form

ξ
(d)
j =

∞∑
k=1

ξ
(d)
kj ẽk, (5)

where

ξ
(d)
kj = ⟨ξ(d)j , ẽk⟩ =

1√
T

∫ T

0

ξ
(d)
j (v)e−2πi{(−1)k[ k2 ]}v/T dv.

We call this sequence {ξ(d)j , j ∈ Z}, or the corresponding to it vector sequence

{ξ⃗(d)j = (ξ
(d)
kj , k = 1, 2, . . . )⊤, j ∈ Z},

an infinite dimension vector stationary increment sequence generated by the increment process {ξ(d)(t, τT ), t ∈
R}. Further, we will omit the word vector in the notion generated vector stationary increment sequence.

Components {ξ(d)kj } : k = 1, 2, . . . ; j ∈ Z of the generated stationary increment sequence {ξ(d)j , j ∈ Z} are such
that, [10], [19]

Eξ(d)kj = 0, ∥ξ(d)j ∥2H =

∞∑
k=1

E|ξ(d)kj |
2 ≤ Pξ(d) = Bξ(d)(0),

and
Eξ(d)kl ξ

(d)
nj = ⟨Rξ(d)(l − j; τ1, τ2)ẽk, ẽn⟩.

The structural function Rξ(d)(j) := Rξ(d)(j; τ1, τ2) of the generated stationary increment sequence {ξ(d)j , j ∈ Z} is
a correlation operator function. The correlation operator Rξ(d)(0) = Rξ(d) is a kernel operator and its kernel norm
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satisfies the following limitations:

∥ξ(d)j ∥2H =

∞∑
k=1

⟨Rξ(d) ẽk, ẽk⟩ ≤ Pξ(d) .

Suppose that the structural function Rξ(d)(j) admits a representation

⟨Rξ(d)(j; τ1, τ2)ẽk, ẽn⟩ =
1

2π

∫ π

−π

eijλ(1− e−iτ1λ)d(1− eiτ2λ)d
1

λ2d
⟨f(λ)ẽk, ẽn⟩dλ.

Then f(λ) = {fkn(λ)}∞k,n=1 is a spectral density function of the generated stationary increment sequence {ξ(d)j , j ∈
Z}. It is a positive valued operator functions of variable λ ∈ [−π, π), and for almost all λ ∈ [−π, π) it is a kernel
operator with an integrable kernel norm

∞∑
k=1

1

2π

∫ π

−π

(1− e−iτ1λ)d(1− eiτ2λ)d
1

λ2d
⟨f(λ)ẽk, ẽk⟩dλ =

∞∑
k=1

⟨Rξ(d) ẽk, ẽk⟩ = ∥ζj∥2H ≤ Pξ(d) . (6)

3.2. Extrapolation problem: the greatest value of the mean-square error

Consider the problem of the mean square optimal linear estimation of the functionals

Aξ =

∫ ∞

0

a(t)ξ(t)dt, ANT ξ =

∫ (N+1)T

0

a(t)ξ(t)dt

which depend on the unknown values of the stochastic process ξ(t) with periodically correlated dth increments.
Estimates are based on observations of the process ξ(t) at points t < 0.

Lemma 3.1 (Luz and Moklyachuk [16])
Any linear functional

Aξ =

∫ ∞

0

a(t)ξ(t)dt

allows the representation
Aξ = Bξ − V ξ,

where

Bξ =

∫ ∞

0

bτ (t)ξ(d)(t, τT )dt, V ξ =

∫ 0

−τTd

vτ (t)ξ(t)dt,

and

vτ (t) =

d∑
l=[− t

τT ]
′

(−1)l
(
d

l

)
bτ (t+ lτT ), t ∈ [−τTd; 0), (7)

bτ (t) =

∞∑
k=0

a(t+ τTk)d(k) = DτTa(t), t ≥ 0, (8)

where [x]′ denotes the least integer number among numbers that are equal to or greater than x, coefficients
{d(k) : k ≥ 0} are determined by the relation

∞∑
k=0

d(k)xk =

( ∞∑
j=0

xj

)d

,

DτT is the linear transformation acting on an arbitrary function x(t), t ≥ 0, as follows:

DτTx(t) =

∞∑
k=0

x(t+ τTk)d(k).
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Corollary 3.1
A linear functional

ANT ξ =

∫ (N+1)T

0

a(t)ξ(t)dt

allows the representation
ANT ξ = BNT ξ − VNT ξ,

where

BNT ξ =

∫ (N+1)T

0

bτ,N (t)ξ(d)(t, τT )dt, VNT ξ =

∫ 0

−τTd

vτ,N (t)ξ(t)dt,

and

vτ,N (t) =

min{[ (N+1)T−t
τT ],d}∑

l=[− t
τT ]

′

(−1)l
(
d

l

)
bτ,N (t+ lτT ), t ∈ [−τTd; 0), (9)

bτ,N (t) =

[ (N+1)T−t
τT ]∑
k=0

a(t+ τTk)d(k) = DτT,Na(t), t ∈ [0; (N + 1)T ], (10)

the linear transformation DτT,N acts on an arbitrary function x(t), t ∈ [0; (N + 1)T ], as follows:

DτT,Nx(t) =

[ (N+1)T−t
τT ]∑
k=0

x(t+ τTk)d(k).

Let Âξ denote the mean square optimal linear estimate of the functional Aξ from observations of the process ξ(t)
at points t < 0 and let B̂ξ denote the mean square optimal linear estimate of the functional Bξ from observations
of the stochastic dth increment process ξ(d)(t, τT ) at points t < 0.

Let ∆(f ; Âξ) = E|Aξ − Âξ|2 and ∆(f ; B̂ξ) = E|Bξ − B̂ξ|2 denote the mean square errors of the estimates Âξ
and B̂ξ respectively/Ṡince values ξ(t) at points t ∈ [−τTn; 0) are known, the following equality comes from
Lemma 3.1:

Aξ = Bξ − V ξ, Âξ = B̂ξ − V ζ, (11)

and
∆
(
f ; Âξ

)
= E

∣∣∣Aξ − Âξ
∣∣∣2 = E

∣∣∣Bξ − V ξ − B̂ξ + V ξ
∣∣∣2 = E

∣∣∣Bξ − B̂ξ
∣∣∣2 = ∆

(
f ; B̂ξ

)
.

The similar relations for the functional ANT ξ are valid:

ANT ξ = BNT ξ − VNT ξ, ÂNT ξ = B̂NT ξ − VNT ζ, (12)

and

∆
(
f ; ÂNT ξ

)
= E

∣∣∣ANT ξ − ÂNT ξ
∣∣∣2 = E

∣∣∣BNT ξ − VNT ξ − B̂NT ξ + VNT ξ
∣∣∣2

= E
∣∣∣BNT ξ − B̂NT ξ

∣∣∣2 = ∆
(
f ; B̂NT ξ

)
.

Thus, to find the mean square optimal linear estimation of the functionals Aξ, ANT ξ we have to find estimates
of the functionals Bξ, BNT ξ.

The functional BNT ξ can be represented in the form

BNT ξ =

∫ (N+1)T

0

bτ,N (t)ξ(d)(t, τT )dt =

N∑
j=0

∫ T

0

bτ,Nj (u)ξ
(d)
j (u)du,

Stat., Optim. Inf. Comput. Vol. 11, September 2023



MAKSYM LUZ, MIKHAIL MOKLYACHUK 817

where
bτ,Nj (u) = bτ,N (u+ jT ), ξ

(d)
j (u) = ξ

(d)
j (u+ jT, τT ), u ∈ [0, T ).

Making use of the decomposition (5) of the generated stationary increment sequence {ξ(d)j , j ∈ Z} and the
solution of equation

(−1)k
[
k

2

]
+ (−1)m

[m
2

]
= 0 (13)

of two variables (k,m), which is given by pairs (1, 1), (2l + 1, 2l) and (2l, 2l + 1) for l = 2, 3, . . . , the functional
BNT ξ can be rewritten in the form [23]

BNT ξ =

∫ (N+1)T

0

bτ,N (t)ξ(d)(t, τT )dt =

N∑
j=0

∫ T

0

bτ,Nj (u)ξ
(d)
j (u)du

=

N∑
j=0

1

T

∫ T

0

( ∞∑
k=1

bτ,Nkj e2πi{(−1)k[ k2 ]}u/T

)( ∞∑
m=1

ξ
(d)
mje

2πi{(−1)m[m2 ]}u/T

)
du

=

N∑
j=0

∞∑
k=1

∞∑
m=1

bτ,Nkj ξ
(d)
mj

1

T

∫ T

0

e2πi{(−1)k[ k2 ]+(−1)m[m2 ]}u/T du

=

N∑
j=0

∞∑
k=1

bτ,Nkj ξ
(d)
kj =

N∑
j=0

(⃗bτ,Nj )
⊤
ξ⃗
(d)
j = BN ξ⃗,

where the infinite dimensional vectors ξ⃗(d)j and b⃗τ,Nj are defined as follows:

ξ⃗
(d)
j = (ξ

(d)
kj , k = 1, 2, . . . )⊤,

and
b⃗τ,Nj = (bτ,Nkj , k = 1, 2, . . . )⊤ = (bτ,N1j , bτ,N3j , bτ,N2j , . . . , bτ,N2k+1,j , b

τ,N
2k,j , . . . )

⊤.

Here

bτ,Nkj = ⟨bτ,Nj , ẽk⟩ =
1√
T

∫ T

0

bτ,Nj (v)e−2πi{(−1)k[ k2 ]}v/T dv,

where

bτ,Nj (u) =

[ (N+1)T−u−jT
τT ]∑
l=0

a(u+ jT + τT l)d(l) = DτT,Na(u), u ∈ [0; t), j = 0, 1, . . . , N,

and

bτ,Nkj =

[N−j
τ ]∑

k=0

akj+τld(k), j = 0, 1, . . . , N,

where

akj = ⟨aj , ẽk⟩ =
1√
T

∫ T

0

aj(v)e
−2πi{(−1)k[ k2 ]}v/T dv, k = 1, 2, . . . , j = 0, 1, . . . , N.

Assume, that coefficients {⃗bτ,Nj , j = 0, 1, . . . , N}, that determine the functional BNT ξ, satisfy the conditions

∥⃗bτ,Nj ∥ < ∞, ∥⃗bτ,Nj ∥2 =

∞∑
k=1

|bτ,Nkj |2, j = 0, 1, . . . , N. (14)

Stat., Optim. Inf. Comput. Vol. 11, September 2023



818 ESTIMATION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

It follows from the condition (14) that the functional

BNT ξ =

N∑
j=0

∞∑
k=1

bτ,Nkj ξ
(d)
kj =

N∑
j=0

(⃗bτ,Nj )
⊤
ξ⃗
(d)
j = BN ξ⃗

has a finite second moment.
Let us calculate the greatest value of the mean-square error ∆(ξ, B̂NT ) of estimate B̂NT ξ of the functional

BNT ξ. Denote by Λ the set of all linear estimates of the functional BNT ξ, based on an observation of the process
ξ(t) at points t < 0.

Let Y denote the class of the mean-square continuous PC increment processes ξ(d)(t, τT ), such that
Eξ(d)(t, τT ) = 0,E|ξ(d)(t, τT )|2 ≤ Pξd . Let YR denote the class of all regular stationary sequences, that satisfy
the condition ∥ξ(d)j ∥2H ≤ Pξ(d) . Then we can formulate the following theorem (see [19, 21]).

Theorem 3.1
Let the coefficients {⃗bτ,Nj , j = 0, 1, . . . , N}, which determine the functional BNT ξ, satisfy condition (14). The
function ∆(ξ, B̂NT ) has a saddle point on the set Y × Λ:

min
B̂NT∈Λ

max
ζ∈Y

∆(ξ, B̂NT ) = max
ζ∈Y

min
B̂NT∈Λ

∆(ξ, B̂NT ) = Pξ · ν2N ,

where ν2N is the greatest eigenvalue of the self-adjoint compact operator QN in the space ℓ2, determined by the
matrix {QN (p, q)}Dp,q=0, which is constructed from the block-matrices QN (p, q) = {QD

kn(p, q)}∞k,n=1 with elements

QN
kn(p, q) =

min(N−p,N−q)∑
s=0

bτ,Nk,s+p · b
τ,N
n,s+q, (15)

k, n = 1, 2, . . . , p, q = 0, 1, . . . , N.

The least favorable stochastic sequence ξ⃗
(d)
j in the class Y for the optimal estimate of the functional BNT ξ is an

one-sided moving average sequence of order N of the form

ξ⃗
(d)
j =

j∑
s=j−N

g(j − s)ε⃗(s),

where gN = (g(0), g(1), . . . , g(N))⊤ is the eigenvector, that corresponds to ν2N , which is constructed from matrices
g(p) = {gkm(p)}m=1,M

k=1,∞ and is determined by the condition ∥gN∥2 =
∑D

p=0 ∥g(p)∥2 = Pζ , ε⃗(s) = {εm(s)}Mm=1 is
a vector valued stationary stochastic sequence with orthogonal values.

The similar representations can be obtained for the functional Bξ [23]:

Bξ =

∫ ∞

0

bτ (t)ξ(d)(t, τT )dt =

∞∑
j=0

(⃗bτj )
⊤
ξ⃗
(d)
j = Bξ⃗,

where the infinite dimensional vectors ξ⃗(d)j and b⃗τj are defined as follows:

ξ⃗
(d)
j = (ξ

(d)
kj , k = 1, 2, . . . )⊤,

b⃗τj = (bτkj , k = 1, 2, . . . )⊤ = (bτ1j , b
τ
3j , b

τ
2j , . . . , b

τ
2k+1,j , b

τ
2k,j , . . . )

⊤.

Here

bτkj = ⟨bτj , ẽk⟩ =
1√
T

∫ T

0

bτj (v)e
−2πi{(−1)k[ k2 ]}v/T dv,

bτj (u) =

∞∑
l=0

a(u+ jT + τT l)d(l) = Dτaj(u), u ∈ [0, T ), j = 0, 1, . . . ,
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and

bτk,j =

∞∑
l=0

ak,j+τld(l), k, j = 0, 1, . . . ,

akj = ⟨aj , ẽk⟩ =
1√
T

∫ T

0

aj(v)e
−2πi{(−1)k[ k2 ]}v/T dv.

Assume, that coefficients {⃗bτj , j = 0, 1, . . . }, that determine the functional Bξ, satisfy the conditions

∞∑
j=0

∥⃗bτj ∥ < ∞,

∞∑
j=0

(j + 1)∥⃗bτj ∥ < ∞, ∥⃗bτj ∥2 =

∞∑
k=1

|bτkj |2. (16)

It follows from the condition (16) that the functional

Bξ =

∞∑
j=0

∞∑
k=1

bτkjξ
(d)
kj =

∞∑
j=0

(⃗bτj )
⊤
ξ⃗
(n)
j

has a finite second moment. The following theorem provides the greatest value of the mean-square error ∆(ξ, B̂)
of the estimate B̂ξ of the functional Bξ (see [19, 21]).

Theorem 3.2
Let the coefficients {⃗bτj , j = 0, 1, . . . }, which determine the functional Bξ, satisfy condition (16). The function
∆(ξ, B̂) has a saddle point on the set Y × Λ:

min
B̂∈Λ

max
ζ∈Y

∆(ξ, B̂) = max
ζ∈Y

min
B̂∈Λ

∆(ξ, B̂) = Pξ · ν2,

where ν2 is the greatest eigenvalue of the self-adjoint compact operator Q in the space ℓ2, determined by the matrix
{Q(p, q)}∞p,q=0, which is constructed from the block-matrices Q(p, q) = {Qkn(p, q)}∞k,n=1 with elements

Qkn(p, q) =

∞∑
s=0

bτk,s+p · bτn,s+q, (17)

k, n = 1, 2, . . . , p, q = 0, 1, . . .

The least favorable stochastic sequence ξ⃗
(d)
j in the class Y for the optimal estimate of the functional Bξ is an

one-sided moving average sequence of the form

ξ⃗
(d)
j =

j∑
s=−∞

g(j − s)ε⃗(s),

where g = (g(0), g(1), . . . )⊤ is the eigenvector, that corresponds to ν2, which is constructed from matrices
g(p) = {gkm(p)}m=1,M

k=1,∞ and is determined by the condition ∥g∥2 =
∑∞

p=0 ∥g(p)∥2 = Pζ , ε⃗(s) = {εm(s)}Mm=1 is
a vector valued stationary stochastic sequence with orthogonal values.

3.3. Classical extrapolation problem

Let the spectral density f(λ) satisfy the minimality condition∫ π

−π

Tr
[

λ2d

|1− eiλτ |2d
f−1(λ)

]
dλ < ∞. (18)
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This is the necessary and sufficient condition under which the mean square errors of the estimates of the functionals
Aξ⃗ and AN ξ⃗ are not equal to 0.

Consider the Hilbert space H = L2(Ω,F ,P) of random variables γ with zero mean value, Eγ = 0, finite
variance, E|γ|2 < ∞, and endowed with the inner product (γ1; γ2) = Eγ1γ2. With the generated increment
sequence {ξ(d)j }, we can associate the closed linear subspace H0−(ξ⃗(d)) = span{ξ(d)kj : k = 1, 2, . . . ; j =
−1,−2,−3, . . .}.

Consider also the closed linear subspace

L0−
2 (f) = span{eiλj(1− e−iλτ )d(iλ)−dδn : n = 1, 2, . . . ,∞, j ⩽ −1}, δn = {δkn}∞k=1,

of the Hilbert space L2(f) of vector-valued functions, endowed with the inner product ⟨g1; g2⟩ =∫ π

−π
(g1(λ))

⊤f(λ)g2(λ)dλ. Here δkn are Kronecker symbols. The relation

ξ
(d)
kj =

∫ π

−π

eiλj(1− e−iλτ )d
1

(iλ)d
dZk(λ), k = 1, 2, . . . , (19)

implies a map between the subspaces spaces H0−(ξ⃗(d)) and L0−
2 (f). Here Zk(λ) are the components of a vector-

valued stochastic process Z⃗ξ(d)(λ) = {Zk(λ)}∞k=1 with uncorrelated increments on [−π, π) connected with the
spectral function F (λ) by the relation

E(Zk(λ2)− Zk(λ1))(Zn(λ2)− Zn(λ1)) = Fkn(λ2)− Fkn(λ1)

for
−π ≤ λ1 < λ2 < π, k, n = 1, 2, . . . ,∞.

Define the Fourier coefficients of the function λ2d|1− eiλτ |−2df−1(λ)

F τ
j,l =

1

2π

∫ π

−π

e−iλ(j−l) λ2d

|1− eiλτ |2d
f−1(λ)dλ, j, l ≥ 0.

Define the vector

a⃗j = (akj , k = 1, 2, . . . )⊤ = (a1j , a3j , a2j , . . . , a2k+1,j , a2k,j , . . . )
⊤.

Then Lemma 3.1 implies

b⃗j =

∞∑
m=j

diag∞(dτ (m− j))⃗am = (Dτa)j , j = 0, 1, 2, . . . , (20)

where a = ((⃗a0)
⊤, (⃗a1)

⊤, (⃗a2)
⊤, . . .)⊤, the coefficients {dτ (k) : k ≥ 0} are determined by the relationship

∞∑
k=0

dτ (k)x
k =

( ∞∑
j=0

xτj

)d

,

Dτ is a linear transformation determined by a matrix with infinite dimension matrix entries Dτ (k, j), k, j =
0, 1, 2, . . . such that Dτ (k, j) = diag∞(dτ (j − k)) if 0 ≤ k ≤ j and Dτ (k, j) = diag∞(0) for 0 ≤ j < k; diag∞(x)
denotes an infinite dimension diagonal matrix with the entry x on its diagonal.

Theorem 3.3
Let a stochastic process x(t), t ∈ R with a periodically stationary increments determine a generated stationary
dth increment sequence ξ⃗

(d)
m with the spectral density matrix f(λ) = {fij(λ)}∞i,j=1 satisfying minimality condition

(18). Let the coefficients a⃗j , j ⩾ 0 generated by the function a(t), t ≥ 0, satisfy conditions (16) taking into account
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(20). The optimal linear estimate Âξ of the functional Aξ based on observations of the process ξ(t) on the interval
t < 0 is calculated by the formula

Âξ =

∫ π

−π

(⃗hτ (λ))
⊤dZ⃗ξ(d)(λ)−

∫ 0

−τTd

vτ (t)ξ(t)dt, (21)

where h⃗τ (λ) = {hk(λ)}∞k=1 is the spectral characteristic of the estimate Âξ⃗. The spectral characteristic h⃗τ (λ) and
the value of the mean square error ∆(f ; Âξ) of the optimal estimate Âξ are calculated by the formulas

(⃗hτ (λ))
⊤ = (B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d
− (−iλ)n

(1− eiλτ )d
(C⃗τ (e

iλ))⊤f−1(λ). (22)

and

∆
(
f ; Âξ

)
= ∆

(
f ; B̂ξ

)
= E

∣∣∣Bξ − B̂ξ
∣∣∣2

=
1

2π

∫ π

−π

(−iλ)d

(1− eiλτ )d
(C⃗τ (e

iλ))⊤f(λ)C⃗τ (eiλ)
(iλ)d

(1− e−iλτ )d
dλ

=
〈
Dτa,F−1

τ Dτa
〉
. (23)

respectively, where

B⃗τ (e
iλ) =

∞∑
j=0

b⃗τj e
iλj , C⃗τ (e

iλ) =

∞∑
j=0

(F−1
τ Dτa)je

iλj ,

Fτ is a linear operator in the space ℓ2 which is determined by a matrix with the infinite matrix entries (Fτ )j,l = F τ
j,l,

j, l ≥ 0.

Proof
Representation (21) for the estimate Âξ comes from relation (11). The functional Bξ⃗ allows the spectral
representation

Bξ⃗ =

∫ π

−π

(
B⃗τ (e

iλ)
)⊤ (1− e−iτλ)d

(iλ)d
dZ⃗ξ(d)(λ).

Thus, the spectral characteristic h⃗τ (λ) is characterized by the following conditions, which determine a projection
of the element B⃗τ (e

iλ) (1−e−iλτ )d

(iλ)d
on the subspace L0−

2 (f):

h⃗τ (λ) ∈ L0−
2 (f) , (24)(

B⃗τ (e
iλ)

(1− e−iλτ )d

(iλ)d
− h⃗τ (λ)

)
⊥ L0−

2 (f) . (25)

From the condition (25), we obtain the following relation which holds true for all j ⩽ −1∫ π

−π

(
B⃗τ (e

iλ)
(1− e−iτλ)d

(iλ)d
− h⃗τ (λ)

)⊤

f(λ)e−ijλ (1− eiτλ)d

(−iλ)d
dλ = 0. (26)

Thus, the spectral characteristic of the estimate B̂ξ⃗ can be represented in the form

(⃗hτ (λ))
⊤ = (B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d
− (−iλ)n(C⃗τ (e

iλ))⊤

(1− eiλτ )d
f−1(λ),

where

C⃗τ (e
iλ) =

∞∑
j=0

c⃗ τ
j e

ijλ,
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coefficients c⃗ τ
j = {cτkj}∞k=1, j ⩾ 0 are unknown and to be found.

Condition (24) implies the equestions∫ π

−π

[
(B⃗τ (e

iλ))⊤ − λ2d(C⃗τ (e
iλ))⊤

(1− e−iλτ )d(1− eiλτ )d
f−1(λ)

]
e−ijλdλ = 0, j ⩾ 0. (27)

Making use of the introduced Fourier coefficients F τ
j,l, relation (27) can be presented as a system of linear equations

b⃗τl =

∞∑
j=0

F τ
l,j c⃗ τ

j , l ≥ 0,

allowing the matrix form representation
Dτa = Fτc

τ , (28)

where cτ = ((c⃗ τ
0 )

⊤, (c⃗ τ
1 )

⊤, (c⃗ τ
2 )

⊤, . . .)⊤.
Note that the operator Fτ is invertible. The projection problem for the element Bξ⃗ ∈ H on the closed convex

set H0−(ξ⃗
(d)
τ ) has a unique solution for each non-zero vector coefficients {a⃗0, a⃗1, a⃗2, . . .} under conditions (16).

Therefore, equation (28) has a unique solution for each vector bτ = Dτa, which implies existence of the inverse
operator F−1

τ . Now we can conclude, that the coefficients c⃗ τ
j , j ≥ 0, can be calculated as

c⃗ τ
j =

(
F−1

τ Dτa
)
j
, j ≥ 0, (29)

where
(
F−1

τ Dτa
)
j
, j ≥ 0, is the jth infinite dimension vector element of the vector F−1

τ Dτa.

The derived expressions and the coefficients c⃗ τ
j , j ≥ 0, prove formulas (22) for the spectral characteristic h⃗τ (λ)

and (23) for the value of the mean square error of the estimate Âξ.

Consider the extrapolation problem for the functional ANT ξ. We can apply the results of Theorem 3.3 by putting
(⃗aj)

⊤ = 0 for j > N . Corollary 3.1 implies

b⃗dj =

N∑
m=j

diag∞(dτ (m− j))⃗a(m) = (Dτ
NaN )j , j = 0, 1, . . . , N,

where Dτ
N is the linear transformation determined by an infinite matrix with the entries

(Dτ
N )(k, j) = diag∞(dτ (j − k)) if 0 ≤ k ≤ j ≤ N , and (Dτ

N )(k, j) = 0 if j < k or j, k > N ; aN =
((⃗a0)

⊤, (⃗a1)
⊤, . . . , (⃗aN )⊤, 0⃗ . . .)⊤.

Theorem 3.4
Let a stochastic process ξ(t), t ∈ R with a periodically stationary increments determine a generated stationary
dth increment sequence ξ⃗

(d)
m with the spectral density matrix f(λ) = {fij(λ)}∞i,j=1 satisfying minimality condition

(18). The optimal linear estimate ÂNT ξ of the functional ANT ξ based on observations of the process ξ(t) on the
interval t < 0 is calculated by the formula

ÂNT ξ =

∫ π

−π

(⃗hτ,N (λ))⊤dZ⃗ξ(d)(λ)−
∫ 0

−τTd

vτ,N (t)ξ(t)dt, (30)

The spectral characteristic h⃗τ,N (λ) = {hτ,N,k(λ)}∞k=1 and the value of the mean square error ∆(f ; ÂNξ) are
calculated by the formulas

(⃗hτ,N (λ))⊤ = (B⃗τ,N (eiλ))⊤
(1− e−iλτ )d

(iλ)d
− (−iλ)n

(1− eiλτ )d
(C⃗τ,N (eiλ))⊤f−1(λ). (31)
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and

∆(f, ÂNT ξ) = ∆(f, B̂NT ξ) = E|BNT ξ − B̂NT ξ|2

=
1

2π

∫ π

−π

(−iλ)d

(1− eiλτ )d
(C⃗τ,N (eiλ))⊤f(λ)C⃗τ,N (eiλ)

(iλ)d

(1− e−iλτ )d
dλ

=
〈
Dτ

NaN ,F−1
τ,NDτ

NaN
〉
. (32)

respectively, where

B⃗τ,N (eiλ) =

N∑
j=0

(Dτ
NaN )je

iλj , C⃗τ,N (eiλ) =

∞∑
j=0

(F−1
τ,NDτ

NaN )je
iλj

Fτ,N is a linear operator in the space ℓ2 which is determined by a matrix with the infinite matrix entries
(Fτ,N )l,m = F τ

l,m, l ≥ 0, 0 ≤ m ≤ N , and (Fτ,N )l,m = 0, l ≥ 0, m > N .

4. Minimax (robust) method of extrapolation

The values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals
Aξ⃗ and ANT ξ⃗ depending on the unobserved values of a stochastic process ξ(t), which determine a periodically
stationary stochastic increment process ξ(d)(t, τT ) or the corresponding to it infinite dimension vector stationary
increment sequence {ξ⃗(d)j = (ξ

(d)
kj , k = 1, 2, . . . )⊤, j ∈ Z}, with the spectral density matrix f(λ), can be calculated

by formulas (22), (23) and (31), (32) respectively, provided the spectral density f(λ) of the stochastic process ξ⃗(t)
is exactly known. If the spectral density is not known, but a set D of admissible spectral densities is defined, the
minimax method of estimation of the functionals depending on unobserved values of stochastic sequences with
stationary increments may be applied. This method consists in finding an estimate that minimizes the maximal
values of the mean square errors for all spectral densities from a given class D of admissible spectral densities
simultaneously. The described method is formalized by the two following definitions [21].

Definition 4.1
For a given class of spectral densities D the spectral density f0(λ) ∈ D is called the least favourable in D for the
optimal linear estimation of the functional Aξ⃗ if the following relation holds true:

∆(f0) = ∆(hτ (f0); f0) = max
f∈D

∆(hτ (f); f).

Definition 4.2
For a given class of spectral densities D the spectral characteristic h0(λ) of the optimal linear estimate of the
functional Aξ is called minimax-robust if the following conditions are satisfied

h0(λ) ∈ HD =
⋂
f∈D

L0−
2 (f),

min
h∈HD

max
f∈D

∆(h; f) = sup
f∈D

∆(h0; f).

Taking into account the introduced definitions and the derived relations we can verify that the following lemmas
hold true.

Lemma 4.1
The spectral density f0(λ) ∈ D satisfying the minimality condition (18) is the least favourable density in the class
D for the optimal linear extrapolation of the functional Aξ based on observations of the process ξ(t) on the interval
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t < 0 if the operator F0
τ defined by the Fourier coefficients of the function

λ2d|1− eiλτ |−2df−1
0 (λ), (33)

determines a solution to the constrained optimization problem

max
f∈D

(〈
Dτa,F−1

τ Dτa
〉)

=
〈
Dτa, (F0

τ )
−1Dτa

〉
. (34)

The minimax spectral characteristic h0 = hτ (f
0) is calculated by formula (22) if hτ (f

0) ∈ HD.

For more detailed analysis of properties of the least favorable spectral densities and the minimax-robust spectral
characteristics, we observe that the minimax spectral characteristic h0 and the least favourable spectral density f0
form a saddle point of the function ∆(h; f) on the set HD ×D [21]. The saddle point inequalities

∆(h; f0) ≥ ∆(h0; f0) ≥ ∆(h0; f) ∀f ∈ D,∀h ∈ HD

hold true if h0 = hτ (f0), hτ (f0) ∈ HD and f0 is a solution of the constrained optimization problem

∆̃(f) = −∆(hτ (f0); f) → inf, f ∈ D, (35)

where the functional ∆(hτ (f0); f) is calculated by the formula

∆(hτ (f0); f) =
1

2π

∫ π

−π

(−iλ)d

(1− eiλτ )d
(C⃗0

τ (e
iλ))⊤f−1

0 (λ)f(λ)f−1
0 (λ)C⃗0

τ (e
iλ)

(iλ)d

(1− e−iλτ )d
dλ

where

C⃗0
τ (e

iλ) =

∞∑
j=0

((F0
τ )

−1Dτa)je
iλj

.
The constrained optimization problem (35) is equivalent to the unconstrained optimization problem

∆D(f) = ∆̃(f) + δ(f |D) → inf,

where δ(f |D) is the indicator function of the set D, namely δ(f |D) = 0 if f ∈ D and δ(f |D) = +∞ if f /∈ D.
A solution f0 of the unconstrained optimization problem is characterized by the condition 0 ∈ ∂∆D(f0), which
is the necessary and sufficient condition under which the point f0 belongs to the set of minimums of the convex
functional ∆D(f) [5, 21, 29]. This condition makes it possible to find the least favourable spectral densities in
some special classes of spectral densities D.

The form of the functional ∆̃(f) allows us to apply the Lagrange method of indefinite multipliers for
investigating the constrained optimization problem (35).

4.1. Least favorable spectral density in classes D0

Consider the extrapolation problem for the functional Aξ which depends on unobserved values of a process ξ(t)
with periodically stationary increments based on observations of the process at points t < 0 under the condition
that the sets of admissible spectral densities Dk

0 , k = 1, 2, 3, 4 are defined as follows:

D1
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
f(λ)dλ = P

}
,

D2
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
Tr [f(λ)]dλ = p

}
,

D3
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

|λ|2d
fkk(λ)dλ = pk, k = 1, 2, 3, . . .

}
,

D4
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

|λ|2d
⟨B1, f(λ)⟩ dλ = p

}
,

Stat., Optim. Inf. Comput. Vol. 11, September 2023



MAKSYM LUZ, MIKHAIL MOKLYACHUK 825

where p, pk, k = 1, 2, 3, . . . are given numbers, P,B1, are given positive-definite Hermitian matrices.
From the condition 0 ∈ ∂∆D(f0) we find the following equations which determine the least favourable spectral

densities for these given sets of admissible spectral densities.
For the set D1

0 of admissible spectral densities, we have equation(
C⃗0

τ (e
iλ)
)(

C⃗0
τ (e

iλ)
)∗

=

(
|1− eiλτ |2d

λ2d
f0(λ)

)
α⃗ · α⃗∗

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (36)

where α⃗ is a vector of Lagrange multipliers.
For the set D2

0 of admissible spectral densities, we have equation(
C⃗0

τ (e
iλ)
)(

C⃗0
τ (e

iλ)
)∗

= α2

(
|1− eiλτ |2d

λ2d
f0(λ)

)2

, (37)

where α2 is a Lagrange multiplier.
For the set D3

0 of admissible spectral densities, we have equation(
C⃗0

τ (e
iλ)
)(

C⃗0
τ (e

iλ)
)∗

=

(
|1− eiλτ |2d

λ2d
f0(λ)

){
α2
kδkl

}∞
k,l=1

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (38)

where α2
k are Lagrange multipliers, δkl are Kronecker symbols.

For the set D4
0 of admissible spectral densities, we have equation(

C⃗0
τ (e

iλ)
)(

C⃗0
τ (e

iλ)
)∗

= α2

(
|1− eiλτ |2d

λ2d
f0(λ)

)
B⊤

1

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (39)

where α2 is a Lagrange multiplier.
The following theorem holds true.

Theorem 4.1
Let minimality condition (18) hold true. The least favorable spectral densities f0(λ) in the classes Dk

0 , k = 1, 2, 3, 4,
for the optimal linear extrapolation of the functional Aξ from observations of the process ξ(t) on the interval t < 0
are determined by the equations (36), (37), (38), (39), the constrained optimization problem (34) and restrictions
on densities from the corresponding classes Dk

0 , k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the
optimal estimate of the functional Aξ is determined by the formula (22).

4.2. Least favorable spectral density in classes D1δ

Consider the extrapolation problem for the functional Aξ which depends on unobserved values of the process ξ(t)
with periodically stationary increments based on its observations at points t < 0 under the condition that the sets
of admissible spectral densities Dk

1δ, k = 1, 2, 3, 4 are defined as follows:

D1
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣fij(λ)− f1
ij(λ)

∣∣ dλ ≤ δji , i, j = 1,∞
}
.

D2
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|Tr(f(λ)− f1(λ))| dλ ≤ δ

}
;

D3
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣fkk(λ)− f1
kk(λ)

∣∣ dλ ≤ δk, k = 1,∞
}
;

D4
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|⟨B2, f(λ)− f1(λ)⟩| dλ ≤ δ

}
;

Here f1(λ) = {f1
ij(λ)}∞i,j=1 is a fixed spectral density, B2 is a given positive-definite Hermitian matrix, δ, δk, k =

1,∞, δji , i, j = 1,∞, are given numbers.
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From the condition 0 ∈ ∂∆D(f0), we find the following equations which determine the least favourable spectral
densities for these given sets of admissible spectral densities.

For the set D1
1δ of admissible spectral densities, we have equations(
C⃗0

τ (e
iλ)
)(

C⃗0
τ (e

iλ)
)∗

=

(
|1− eiλτ |2d

λ2d
f0(λ)

)
{βijγij(λ)}∞i,j=1

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (40)

1

2π

∫ π

−π

∣∣f0
ij(λ)− f1

ij(λ)
∣∣ dλ = δji , (41)

where βij are Lagrange multipliers, functions |γij(λ)| ≤ 1 and

γij(λ) =
f0
ij(λ)− f1

ij(λ)∣∣f0
ij(λ)− f1

ij(λ)
∣∣ : f0

ij(λ)− f1
ij(λ) ̸= 0, i, j = 1,∞.

For the set D2
1δ of admissible spectral densities, we have equations(

C⃗0
τ (e

iλ)
)(

C⃗0
τ (e

iλ)
)∗

= β2γ2(λ)

(
|1− eiλτ |2d

λ2d
f0(λ)

)2

, (42)

1

2π

∫ π

−π

|Tr (f0(λ)− f1(λ))| dλ = δ, (43)

where β2 are Lagrange multipliers, the function |γ2(λ)| ≤ 1 and

γ2(λ) = sign (Tr (f0(λ)− f1(λ))) : Tr (f0(λ)− f1(λ)) ̸= 0.

For the set D3
1δ of admissible spectral densities, we have equations(

C⃗0
τ (e

iλ)
)(

C⃗0
τ (e

iλ)
)∗

=

(
|1− eiλτ |2d

λ2d
f0(λ)

){
β2
kγ

2
k(λ)δkl

}∞
k,l=1

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (44)

1

2π

∫ π

−π

∣∣f0
kk(λ)− f1

kk(λ)
∣∣ dλ = δk, (45)

where β2
k are Lagrange multipliers, δkl are Kronecker symbols, functions

∣∣γ2
k(λ)

∣∣ ≤ 1 and

γ2
k(λ) = sign (f0

kk(λ)− f1
kk(λ)) : f0

kk(λ)− f1
kk(λ) ̸= 0, k = 1,∞.

For the set D4
1δ of admissible spectral densities, we have equations(
C⃗0

τ (e
iλ)
)(

C⃗0
τ (e

iλ)
)∗

= β2γ′
2(λ)

(
|1− eiλτ |2d

λ2d
f0(λ)

)
B⊤

2

(
|1− eiλτ |2d

λ2d
f0(λ)

)
, (46)

1

2π

∫ π

−π

|⟨B2, f0(λ)− f1(λ)⟩| dλ = δ, (47)

where β2 are Lagrange multipliers, function |γ′
2(λ)| ≤ 1 and

γ′
2(λ) = sign ⟨B2, f0(λ)− f1(λ)⟩ : ⟨B2, f0(λ)− f1(λ)⟩ ≠ 0.

The derived results are summarized in the following theorem.

Theorem 4.2
Let minimality condition (18) hold true. The least favorable spectral densities f0(λ) = {f0

ij(λ)}∞i,j=1 in the classes
Dk

1δ, k = 1, 2, 3, 4 for the optimal linear extrapolation of the functional Aξ from observations of the process ξ(t)
at points t < 0 are determined by equations (40) – (41), (42) – (43), (44) – (45), (46) – (47), respectively, the
constrained optimization problem (34) and restrictions on the densities from the corresponding classes Dk

1δ, k =
1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by
the formula (22).
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5. Conclusions

In this article, we dealt with continuous time stochastic processes with periodically correlated d-th increments.
These stochastic processes form a class of non-stationary stochastic processes that combine periodic structure of
covariation functions of processes as well as integrating one.

We derived solutions of the problem of estimation of the linear functionals constructed from the unobserved
values of a continuous time stochastic process with periodically correlated d-th increments. Estimates are based
on observations of the process at points t < 0. We obtained the estimates by representing the process under
investigation as a vector-valued sequence with stationary increments. Based on the solutions for these type of
sequences, we solved the corresponding problem for the defined class of continuous time stochastic processes. The
problem is investigated in the case of spectral certainty, where spectral densities of sequences are exactly known. In
this case we propose an approach based on the Hilbert space projection method. We derive formulas for calculating
the spectral characteristics and the mean-square errors of the optimal estimates of the functionals. In the case of
spectral uncertainty where the spectral densities are not exactly known while, instead, some sets of admissible
spectral densities are specified, the minimax-robust method is applied. We propose a representation of the mean
square error in the form of a linear functional in L1 with respect to spectral densities, which allows us to solve
the corresponding constrained optimization problem and describe the minimax-robust estimates of the functionals.
Formulas that determine the least favorable spectral densities and minimax-robust spectral characteristics of the
optimal linear estimates of the functionals are derived for a wide list of specific classes of admissible spectral
densities.
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