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Abstract A carbon emission trading self-scheduling (CETSS) model was proposed. The proposed model considered not
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1. Introduction

Climate change has threatened the survival and sustainable development of human beings, and has become one
of the major challenges facing the world in the 21st century. In order to cope with climate change at a low cost,
carbon market emerged as a market mechanism for emission reduction, which has been applied by more and
more countries and regions in their own energy saving and emission reduction practices. The European Union has
created the world’s first carbon market: the European Union Emissions Trading System. China launched a pilot
carbon market in 2010, and established carbon markets in Shenzhen, Shanghai, Fujian and other places from 2013
to 2016, in 2017, the construction of the national carbon market was officially launched, and in 2021, it began to
operate formally with the power industry as a breakthrough. The charges and trades for the emissions right trades
of carbon dioxide will lead to new challenges and reform of power suppliers owing to the power industry being the
largest emitter of greenhouse gases.

Based on power market mechanisms, to maximise profit, generation companies (GENCO) have to forecast
loads on the power system and marginal prices during different periods. They need to optimise the scheduling
of generation by considering constraints on generator operations and other factors. The mathematical model of
self-scheduling (SS) is complex, large-scale, non-linear mix integer programming problem. Since their proposal,
many scholars have conducted research thereon and proposed numerous solution methods, such as the binary
fireworks algorithm [1], imperialist competitive algorithm [2], Lagrange relaxation-differential evolution algorithm
[3], binary successive approach and civilized swarm optimization [4], and memetic binary differential evolution
algorithm [5]. In recent years, mix integer programming has been an essential method for solving SS problems
with the improvement of computer performance and the development of software packages for solving large-scale
optimization problems. For instance, the SS problem was transformed into a non-linear mix integer programming
task to be solved using commercial software, including GAMS and CPLEX [6], [7], [8]. In previous research [9]

∗Correspondence to: Xijian Wang (Email: 13822336553@139.com). Department of Mathematics, Wuyi University. 99 Yingbin Road,
Jiangmen, Guangdong Province, China (529020).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2023 International Academic Press



786 SELF-SCHEDULING WITH CARBON EMISSION TRADING

the authors established a mix integer linear programming (MILP) model to solve the SS problem through piece-
wise linearisation of the quadratic cost function, and achieved beneficial results. An MILP model is used in [10]
for self-scheduling of thermal units when focusing on the modelling of hot, warm, and cold start-up types.

Currently, SS is endowed with new connotations due to the introduction of constraints and trading in carbon
emission rights. For example, by using the constraint on carbon emission rights, other methods [11] established
SS-based hybrid, non-linear, integer programming models. Elsewhere [12] a multi-objective model for solving SS
problems based on maximum profit for power suppliers and minimum carbon emissions were developed. However,
other work [11], [12] merely considered the limits to carbon emissions in their models and did not focus on traded
carbon emission rights.

This research investigated current features of the trading market in carbon emission rights. On this basis, it
proposed a CETSS model by considering traded carbon emission rights, according to the management and trade
modes for total carbon emissions. The model not only takes into account constraints on carbon emissions, but
also traded carbon emission rights. When solving the problem in the model, the second-order cone constraint is
approximately regarded as a linear form using the polynomial method to form a new MILP model, thus SS can be
solved efficiently and rapidly.

The main contributions of this paper are as follows.
(1)A new CETSS model is presented in order to analyse the impact of carbon trading to GENCO.
(2)A new method is proposed for solving the CETSS model based on piecewise linearization and second-order

cone linearization.
This paper is outlined as follows: in the following section, we introduce the carbon emissions trading self-

scheduling model; in Section 3, we provide MILP solutions based on piece-wise linearisation and second-order
cone linearisation; in Section 4, we present a numerical example; and we provide concluding remarks in Section 5.

2. Formulation of a carbon emission trading self-scheduling problem

2.1. Profit objective function of GENCO

The CETSS objective function comprises: generation income, the fuel cost of generating units, the start-up cost,
and the carbon emission trading cost:

max Fprofit = RV − TC − EM (1)

Where

RV =

T∑
t=1

N∑
i=1

λtut
iP

t
i (2)

TC =

T∑
t=1

N∑
i=1

[ut
ifi(P

t
i ) + ut

i(1− ut−1
i )Ct

Ui] (3)

EM = λPEP − λSES (4)

where Fprofit is the profit; RV represents generation income; TC is the total fuel and start-up costs combined;
EM is the emissions cost; T refers to the total time period; N is the number of generated units; λt represents the
electricity price over time period t; ut

i is the operation status of unit i during period t. When ut
i = 1 , it implied

that unit i is in operation, and when ut
i = 0, it was stopped. P t

i , fi(P t
i ), and Ct

Ui refer to the active generation, fuel
cost function, and start-up cost of unit i in period t, respectively; λP ,λS , EP and ES represent the carbon purchase
price, selling price, purchase quantity and selling quantity.

The function fi(P
t
i ) in (3) is denoted by:

fi(P
t
i ) = αi + βiP

t
i + γi(P

t
i )

2

where αi, βi and γi are parameters of the unit.
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The start-up cost Ct
Ui in (3) is specified as:

Ct
Ui =

{
Chot

i : T off
i ≤ −T t

i ≤ T off
i + T cold

i

Ccold
i : −T t

i > T off
i + T cold

i

Where Chot
i is the warm start-up cost of unit i; Ccold

i refers to its cold start-up cost; T off
i is its minimum down

time; T t
i is its consistent operating time (positive) or stop time (negative) in period t, and T cold

i is the cold start-up
time.

2.2. Constraints

The constraint conditions on the CETSS model included: system constraints, unit generation and spinning reserve
constraints, unit ramp rate constraints, the minimum on/off time constraints, and carbon emission quota constraints
given by (5) to (16):

(1) System constraints
N∑
i=1

P t
i ≤ P t

D (5)

N∑
i=1

Rt
i ≤ St

R (6)

(2) Unit generation and spinning reserve constraints

0 ≤ Rt
i ≤ ut

i(P
max
i − Pmin

i ) (7)

ut
iP

min
i ≤ P t

i +Rt
i ≤ ut

iP
max
i (8)

ut
iP

min
i ≤ P t

i ≤ ut
iP

max
i (9)

(3) Unit ramp rate constraints

P t
i − P t−1

i ≤ ut−1
i Pup

i + (ut
i − ut−1

i )P start
i + (1− ut

i)P
max
i (10)

P t−1
i − P t

i ≤ ut−1
i P down

i + (ut−1
i − ut

i)P
shut
i + (1− ut−1

i )Pmax
i (11)

(4) Minimum on/off time constraints

(ut−1
i − ut

i)(T
t−1
i − T on

i ) ≥ 0 (12)

(ut
i − ut−1

i )(−T t−1
i − T off

i ) ≥ 0 (13)

(5) Carbon emission quota constraints

T∑
t=1

N∑
i=1

ut
igi(P

t
i ) ≤ EC + EP − ES (14)

0 ≤ EP ≤ zEC (15)

0 ≤ ES ≤ (1− z)EC (16)
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3. MIP on CETSS problem

Judging from the mathematical model, the CETSS problem is a complex, large-scale, non-linear programming
model which consists of not only the discrete variables but also the continuous variables. The former variable
contains the starting up and powering off states for the generator while the latter includes power output and reserve.
This non-linear model is mainly characterised by the cost of power generation, the starting up of the generator in
the objective function, as well as constrains including the shortest time for starting up and shutting down, and the
quota for carbon emissions. It is difficult to solve CETSS problems in any direct sense: this research transforms the
problem into an MILP model based on the idea of linearisation of a second-order cone. The research indicates that
the MILP model presents perfect computational efficiency and accuracy in the solution of large-scale problems.

3.1. MIQP model of CETSS problem

(1) Generation cost
In the objective function (1),ut

iP
t
i is the power generation cost, and:

ut
ifi(P

t
i ) = αiu

t
i + βiP

t
i u

t
i + γi(P

t
i )

2ut
i (17)

So (17) is a non-convex term which is unfavourable for solving the function. In terms of (9), relating to the
constraints of power output, if ut

i = 0, P t
i = 0. When ut

i = 1, P t
i is between the minimum and maximum power

output. It indicates that ut
i closely corresponds to P t

i . Regardless of whether ut
i = 0 or ut

i = 1, we obtain:

P t
i u

t
i = P t

i (18)

(P t
i )

2ut
i = (P t

i )
2 (19)

Thus, (17) can be constructed as the lower convex form as follows:

ut
ifi(P

t
i ) = αiu

t
i + βiP

t
i + γi(P

t
i )

2 (20)

Likewise, λtut
iP

t
i - the power generation income, as the first term of the objective function is denoted by λtP t

i .
(2) Start-up cost

Initially, the start-up cost and the minimum on/off time constraints were linearised. The research applied a
method reported elsewhere [13] to linearise the start-up cost. For convenience St

i = ut
i(1− ut−1

i )Ct
Ui, and St

i was
approximately transformed into: St

i ≥ Kτ
i (u

t
i −

τ∑
j=1

ut−j
i )

St
i ≥ 0, i = 1, ..., N ; t = 1, ..., T ; τ = 1, .., NDi

(21)

where coefficient Kτ
i refers to

Kτ
i =

{
Chot

i : τ = 1, ..., T off
i + T cold

i

Ccold
i : τ = T off

i + T cold
i + 1, ..., NDi

and NDi is the given parameter.
(3) Minimum on/off time

The minimum on/off time constraints of (12) and (13) were non-linear and were transformed to the following
linear versions using the method suggested in the literature [14]:

θ(T on
i )∑

τ=t

uτ
i ≥ (ut

i − ut−1
i )ς(T on

i ) + ν(t− 1)θ0i (22)
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θ(T off
i )∑

τ=t

(1− uτ
i ) ≥ (ut−1

i − ut
i)ς(T

off
i ) + ν(t− 1)ς0i (23)

where ν(t− 1) is the unit impulse function; and
θ(ω) = min{t+ ω − 1, T}
ς(ω) = min{ω, T − t+ 1}
θ0i = u1

iu
0
imax{0, T on

i − T 0
i }

ς0i = (1− u1
i )(1− u0

i )max{0, T off
i + T 0

i }

where u0
i and T 0

i are known quantities.
(4) Carbon emissions quota

Based on ways of dealing with power generation costs mentioned in Section 3.1, the constraint of a carbon
emission quota is established as (24):

T∑
t=1

N∑
i=1

[ut
iai + biP

t
i + ci(P

t
i )

2] ≤ EC + EP − ES (24)

This is a non-linear constraint. Based on the linearisation idea proposed by [13], the constraint of a carbon
emission quota (Eq. (24)) can be transformed into a linear constraint system as follows:

T∑
t=1

N∑
i=1

Aiu
t
i +

T∑
t=1

N∑
i=1

L∑
l=1

Fliδ
t
li ≤ EC + EP − ES (25)

P t
i =

L∑
l=1

δtli + Pmin
i ut

i (26)

δtli ≤ q1i − Pmin
i (27)

δtli ≤ qli − ql−1i, l = 2, . . . , L− 1 (28)

δtLi ≤ Pmax
i − qL−1i (29)

δtli ≥ 0 (30)

Where Ai = ai + biP
min
i + ci(P

min
i )2; L denotes the linearised piece-wise number; Fli refers to the slope of the

l piece-wise segment of generator i; qli represents the power output of the l piecewise segment of generator i; and
δtli is an instrumental variable.
(5) MIQP formulation

According to the methods of dealing with the cost of power generation and start-up of the generator, the minimum
on/off time, as well as the carbon emission quota, give a MIQP formulation of CETSS problem

max
T∑

t=1

N∑
i=1

[λtP t
i − αiu

t
i − βiP

t
i − γi(P

t
i )

2 − St
i ]

s.t.

{
(5)− (11), (15)− (16), (22)− (23), (25)− (30)
ut
i ∈ {0, 1}, z ∈ {0, 1}

(31)

3.2. MISOCP model of the CETSS problem

(1) A more compact second-order conic relaxation
To consider a simple mix integer set, we obtain:

C = {(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s, z ∈ {0, 1}} (32)

Stat., Optim. Inf. Comput. Vol. 11, June 2023



790 SELF-SCHEDULING WITH CARBON EMISSION TRADING

where {s2 − y ≤ 0} can be {s2 − 2py ≤ 0, p = 1
2}: a rotation second-order cone form.

The continuous relaxation of set C is expressed as:

CR = {(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s, 0 ≤ z ≤ 1} (33)

The continuous relaxation CR is loose. To overcome the shortfall of looseness, the literature [15] proposes a
much more compact continuous relaxation:

CJ = {(s, y, z)|s2 − zy ≤ 0, zs ≤ s ≤ zs, 0 < s < s, 0 ≤ z ≤ 1} (34)

To discuss the compactness of set CJ , the set is defined as:

CS = {(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s, 0 < z < 1} (35)

Research [15] pointed out the satisfaction relations of the sets defined by Eqns (33) to (35):{
CS ⊂ CR, CS ∩ CJ = ∅
C ⊂ CJ ⊂ CR

(36)

Eq. (36) shows that CJ at least excluded the subset CS of CR. Therefore, CJ can more compactly conclude the
mix integer set C than CR.
(2) MISOCP formulation

According to Section 3.2, CJ is able to more closely conclude the mix integer set C than CR. We can also obtain
a much more compact MISOCP model, regarding CETSS in Eq. (31), by means of the compactness of CJ .

By introducing instrumental variable vti , (31) can be converted to:

max
T∑

t=1

N∑
i=1

(λtP t
i − αiu

t
i − βiP

t
i − γiv

t
i − St

i )

s.t.

 (5)− (11), (15)− (16), (22)− (23), (25)− (30)
ut
i ∈ {0, 1}, z ∈ {0, 1}

(P t
i )

2 ≤ vti

(37)

Each couple of indices (i, t) can be defined as the set:

Ct
i = {(P t

i , v
t
i , u

t
i)|(P t

i )
2 − vti ≤ 0, ut

iP
min
i ≤ P t

i ≤ ut
iP

max
i , ut

i ∈ {0, 1}}

So Ct
i is the concrete form of set C in (32). From (34), we can obtain:

Ct
Ji = {(P t

i , v
t
i , u

t
i)|(P t

i )
2 − ut

iv
t
i ≤ 0, ut

iP
min
i ≤ P t

i ≤ ut
iP

max
i , vti ≥ 0, 0 ≤ ut

i ≤ 1}

Hence, the more compact MISOCP formulation of CETSS problem is obtained.

max
T∑

t=1

N∑
i=1

(λtP t
i − αiu

t
i − βiP

t
i − γiv

t
i − St

i )

s.t.


(5)− (11), (15)− (16), (22)− (23), (25)− (30)
ut
i ∈ {0, 1}, z ∈ {0, 1}

(P t
i )

2 ≤ ut
iv

t
i

vti ≥ 0

(38)

where (P t
i )

2 ≤ ut
iv

t
i is a rotational second-order conic constraint.
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3.3. MILP model of CETSS problem

(1) Second-order cone linearisation
The solution algorithm for linear programming has been mature and efficient. Thus, transforming the second-

order conic programming into its linear form provides another method for second-order conic programming. It can,
in particular, be converted to an MILP model when the constraint contains integer variables.

Taking into account the second-order cone constraint, we obtain:

x1 ≥
√

x2
2 + x2

3 (39)

Based on other research [16], (39) can be converted to the following linear system:

ξ0 ≥ |x2| (40)

η0 ≥ |x3| (41)

ξi = cos(
π

2i+1
)ξi−1 + sin(

π

2i+1
)ηi−1 (42)

ηi ≥
∣∣∣−sin(

π

2i+1
)ξi + cos(

π

2i+1
)ηi

∣∣∣ , i = 1, 2, ..., v (43)

ξv ≤ x1 (44)

ηv ≤ tan(
π

2v+1
)ξv (45)

In (40) to (45), ξ0, η0, ξi, and ηi are added variables and the total number of added variables is 2(v + 1).
The linear system expressed by (40) to (45) is the polyhedron in (v + 3) dimensional space. Its projection on the

Cartesian coordinate system with x2 and x3 as axes is a polygon of the inscribed circle. The radius of the circle is
x1, and the number of edges of the polygon is 2v+1.

In terms of the second-order conic constraint x1 ≥
√

x2
2 + x2

3 , if the polyhedron is approximately processed to
be a linear constraint, the error is [16]:

δ(v) =
1

cos( π
2v+1 )

− 1 (46)

(2) MILP formulation
According to Section 3.3, the linearisation of the second-order conic constraint is more accurate. The MILP

formulation of CETSS problem is acquired through linearisation as mentioned in Section 3.3.
Based on the rotational second-order conic constraint of (38), we get

(P t
i )

2 ≤ ut
iv

t
i (47)

Eq. (47) can be equivalently transformed into the following second-order conic constraint:√(
vti − ut

i

2

)2

+ (P t
i )

2 ≤ vti + ut
i

2
(48)

Eq. (48) is converted to a linear constraint through linearisation (as in Section 3.3) as follows:

ξt0i ≥
∣∣P t

i

∣∣ (49)

ηt0i ≥
∣∣∣∣vti − ut

i

2

∣∣∣∣ (50)

ξtki = cos
( π

2k+1

)
ξtk−1i + sin

( π

2k+1

)
ηtk−1i (51)
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ηtki ≥
∣∣∣− sin

( π

2k+1

)
ξtki + cos

( π

2k+1

)
ηtk−1i

∣∣∣ , k = 1, 2, · · · ,K (52)

ξtKi ≤
vti + ut

i

2
(53)

ηtKi ≤ tan
( π

2K+1

)
ξtKi (54)

ξt0i, η
t
0i, ξ

t
ki and ηtki in (49) to (54) are instrumental variables.

For the sake of ease of programming, the symbols of absolute value in (49), (50), and (52) are removed. Eq. (9)
reveals that P t

i ≥ 0, so the absolute value in (49) can be directly eliminated as follows:

ξt0i ≥ P t
i (55)

For (50), if ut
i = 0 , it is seen that vti = 0 according to both (9) and (47). Similarly, if ut

i = 1, vti > ut
i.Therefore,

the absolute value in (50) can also be directly eliminated as:

ηt0i ≥
vti − ut

i

2
(56)

Eq. (52) is transformed into the constraint, according to the inequality property of the absolute value, as follows:

ηtki ≥ − sin
( π

2k+1

)
ξtk−1i + cos

( π

2k+1

)
ηtk−1i (57)

ηtki ≥ sin
( π

2k+1

)
ξtk−1i − cos

( π

2k+1

)
ηtk−1i (58)

Hence, the MILP formulation of CETSS problem is obtained:

max
T∑

t=1

N∑
i=1

(λtP t
i − αiu

t
i − βiP

t
i − γiv

t
i − St

i )

s.t.


(5)− (11), (15)− (16), (22)− (23), (25)− (30)
ut
i ∈ {0, 1}, z ∈ {0, 1}

(51), (53)− (58)
vti ≥ 0

(59)

4. Numerical results

The hardware platform for the numerical calculation is a Pentium® dual-core CPU T4300 (2.1 GHz, 2.09 GHz) PC,
1.93 GB RAM, running the software MOSEK 6.0 under MATLAB 2010a environment. The generator parameters,
and the load data over each 24 hour period, for 10 unit systems are taken from previous literature [17]; the ramp
rate constraint data is obtained from [18]; the emissions parameter from [6]; and the electricity price data from [6].

4.1. Self-scheduling without carbon emission trading

The MISOCP formulation of SS problem does not consider the cost or quota constraint of carbon emissions in
the objective function in (38). While The MILP formulation of SS problem does not take into account the cost or
quota constraint of carbon emissions in the objective function in (59). The model obtained through linearisation
of the second-order cone in this work (defined as MILP-II) is compared with the model obtained through piece-
wise linearisation in [13] (defined as MILP-I): the solution process is shown in more detail elsewhere [13]. The
piece-wise number of linearisations for MILP-I model is 6 and NDi = 10 ; while the linearised parameters of the
MILP-II model are K = 3 and NDi = 10. The relatively optimal clearance is designed as 0.3% when solving the
MILP model.
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Table 1 shows the comparison of results obtained by three models: MISOCP, MILP-I, and MILP-II. The values in
the models are the profit achieved by power suppliers in the scheduling period. It is difficult to solve the large-scale
MISOCP model directly. Therefore, the authors firstly solve the continuous relaxation problem in the MISOCP
model using the method proposed in the literature [19]. Then, the state of the generator is regulated to make it
satisfy all constraints. On this basis, the start-up and shut-down states of the generator for the SS problem can be
obtained. Consequently, the quadratic programming problem is solved. Table 2 shows the comparison of computing
times using three models: MISOCP, MILP-I, and MILP-II. Table 3 lists the number of variables and constraints in
MILP-I and MILP-II.

Table 1. Comparison of three models ($)

Number
of units

10 20 40 60 80 100

MISOCP 711261 1422522 2845045 4267567 5690090 7112612
MILP-I 715193 1434189 2869324 4304600 5735846 7170291
MILP-II 715119 1434305 2870803 4306049 5744867 7179209

Table 2. Execution time comparison of three models (s)

Number
of units

10 20 40 60 80 100

MISOCP 3.25 5.98 10.88 15.91 21.15 26.87
MILP-I 49.43 141.58 169.76 463.12 688.3 868.87
MILP-II 40.37 111.62 134.56 245.96 429.94 605.11

Tables 1 and 2 indicate that it is quite difficult to solve the MISOCP model directly. However, the solution using
continuous relaxation is not accurate even though less computing time is required. Thus, how to establish a more
compact continuous relaxation problem needs to be investigated further. Except for the 10 generator system over
24 hours, the MILP-II models in other systems are more optimal than the MILP-I model. Moreover, the computing
time needed by MILP-II is less than that for MILP-I: this indicates that a better MILP formulation can be obtained
by adopting the linearisation technology of second-order conics as mooted here.

Table 3. Variable and constraint number of MILP-I model

Number
of units

10 20 40 60 80 100

Total
variables

2400 4800 9600 14400 19200 24000

Integer
variables

240 480 960 1440 1920 2400

Constraints 4848 9648 19248 28848 38448 48048

Table 3 and 4 indicate that the linearisation method of second-order conics does not increase the number of
integer variables but the numbers of continuous variables and constraints. The number of increased continuous
variables and constraints depends on the parameter. The number of increased continuous variables and constraints
in the MILP-II model is greater than for MILP-I, but the computing time of the former does not increase.
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Table 4. Variable and constraint number of MILP-II model

Number
of units

10 20 40 60 80 100

Total
variables

3120 6240 12480 18720 24960 31200

Integer
variables

240 480 960 1440 1920 2400

Constraints 7728 15408 30768 46128 61488 76848

4.2. Self-scheduling with carbon emissions trading

The MILP formulation of CETSS problem is indicated in (59). Taking the 10 generator over 24 hours as an example,
it is assumed that the prices for purchasing and selling carbon emissions quotas are the same: the virtual price scene
ranges from $1 per tonne to $29 per tonne in 15 scenarios in total with a tax rate difference of $2 per tonne among
contiguous scenarios. Neglecting the carbon emission rights trade, the total emissions of the 10th generator over
24 hours is 26,702 tonnes with a profit of $71,5191, and the capacity of power generation is 26,970 MW. The total
emissions are defined as Em = 26702 tonnes and the carbon emissions quota is assumed to be 0.5Em. Fig. 1 shows
the total carbon dioxide emissions for different price scenarios; Fig. 2 shows the varied carbon trade costs; Fig. 3
shows the total profits for each scenario; and Fig. 4 shows the power outputs for different carbon price scenarios.
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Figure 1. CO2 emission of different carbon price scenarios.

As seen from Fig. 1, the carbon emissions decrease with increasing carbon price. When the price ranges from
$1 per tonne to $15 per tonne, the carbon emissions are higher than the corresponding carbon emission quota;
hence, power suppliers have to purchase quota in the carbon market. However, power suppliers need to change
their market strategy as the carbon price rises, which leads to an increasing carbon trade cost. When the price
ranges from $17 per tonne to $29 per tonne, the carbon emissions are lower than the given carbon emission quota;
power suppliers sell redundant quota instead of purchasing so as to achieve profit from the carbon market.

Fig. 2 shows that when the carbon price is zero, the carbon trade cost for power suppliers is zero. In the case of
a low carbon price, power suppliers purchase carbon emission rights; the trade cost shows an increasing tendency
as the price increases. When the price is higher than $9 per tonne, the carbon emissions purchased decreases: this
further reduces the trade cost. When the price is roughly $16 per tonne, the carbon emissions decrease to a level
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Figure 2. Carbon trading costs of different carbon price scenarios.

Carbon price ($/ton)

0 5 10 15 20 25 30

P
ro

fi
t 
($

)

×105

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

Figure 3. Profit of different carbon price scenarios.

equal to the quota, which produces no trade cost. Afterwards, power suppliers sell their carbon emission rights as
the price is higher than $16 per tonne, to profit from the carbon market (the carbon trade cost is now negative).

Fig. 3 shows that when the carbon price is low, power suppliers pay extra carbon trade costs; the total profit
therefore shows a decreasing trend. As the price rises to $16 per tonne, profit declines and reaches its lowest level.
Afterwards, as the price rises from $16 per tonne to a higher level, the profit increases; the elevated price produces
more profit for power suppliers.

Fig. 4 shows that using the CETSS model, power suppliers ensure that power output is lower than load demand.
The power output of the generator has also been reduced as the carbon price rises. This reveals the more apparent
effect of increasing carbon price on curbing power demand.
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Figure 4. Generation of different carbon price scenarios.

5. Conclusion

This research proposes a carbon emission trading self-scheduling problem. The CETSS model is solved by
transforming it into an MILP formulation based on piece-wise linearisation, and second-order conical, linearisation
methods. The simulation results from 10 to 100 unit systems over a 24-hour period show that the MILP-II process
is superior to MILP-I. Overall, we conclude that the carbon price has a greater effect on the unit’s emissions, profits,
and outputs.
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