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Abstract Though the name Partial Bayes was used earlier in a different context, but in statistics this was started from
2021, [20]. Also, we know that empirical Bayes method was studied extensively for several decades. In this paper, these
two methods are compared in two parameter gamma distribution having the shape and scale parameters. As expected, it is
found that empirical Bayes method is good in some cases. However, partial Bayes method performs even better in some
cases where the shape parameter is sufficiently small, i.e. variation in the data is small. Even, overall performances of these
two methods do not differ too much. But whenever we have information that shape parameter is small, then partial Bayes
method in this case performs well. These results are also found by extensive simulation technique. The performance of these
two estimators are also compared using two real datasets.
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1. Introduction

Modeling positive (right skewed) data set, particularly when data are not censored in reliability and survival analysis
the two parameter gamma distribution has been used extensively. Also, in several applied field such as life testing
experiments, insurance, meteorology, climatology and many other physical situations, it offers better fit. A random
variable X is said to follow gamma distribution, denoted as G(α, β), if the probability density function can be
written in the following form

f(x | α, β) = βα

Γα
xα−1e−β x; x > 0, (1)

where α > 0 and β > 0 are the shape and scale parameters respectively. This is a flexible distribution that has
increasing, decreasing or constant failure rate functions depending on the value of shape parameter α > 0, α < 0
or α = 0, respectively [4]. Also, it exhibits some nice relationship with other popular distributions, including
exponential and other distributions.

In literature, several attempts have been made towards estimating the two parameters of gamma distribution both
in classical and Bayesian ways. The estimates based on maximum likelihood methods of the parameters of gamma
distribution have been discussed in [1], [14], [27] etc. A class of moment based estimators were introduced in [21]
and some of them were shown to be efficient. Saulo et al. [12] proposed two new alternative estimation methods
for two parameter gamma distribution, known as modified moment estimators (MMEs) and new MMEs. It can be
observed that the involvement of the gamma function in the shape parameter in (1), can led to complicated analyses
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both in MLE and Bayesian methods. Earlier, the Bayesian analysis for the gamma distribution was discussed in
[7] and [23]. Son and Oh [29] obtained the Bayes estimators of the two parameter gamma distribution under the
assumption of non-informative prior and using Gibbs sampling technique. Apolloni and Bassis [2] provided an
estimation procedure of the two parameter gamma distribution based on algorithmic inference approach without
assuming any prior of these parameters. Moala et al. [9] discussed the Bayes estimates and credible intervals for
the unknown parameters of gamma distribution assuming different non-informative priors. A new two-parameter
biased estimator has been proposed in [28] for gamma regression models.

Apart from the Bayesian method, empirical and hierarchical Bayesian approaches are also available. Robbins
[11] introduced the empirical Bayes (EB) methods and applied in the problems where the researchers wish to make
inferential statements about the unknown hyper-parameters. Some works on empirical Bayes estimation procedure
have been worked out in [26], [19], [3], [13], [6], [30] etc. Hierarchical Bayesian method is more robust than
ordinary Bayes method as it involves multiple stages for estimating the parameters involved in the prior distribution.
Actually these two methods are step by step understanding of the prior belief, i.e. sometimes the parameters of the
prior distribution are partially or completely unknown and those parameters are estimated from available data.
Recently, in Bayesian setup a new estimation approach, known as Partial Bayes (PB) estimation has been proposed
by Banerjee and Seal [20]. According to them, when the prior information regarding the joint parameters of a
multi-parameter model is not available and one of the parameter is estimated in presence of another unknown
parameter, this method is useful. The prior regarding the parameter of interest is to be realized and is estimated in
Bayesian way. This is not fully known due to the presence of another unknown model parameter and this unknown
part is estimated by using some classical estimation techniques, such as maximum likelihood estimates or method
of moments etc. The fundamental difference between these two types of method is: in EB approach, the hyper-
parameters involved in the Bayes estimate is unknown, whereas in PB approach hyper-parameters are known but
at least one of the model parameters is unknown.

So, clearly the traditional EB method and recent PB method are two distinct approaches in Bayesian inference.
Now, our motivation behind this study is to make a comparison between these two methods. For this purpose
we consider gamma distribution as the baseline model and assume conjugate prior for the scale parameter β.
The Bayes estimate is obtained under weighted squared error loss function (WSELF). Integrated risks for both
the estimators, i.e. empirical and partial Bayes for the scale parameter β are obtained through an extensive
simulation. Furthermore, the performances are also compared in terms of their risk efficiencies for different
parameter combinations and varying sample sizes.

The article is organized in the following manner. In Section 2, Bayes estimate for the scale parameter β under
conjugate gamma prior is obtained. Partial Bayes and empirical Bayes estimation methods are discussed in Sections
3 and 4 respectively. In Section 5, numerical results are shown to compare the performance of these two methods
in terms of their risk values. In Section 6, two real datasets have been utilized to understand the behaviour of the
estimators. The study concludes in Section 7 with a brief discussion.

2. Estimation of scale parameter

Let x1, x2, · · · , xn be a random sample drawn from two parameter gamma distribution (1) and the scale parameter
β is only the parameter of interest to us. The likelihood function of the observed data is

L = L(x | α, β) =
(
βα

Γα

)n n∏
i=1

xα−1
i e−β

∑n
i=1 xi . (2)

The posterior distribution summarizes the sample information in presence of the available probabilistic information
of the parameters. Here, it is obtained by considering conjugate gamma prior for the unknown scale parameter β
of the baseline distribution. It is well known that the joint conjugate prior does not exist when both the parameters
are unknown [15]. Also a conjugate prior is often used in limited information scenario. The prior distribution of β
is

π(β) =
ba

Γa
βa−1e−bβ , (3)
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where a > 0 and b > 0 are the shape and scale hyper-parameters respectively. Now, by combining the likelihood
function (2) and the prior distribution (3), we have the following posterior distribution of β.

Π(β | x) =
f (x | α, β)π(β)∫∞

0
f (x | α, β)π(β) dβ

=
β(αn+a)−1e−(

∑n
i=1 xi+b)β∫∞

0
β(αn+a)−1e−(

∑n
i=1 xi+b)βdβ

=

(
b+

∑n
i=1 xi

)αn+a

Γ
(
αn+ a

) β(αn+a)−1e−(b+
∑n

i=1 xi)β . (4)

Therefore,

β | X ∼ gamma

(
αn+ a, b+

n∑
i=1

xi

)
.

To obtain the Bayes estimate, specification of a loss function is a crucial part as it measures the loss which is
incurred while making a decision δ(x) about the true parameter value β. For the estimation of the scale parameter,
a modified form of squared error loss function i.e. the weighted squared error loss function (WSELF) is used [5]
and it is defined as

l(β, δ(x)) =

(
δ(x)

β
− 1

)2

,

i.e. l(β, δ(x)) = (δ(x)− β)
2
ω(β); with ω(β) =

1

β2
.

Therefore, the Bayes estimate under WSELF is obtained as

β̂BE =
E {βω(β)|X = x}
E {ω(β)|X = x}

=
αn+ a− 2

b+
∑n

i=1 xi
. (5)

3. Partial Bayes (PB) Estimation

Sometimes when there does not exist any proper belief regarding the joint parameters of the model and we want
to estimate the parameter of interest in presence of some other nuisance parameters, then the Partial Bayes (PB)
method is beneficial. In this method, the Bayes estimate of the concerned parameter involves any classical estimate
of the nuisance parameter. So, the estimate is obtained by mixing both the Bayesian and classical idea and also
different from empirical Bayes method.

Now, to obtain the PB estimate of the scale parameter β in presence of the nuisance parameter α, let us make
the following assumption that the model parameter α is unknown and it is to be estimated by some classical
approach. Here, we use the maximum likelihood estimation (MLE) method due to its various desirable properties
like consistency, asymptotic efficiency, and invariance [25]. So, we estimate α through MLE and plug that value
in the Bayes estimate expression (5). Generally, after differentiating the log likelihood function and setting the
resultant derivative to zero, the maximum likelihood estimators are obtained. But, in gamma distribution when
both the model parameters are unknown it is difficult to obtain the MLE in closed from.
The log-likelihood function becomes

log L = αn log β − n log Γα+ (α− 1)

n∑
i=1

log xi − β

n∑
i=1

xi. (6)
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Differentiating (6) with respect to α and β, we may apply the approximation of the digamma function involved in
the log-derivative equation. Here, we use the result from [20], to get the MLE of the shape parameter α and final
expression becomes,

α̂MLE =
1

2
[
log x̄− logx

] . (7)

After substituting the α̂MLE into the Bayes estimate expression (5), we have the following PB estimator.

β̂PB =
α̂MLE n+ a− 2

b+
∑n

i=1 xi
=

n

2[log x̄−logx]
+ a− 2

b+
∑n

i=1 xi
, (8)

provided the hyper-parameters a and b are known.

4. Empirical Bayes (EB) Estimation

Empirical Bayes method is used to estimate the hyper-parameters directly from the data. To calculate the EB
estimate, the first step is to assume the parameters of the prior to be unknown. Here for simplicity, we consider
one of the hyper-parameters is unknown. i.e. the scale parameter b of the gamma prior is unknown and it is to be
estimated by empirical Bayes approach. The posterior marginal density of X is expressed as,

m(X) =

∫ ∞

0

f (X | α, β)π(β) dβ

=

(
1

Γα

)n n∏
i=1

xα−1
i

ba

Γa

∫ ∞

0

β(αn+a)−1e−(b+
∑n

i=1 xi)
β

dβ

=

(
1

Γα

)n n∏
i=1

xα−1
i

ba

Γa

Γ
(
αn+ a

)(
b+

∑n
i=1 xi

)αn+a . (9)

Taking logarithm on the both sides of the above equation (9), the expression becomes,

log m(X) = −n log Γα+ (α− 1)

n∑
i=1

log xi + a log b− log Γa+ log Γ(αn+ a)− (αn+ a) log

(
b+

n∑
i=1

xi

)
.

Differentiating the above log-likelihood with respect to b and equating to zero, we get

∂

∂ b
log m(X) = 0

⇒ a

n∑
i=1

xi − α bn = 0

⇒ b̂M =
a
∑n

i=1 xi

αn
=

a x̄

α
. (10)

Therefore, by plugging b̂M into the Bayes estimate (5), the EB estimator of the scale parameter β becomes,

β̂EB =
αn+ a− 2

b̂M +
∑n

i=1 xi

=
αn+ a− 2

a x̄
α +

∑n
i=1 xi

, (11)

provided α and a are known.
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5. Risk function for EB and PB estimators

If δ(x) is an estimator of θ, then the risk function is defined as

R (θ, δ(x)) = EX|θ [L (θ, δ(x))] .

Here, we study the performance of the PB and EB estimators on the basis of risk values. Under WSELF, the risk
function of PB estimator is:

EX|β

[
β̂PB

β
− 1

]2
= EX|β

[ n

2[log x̄−log x]
+ a− 2

β
(
b+

∑n
i=1 xi)

− 1

]2
, (12)

and the risk function of EB estimator is

EX|β

[
β̂EB

β
− 1

]2
= EX|β

[
αn+ a− 2

β
(
ax̄
α +

∑n
i=1 xi

) − 1

]2
. (13)

Table 1. Bayes estimates and corresponding integrated risk (IR) of the scale parameter β when α = 0.07.

Parameter Sample Partial Bayes Empirical Bayes Risk

choices sizes (n) Estimate IR Estimate IR efficiency

25 17.48871 0.2756426 48.73681 7.4821070 27.144230
50 18.35458 0.2295992 34.50786 0.5664766 2.4672410

a = 3.5, b = 0.1 75 18.84280 0.2098712 33.15751 0.2709554 1.2910560
100 19.25284 0.1995069 33.40518 0.1749845 0.8770851
300 19.80639 0.1828095 33.44517 0.0505348 0.2764340

25 10.07065 0.2048069 25.71582 9.8135470 47.916090
50 9.978588 0.1739358 17.14818 0.6536450 3.7579680

a = 5.0, b = 0.3 75 9.915531 0.1615695 16.05809 0.2929509 1.8131570
100 9.908242 0.1574777 15.96175 0.1841226 1.1691980
300 9.613898 0.1612054 15.60387 0.0507229 0.3146476

25 0.1928994 0.3566304 0.5970489 5.3924700 15.120610
50 0.2247639 0.2910540 0.4613580 0.4984108 1.7124340

a = 2.5, b = 5.0 75 0.2414587 0.2577186 0.4568100 0.2552579 0.9904519
100 0.2532897 0.2377006 0.4666648 0.1687698 0.7100098
300 0.2752531 0.1981348 0.4772773 0.0504291 0.2545190

25 8.582835 0.2415147 23.02760 8.3530050 34.585900
50 8.738991 0.2045716 15.88911 0.5975816 2.9211370

a = 4.0, b = 0.25 75 8.829574 0.1889019 15.10896 0.2785609 1.4746330
100 8.931564 0.1818174 15.14210 0.1780866 0.9794806
300 8.982629 0.1744432 15.02647 0.0505941 0.2900322

25 1.773787 0.3218410 5.095942 6.4990880 20.193470
50 1.929007 0.2557290 3.739363 0.5333403 2.0855680

a = 3.0, b = 0.75 75 2.013674 0.2290756 3.640503 0.2631510 1.1487510
100 2.078629 0.2146777 3.690851 0.1718638 0.8005663
300 2.185897 0.1889360 3.732335 0.0504795 0.2671778

Due, to the complexity in the above expressions, we proceed for comparison of risks through simulation study.
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In this comparison study, the natures of the parameters and hyper-parameters play important role to keep the same
characteristics of both the estimation process. Keeping this in mind, the problem is two fold: for PB estimation,
the hyper-parameters a, b are supposed to be known, say a0, b0 and an initial parameter value is chosen for α,
say α0. In contrast, for EB estimation, the model parameter α is some known value α0 and b0 is considered as an
initial value for the hyper-parameter b. We choose the same α0 and b0 to maintain the similar characteristics having
in the former estimation process. Also, the shape parameter a is assumed to be known throughout the study. The
algorithm for calculating the integrated risk of both the estimators is as follows.

Table 2. Bayes estimates and corresponding integrated risk (IR) of the scale parameter β when α = 0.1.

Parameter Sample Partial Bayes Empirical Bayes Risk

choices sizes (n) Estimate IR Estimate IR efficiency

25 18.58185 0.2472902 38.68820 1.8658080 7.5450120
50 19.58792 0.2035477 33.63540 0.3259699 1.6014420

a = 3.5, b = 0.1 75 20.12938 0.1850623 33.57426 0.1878741 1.0151930
100 20.43152 0.1744383 33.50212 0.1155488 0.6624048
300 20.75827 0.1620532 33.67480 0.0348106 0.2148097

25 10.27036 0.1884662 19.75371 2.2932830 12.1681400
50 10.23523 0.1593288 16.33314 0.3560626 2.2347650

a = 5.0, b = 0.3 75 10.22439 0.1485426 15.99976 0.1970423 1.3265040
100 10.20261 0.1431134 15.82114 0.1187352 0.8296583
300 9.927780 0.1474491 15.67338 0.0348545 0.2363830

25 0.220847 0.3130839 0.498775 1.5003130 4.7920490
50 0.252886 0.2475859 0.462048 0.3037544 1.2268640

a = 2.5, b = 5.0 75 0.268441 0.2174946 0.470251 0.1814571 0.8343060
100 0.277122 0.2002071 0.473228 0.1134567 0.5666969
300 0.291701 0.1718851 0.481437 0.0347880 0.2023912

25 8.932833 0.2206569 18.018600 2.0228860 9.1675640
50 9.156107 0.1847893 15.342990 0.3364857 1.8209160

a = 4.0, b = 0.25 75 9.289066 0.1700373 15.203180 0.1910109 1.1233470
100 9.361238 0.1617502 15.118670 0.1166139 0.7209507
300 9.371085 0.1564860 15.116890 0.0348240 0.2225376

25 1.934432 0.2818258 4.128834 1.6919900 6.0036730
50 2.100920 0.2220109 3.688211 0.3150251 1.4189630

a = 3.0, b = 0.75 75 2.186023 0.1981228 3.713971 0.1846797 0.9321476
100 2.233580 0.1846135 3.720573 0.1144923 0.6201729
300 2.302003 0.1659307 3.761312 0.0347986 0.2097174

• Step 1 : Initialize a and b0.
• Step 2 : Generate β1, β2, · · · , βm from gamma(a, b0).
• Step 3 : Initialize α0 with a fixed value.
• Step 4 : Generate X1, X2, · · · , XK each of size n from gamma(α0, β1).
• Step 5 : Calculate α̂MLE and b̂M for K times.
• Step 6 : Calculate β̂PB and β̂EB for K times.

• Step 7 : Calculate the loss
(

β̂PB

β1
− 1
)2

and
(

β̂EB

β1
− 1
)2

for K times.
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Table 3. Bayes estimates and corresponding integrated risk (IR) of the scale parameter β when α = 0.2.

Parameter Sample Partial Bayes Empirical Bayes Risk

choices sizes (n) Estimate IR Estimate IR efficiency

25 21.61015 0.1940002 33.43734 0.4876370 2.5135900
50 22.35440 0.1483680 32.73770 0.1105453 0.7450753

a = 3.5, b = 0.1 75 22.94670 0.1327892 33.59245 0.0736583 0.5547005
100 23.07599 0.1246019 33.83282 0.0516122 0.4142166
300 23.16312 0.1134408 34.17726 0.0163301 0.1439524

25 11.03357 0.1545381 16.23696 0.5324451 3.4453970
50 10.99762 0.1238630 15.46015 0.1127755 0.9104854

a = 5.0, b = 0.3 75 11.09719 0.1145925 15.73437 0.0745274 0.6503694
100 11.06346 0.1101029 15.79185 0.0519571 0.4718955
300 10.88412 0.1076161 15.87598 0.0163348 0.1517874

25 0.2861933 0.2341391 0.459327 0.4528784 1.9342280
50 0.3073097 0.1685755 0.4624306 0.1091969 0.6477624

a = 2.5, b = 5.0 75 0.3199714 0.1464087 0.4778662 0.0731084 0.4993445
100 0.3238546 0.1347884 0.4826388 0.0513970 0.3813166
300 0.3294386 0.1170489 0.4893217 0.0163275 0.1394927

25 10.00892 0.1788340 15.25264 0.5035284 2.8156180
50 10.18536 0.1389073 14.77370 0.1112723 0.8010547

a = 4.0, b = 0.25 75 10.38914 0.1258683 15.11391 0.0739441 0.5874725
100 10.41866 0.1190641 15.20307 0.0517248 0.4344284
300 10.40716 0.1112433 15.33203 0.0163315 0.1468091

25 2.344042 0.2143747 3.666493 0.4707497 2.1959200
50 2.459032 0.1565669 3.635681 0.1098487 0.7016087

a = 3.0, b = 0.75 75 2.538447 0.1381430 3.743081 0.0733788 0.5311803
100 2.559117 0.1284752 3.774952 0.0515027 0.4008760
300 2.582230 0.1147722 3.820124 0.0163287 0.1422706

• Step 8 : Take an average with respect to density to obtain the risk function EX|β1

[
β̂PB

β1
− 1
]2

and

EX|β1

[
β̂EB

β1
− 1
]2

.
• Step 9 : Repeat Step 4 - Step 10 for remaining β′

is, i = 2, 3, · · · ,m.
• Step 10 : Take an average with respect to β′

is to obtain the integrated risk of β̂PB and β̂EB respectively.
• Step 11 : Calculate the integrated risk efficiency of PB estimate with respect to EB estimate by using

RE

(
β̂PB , β̂EB

)
=

IR
(
β̂EB

)
IR
(
β̂PB

) .
Therefore, if RE < 1, then EB estimator performs better than the PB estimator, whereas if RE > 1, then

PB estimators outperform the EB estimator. In order to compare the performances of both the estimators,
we carry out an extensive simulation study by using [24] (version 3.6.1). In particular, the choices of hyper-
parameters are considered as (3.5,0.1), (5,0.3), (2.5,5), (4,0.25) and (3,0.75). For all combinations of hyper-
parameters, we generate m = 50 times β from the prior distribution. The initial shape parameter of the model
is chosen as α = 0.07, 0.1, 0.2, 0.5, 1 and for every combinations of (α, β), we generate random samples of sizes
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n = 25, 50, 75, 100, 300 from the baseline distribution. The average estimators, integrated risk values and the
corresponding efficiency are obtained over K=1000 simulated samples. In order to study the performance of the
estimators, the comparison has been evaluated on the basis of the integrated risk efficiency criteria.

Table 4. Bayes estimates and corresponding integrated risk (IR) of the scale parameter β when α = 0.5.

Parameter Sample Partial Bayes Empirical Bayes Risk

choices sizes (n) Estimate IR Estimate IR efficiency

25 27.17094 0.1264698 32.93048 0.0841465 0.6653485
50 27.27450 0.0843969 33.59052 0.0427108 0.5060700

a = 3.5, b = 0.1 75 27.54539 0.0697373 34.30609 0.0276786 0.3968980
100 27.43628 0.0618230 34.31149 0.0200651 0.3245575
300 27.10038 0.0536785 34.47978 0.0069873 0.1301699

25 12.95606 0.1112644 15.47253 0.0851411 0.7652144
50 12.85426 0.0770174 15.65056 0.0428168 0.5559370

a = 5.0, b = 0.3 75 12.92026 0.0649391 15.95270 0.0277464 0.4272684
100 12.84006 0.0582931 15.94325 0.0200882 0.3446065
300 12.61750 0.0524162 16.00654 0.0069879 0.1333155

25 0.3833854 0.1394703 0.4672243 0.0835771 0.5992466
50 0.3876364 0.0895982 0.4798510 0.0426512 0.4760276

a = 2.5, b = 5 75 0.3925298 0.0728563 0.4907919 0.0276346 0.3793022
100 0.3914215 0.0639875 0.4911357 0.0200504 0.3133477
300 0.3876249 0.0543831 0.4938671 0.0069870 0.1284767

25 12.23853 0.1221711 14.83291 0.0844644 0.6913616
50 12.24548 0.0819855 15.08459 0.0427442 0.5213623

a = 4.0, b = 0.25 75 12.35689 0.0680832 15.39542 0.0277010 0.4068698
100 12.30578 0.0605505 15.39387 0.0200727 0.3315038
300 12.15350 0.0531949 15.46448 0.0069875 0.1313567

25 3.024071 0.1328925 3.664751 0.0838487 0.6309510
50 3.042164 0.0865509 3.750449 0.0426797 0.4931166

a = 3.0, b = 0.75 75 3.074928 0.0709130 3.833086 0.0276564 0.3900052
100 3.063684 0.0625654 3.834712 0.0200577 0.3205871
300 3.028455 0.0538888 3.854766 0.0069871 0.1296585

The simulation results have been reported in Table 1-5 and the following observations can be drawn from the
mentioned tables. It has been observed that when α < 0.5, the integrated risk efficiency is greater than 1 for small
and moderate sizes of generated samples. In that case, the PB estimator works well compared to EB estimator.
However, for large sample, RE < 1, i.e. EB estimator performs well as compared to PB estimator. When α ≥ 0.5, it
is evident from Table 3 and 4 that the EB estimator is more preferable than PB estimator as integrated risk efficiency
is less than 1 for all choices of sample. The integrated risk efficiencies are very sensitive with the variation in α.
This comparative study mostly depends on the choices of the model’s shape parameter. If it is small, then there is
not much variation in the data set and if the size of data set is small or moderate, then PB estimator is preferable.
Otherwise, for greater variation in large data set, EB estimator is found to be effective than PB estimator. As the
sample size increases, the integrated risks of both the estimators decrease. It shows the consistency of both the
estimators. These are the important findings of this study.
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Table 5. Bayes estimates and corresponding integrated risk (IR) of the scale parameter β when α = 1.0.

Parameter Sample Partial Bayes Empirical Bayes Risk

choices sizes (n) Estimate IR Estimate IR efficiency

25 31.29433 0.1051508 33.60700 0.0414585 0.3942768
50 30.81490 0.0577802 34.24492 0.0194550 0.3367068

a = 3.5, b = 0.1 75 30.52105 0.0430690 34.48706 0.0135894 0.3155249
100 30.46864 0.0367719 34.55111 0.0104971 0.2854659
300 29.97220 0.0248034 34.55662 0.0034520 0.1391725

25 14.63176 0.0972879 15.65825 0.0415587 0.4271721
50 14.36623 0.0550255 15.91232 0.0194727 0.3538849

a = 5.0, b = 0.3 75 14.21274 0.0414922 16.01572 0.0135984 0.3277330
100 14.17772 0.0356702 16.04212 0.0105015 0.2944066
300 13.92535 0.0244786 16.04068 0.0034520 0.1410215

25 0.4473831 0.1115936 0.4800865 0.0414032 0.3710178
50 0.4408087 0.0596985 0.4901827 0.0194440 0.3257025

a = 2.5, b = 5.0 75 0.4367315 0.0440638 0.4938475 0.0135834 0.3082675
100 0.4360889 0.0374323 0.4948365 0.0104942 0.2803508
300 0.4291916 0.0249694 0.4949997 0.0034519 0.1382461

25 14.01156 0.1033161 15.09200 0.0414899 0.4015821
50 13.80321 0.0569953 15.36400 0.0194608 0.3414448

a = 4.0, b = 0.25 75 13.67615 0.0425642 15.46964 0.0135923 0.3193372
100 13.65501 0.0363991 15.49727 0.0104986 0.2884294
300 13.43886 0.0246758 15.49844 0.0034519 0.1398930

25 3.500543 0.1086916 3.752290 0.0414295 0.3811654
50 3.445541 0.0586724 3.827272 0.0194494 0.3314911

a = 3.0, b = 0.75 75 3.412310 0.0434622 3.855101 0.0135864 0.3126019
100 3.406425 0.0370079 3.862538 0.0104957 0.2836058
300 3.350842 0.0248390 3.863481 0.0034519 0.1389741

6. Real data analysis

In this section, we apply the previously mentioned Bayesian methodologies on two real datasets in order to assess
the applicability of the proposed study. We consider one large data with large variance as well as one small data with
small variance to demonstrate the significance of the partial and empirical Bayes approaches. Data set I represents
the survival times of 121 patients with Breast cancer whereas Data set II represents the Relief time of 20 patients
receiving analgesic respectively. To check whether the considered datasets follow the gamma distribution or not is
the initial step. We use Kolmogorov-Smirnov (KS) test to determine the models’ goodness-of-fit. The KS statistic
and the corresponding P-value for Data set I is (0.0761, 0.4847) and for Data set II is (0.1734, 0.5845). Apart from
the theoretical fitting, we further display fitted density with the histogram and empirical CDF plot in Figures 1 and
2 respectively for both the datasets. These graphical representations indicate that the baseline distribution provides
satisfactory fitting to both the datasets.

In this comparative study, the performance of partial and empirical Bayes estimators are evaluated on the basis
of posterior risk values and it has been found that

Eβ|XL (β, δ(x)) =
1

αn+ a− 1
. (14)
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When using the PB estimation method, we substitute α̂MLE in (14) whereas for EB approach, we consider
some known values of α which is chosen close to α̂MLE for comparison purpose. Similarly, to determine the
PB estimator, the hyper-parameter b is some known quantity and it is considered to be closed to b̂M which is
obtained by the EB estimation process. As we want to establish a comparison study between both the estimation
methodologies, we have taken the known parameter values nearest to the estimated ones.

Histogram and theoretical densities

gamma

Empirical and theoretical CDFs

gamma

Figure 1. Histogram (left) and empirical vs theoretical cdf (right) of the Breast cancer data.

6.1. Data set I

Our first data set is related with the survival times of 121 patients with Breast cancer. This data set has been
originally reported in [8] and given in Table 6. Recently, this data have been also used in [17] and [10].

Table 6. The survival times of 121 patients with Breast cancer.

0.3 0.3 4.0 5.0 5.6 6.2 6.3 6.6 6.8 7.4 7.5 8.4 8.4
10.3 11.0 11.8 12.2 12.3 13.5 14.4 14.4 14.8 15.5 15.7 16.2 16.3
16.5 16.8 17.2 17.3 17.5 17.9 19.8 20.4 20.9 21.0 21.0 21.1 23.0
23.4 23.6 24.0 24.0 27.9 28.2 29.1 30.0 31.0 31.0 32.0 35.0 35.0
37.0 37.0 37.0 38.0 38.0 38.0 39.0 39.0 40.0 40.0 40.0 41.0 41.0
41.0 42.0 43.0 43.0 43.0 44.0 45.0 45.0 46.0 46.0 47.0 48.0 49.0
51.0 51.0 51.0 52.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 60.0 60.0
61.0 62.0 65.0 65.0 67.0 67.0 68.0 69.0 78.0 80.0 83.0 88.0 89.0
90.0 93.0 96.0 103.0 105.0 109.0 109.0 111.0 115.0 117.0 125.0 126.0 127.0
129.0 129.0 139.0 154.0

The length of the given data set is n = 121 and variance is 1244.46, which indicates that the data are widely
spread out from the mean. The estimated MLEs of the parameters α and β are obtained as α̂MLE = 1.4963 and
β̂MLE = 0.0323. We use this α̂MLE to derive the PB estimator and for EB approach, the choices of α are taken as
1.5, 2.5, 3.5, 4.5 and 5.5. We compute the partial and empirical Bayes estimators with the corresponding posterior
risk values for different choices of known hyper-parameter a . Table 7 provides the PB and EB estimators with their
95% credible interval. Table 8 also includes the posterior risk values of both the estimators obtained in Table 7 to
observe their performances. From Table 7, it is seen that the PB and EB estimators belong to their corresponding
credible interval. Also from Table 8, it is observed that the posterior risk of EB estimator is comparatively small
than that of PB estimator. So, we may conclude that the EB estimator seems to provide a better performance than
the PB estimator for highly dispersed large data set.
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Table 7. Partial and empirical Bayes estimates and 95% credible interval in Breast cancer data.

Choices of 95% Credible Interval 95% Credible Interval

hyper-parameter PBE Lower Upper EBE Lower Upper

0.028820 0.024882 0.033807 0.032021 0.027844 0.037247
0.028851 0.024909 0.033843 0.053606 0.048056 0.060205

a = 0.5 0.028867 0.024922 0.033861 0.075190 0.068526 0.082905
0.028872 0.024926 0.033867 0.096775 0.089147 0.105454
0.028877 0.024931 0.033874 0.118360 0.109870 0.127900

0.028832 0.024898 0.033813 0.032022 0.027850 0.037240
0.028894 0.024951 0.033885 0.053606 0.048061 0.060200

a = 1.0 0.028920 0.024973 0.033915 0.075191 0.068530 0.082900
0.028935 0.024986 0.033933 0.096775 0.089150 0.105450
0.028945 0.024995 0.033945 0.118360 0.109873 0.127897

0.028858 0.024936 0.033817 0.032025 0.027868 0.037220
0.029016 0.025072 0.034003 0.053608 0.048075 0.060184

a = 2.5 0.029083 0.025130 0.034081 0.075192 0.068542 0.082887
0.029124 0.025166 0.034129 0.096776 0.089161 0.105438
0.029145 0.025184 0.034154 0.118361 0.109883 0.127886

0.028888 0.024977 0.033827 0.032028 0.027885 0.037199
0.029137 0.025193 0.034119 0.053610 0.048089 0.060168

a = 4.0 0.029250 0.025291 0.034252 0.075193 0.068554 0.082874
0.029307 0.025340 0.034319 0.096777 0.089172 0.105427
0.029349 0.025376 0.034367 0.118362 0.109893 0.127876

Table 8. Posterior risk (PR) of the partial and empirical Bayes estimates for Breast cancer data.

Choices of PR of PBE PR of EBE

hyper-parameter putting α̂MLE α = 1.5 α = 2.5 α = 3.5 α = 4.5 α = 5.5

a = 0.5 0.00613 0.00552 0.00331 0.00236 0.00184 0.0015
a = 1.0 0.00612 0.00551 0.00331 0.00236 0.00184 0.0015
a = 2.5 0.00606 0.00546 0.00329 0.00235 0.00183 0.0015
a = 4.0 0.00601 0.00542 0.00327 0.00234 0.00183 0.0015

6.2. Data set II

The second data set contains the lifetimes data relating to Relief times (in minutes) of 20 patients receiving an
analgesic and this data set has been reported in [1]. Recently, several works including [16], [22], [18] etc. also used
this data in their study and it is listed as follows.

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.
The length of the data set is n = 20 and variance is 0.4958. So, we consider a small data set with less variability

where all the data are concentrated to the mean. The MLE of the parameters α and β are α̂MLE = 9.6701 and
β̂MLE = 5.0895. In order to obtain the PB estimator, we use the α̂MLE and in case of EB approach the choices of
α are taken as 5, 5.75, 6.5, 7.25 and 8.0. As the hyper-parameter a is known, we take it as a = 0.5, 1.0, 2.5, 4.0. So,
both the estimators with their 95% credible interval and the associated posterior risk values are given in Tables 9
and 10 respectively for different choices of hyper-parameters.
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Histogram and theoretical densities

gamma

Empirical and theoretical CDFs

gamma

Figure 2. Histogram (left) and empirical vs theoretical cdf (right) of the Relief times data.

Table 9. Partial and empirical Bayes estimates and 95% credible interval in Relief times data.

Choices of 95% Credible Interval 95% Credible Interval

hyper-parameter PBE Lower Upper EBE Lower Upper

4.938890 4.307814 5.724288 2.579209 2.142315 3.170409
4.941478 4.310071 5.727287 2.973912 2.499622 3.602613

a = 0.5 4.944068 4.312331 5.730290 3.368623 2.859310 4.032426
4.946661 4.314593 5.733296 3.763339 3.220977 4.460257
4.947959 4.315725 5.734800 4.158059 3.584319 4.886406

4.927467 4.298591 5.709902 2.579468 2.143464 3.169015
4.933895 4.304199 5.717351 2.974138 2.500703 3.601318

a = 1.0 4.939049 4.308695 5.723323 3.368823 2.860335 4.031213
4.942922 4.312074 5.727811 3.763518 3.221952 4.459111
4.945507 4.314329 5.730807 4.158222 3.585253 4.885318

4.893869 4.271470 5.667580 2.580231 2.146863 3.164895
4.908993 4.284671 5.685095 2.974804 2.503907 3.597484

a = 2.5 4.921668 4.295734 5.699773 3.369414 2.863374 4.027614
4.930579 4.303512 5.710094 3.764050 3.224850 4.455710
4.939523 4.311318 5.720451 4.158704 3.588028 4.882086

4.861240 4.245142 5.626467 2.580972 2.150191 3.160867
4.885966 4.266735 5.655086 2.975453 2.507052 3.593725

a = 4.0 4.904677 4.283074 5.676742 3.369992 2.866363 4.024078
4.919749 4.296236 5.694187 3.764571 3.227706 4.452361
4.932380 4.307266 5.708806 4.159178 3.590767 4.878899

It may be noticed from Table 9 that all the credible intervals contain their corresponding PB and EB estimators.
From Table 10, it is evident that the PB estimator has smaller posterior risk as compared to the EB estimator. So,
in case of data set having small variation in it, PB estimator is appeared to be better than EB estimator.
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Table 10. Posterior risk (PR) of the partial and empirical Bayes estimates for Relief times data.

Choices of PR of PBE PR of EBE

hyper-parameter putting α̂MLE α = 5.0 α = 5.75 α = 6.5 α = 7.25 α = 8.0

a = 0.5 0.00527 0.01005 0.00873 0.00772 0.00692 0.00627
a = 1.0 0.00526 0.01000 0.00870 0.00769 0.00690 0.00625
a = 2.5 0.00522 0.00985 0.00858 0.00760 0.00683 0.00619
a = 4.0 0.00518 0.00971 0.00847 0.00752 0.00676 0.00613

7. Conclusion

In this article, an attempt has been made to establish a comparative study between two Bayesian estimation
methodologies i.e. empirical Bayes approach and partial Bayes estimation. The former is one of the methods,
traditionally used when prior parameters are unknown whereas the later one is used when there is no proper
information regarding the joint parameters of the model and we want to estimate only one of them in presence
of the other nuisance parameter. Two parameter gamma distribution is considered as a baseline model and scale
parameter being the parameter of interest. Both the partial and empirical Bayes estimators have been derived by
considering gamma conjugate prior under the weighted squared error loss function. As the expression of risk is
not obtained in an explicit form, it is not feasible to differentiate these methods theoretically. Thus, an extensive
simulation study is carried out to investigate the behaviour of both the estimators and it is evaluated with respect
to integrated risk values. From the simulation study, it is remarked that, when we do not have variation in the
sample and also the sample size is small or moderate, then PB estimator works well in comparison to EB estimator.
Otherwise, for greater variability in a large sample, the EB estimator seems to be better than the PB estimator.
Moreover, two real datasets have been considered to illustrate the applicability of both the estimation procedures.
So, it is evident that both the estimation methods have their own significance. A researcher should decide whether
to choose between these two estimation methods based on the available data information.
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