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1. Introduction

The constantly growing interest in studying spherical random fields is motivated by the strong demand
from various applied areas such as geophysics, geodesy, planetary sciences, astronomy, cosmology and
others, especially, in view of accumulation of huge amounts of experimental data which should be
analyzed by appropriate statistical methods and tools. Numerous research papers have been devoted
to the characterization of covariance structure, spectral and statistical analysis, modelling and simulation
of random fields on the sphere. We mention two classical monographs by Yadrenko [28] and Marinucci
and Peccati [24] as the excellent fundamental sources in the area.

The present paper is related to the investigations of extreme values and excursion probabilities of
random fields on the sphere. The problem of evaluation of probabilities P

{
supt∈T X(t) ≥ u

}
have been

intensively studied for various classes of stochastic processes considered over different parameter spaces T.
In particular, for Gaussian case, a number of approaches and techniques have been developed for deriving
approximations for excursion probabilities (tail probabilities) for large u (see, e.g., [1], [2] and references
therein). Distributions of suprema under more general non-Gaussian settings were treated in [3]. For
spherical random fields the properties of sample paths, excursion sets and excursion probabilities were
recently studied in [4, 5, 21, 22, 23, 25, 26]. Asymtotics for excursion probabilities P

{
supt∈SN X(t) ≥ u

}
,

as u → ∞, for a (locally) isotropic Gaussian random field X over N -dimensional unit sphere SN , were
stated in [4, 5] by applying different methods for the cases of smooth and non-smooth sample paths and
appropriately adapting for the spherical case the techniques developed for the fields in RN .

In the paper we present non asymptotic bounds for P
{
supt∈SN |X(t)| ≥ u

}
assuming X to be φ-sub-

Gaussian random field (to be defined below in Section 2). Note that it is important for applications to

∗Correspondence to: L. Sakhno (lms@univ.kiev.ua). Department of Probability Theory, Statistics and Actuarial
Mathematics, Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 60 Volodymyrska
str., 01601 Kyiv, Ukraine.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2023 International Academic Press



L. SAKHNO 187

go beyond the Gaussianity assumption and possible extensions are provided by sub-Gaussian and φ-
sub-Gaussian random fields. Powerful tools and techniques for investigation of sample paths properties
of these classes of fields by means of entropy methods have been elaborated in the literature (see, e.g.,
[3]). Here we apply the results from [3] for spherical random fields. To the best of our knowledge, the
specification of the results from [3] for spherical random fields was not presented in the literature before.

In Section 2 we give necessary definitions and facts on φ-sub-Gaussian random fields. Bounds for
distributions of suprema are stated in Section 3. Applications of the results to spherical fractional
Brownian motion, isotropic Gaussian fields and some other models are presented in Section 4.

2. Preliminaries

The main theory for the spaces of φ-sub-Gaussian random variables and stochastic processes was presented
in [3, 9, 20] and has numerous further developments in the recent literature. Such spaces can be considered
as exponential type Orlicz spaces of random variables and provide generalizations of Gaussian and sub-
Gaussian random variables and processes (see, [3, Ch.2]).

We present the main definitions and facts needed in our exposition.

Definition 1. [9, 20] A continuous even convex function φ is called an Orlicz N-function if φ(0) = 0,
φ(x) > 0 as x ̸= 0 and lim

x→0

φ(x)
x = 0, lim

x→∞
φ(x)
x = ∞.

Condition Q. Let φ be an N-function which satisfies lim inf
x→0

φ(x)
x2 = c > 0, where the case c = ∞ is possible.

Definition 2. [9, 20] Let φ be an N -function satisfying condition Q and {Ω, L,P} be a standard probability
space. The random variable ζ is φ-sub-Gaussian, or belongs to the space Subφ(Ω), if Eζ = 0, E exp{λζ}
exists for all λ ∈ R and there exists a constant a > 0 such that the following inequality holds for all λ ∈ R

E exp{λζ} ≤ exp{φ(λa)}.

The random process ζ = {ζ(t), t ∈ T} is called φ-sub-Gaussian if the random variables {ζ(t), t ∈ T} are
φ-sub-Gaussian.

The space Subφ(Ω) is a Banach space with respect to the norm (see [9, 20]):

τφ(ζ) = inf{a > 0 : E exp{λζ} ≤ exp{φ(aλ)}.

Definition 3. [9, 20] The function φ∗ defined by φ∗(x) = supy∈R(xy − φ(y)) is called the Young-Fenchel
transform (or convex conjugate) of the function φ.

The function φ∗ (known also as the Legendre or Legendre-Fenchel transform) plays an important role
in the theory of φ-sub-Gaussian random variables and processes, in particular, one can estimate the ‘tail’
probabilities in terms of the function φ∗. Namely, if ζ is a φ-sub-Gaussian random variable, then for all
u > 0 we have

P{|ζ| > u} ≤ 2 exp

{
−φ∗

(
u

τφ(ζ)

)}
. (1)

Moreover, it is stated in [3] (see, Corollary 4.1, p. 68) that a random variable ζ is a φ-sub-Gaussian if
and only if Eζ = 0 and there exist constants C > 0, D > 0 such that

P{|ζ| > u} ≤ C exp
{
−φ∗

( u

D

)}
. (2)

As one can see, the property of φ-sub-Gaussianity can be characterized in a double way: by introducing
a bound on the exponential moment of a random variable as prescribed by Definition 2, or by the tail
behavior of the form (1) or (2), which is even more essential from the practical point of view.
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The class of φ-sub-Gaussian random variables is rather wide and comprises, for example, centered
compactly supported distributions, reflected Weibull distributions, centered bounded distributions,
Gaussian, Poisson distributions. In the case when φ = x2

2 , the notion of φ-sub-Gaussianity reduces to
the classical sub-Gaussianity. Various classes of φ-sub-Gaussian processes and fields were studied, in
particular, in [6, 15, 17, 18, 19, 27] (see also references therein).

The example below demonstrates one particular way to construct φ-sub-Gaussian processes and fields.

Example 1. [14] Let {ξk, k = 1,∞} be a family of independent φ-sub-Gaussian random variables and φ
be a such function that φ(

√
x), x > 0, is convex. If there exists C > 0 such that τφ(ξn) ≤ C(Eξ2k)1/2 for

any k ≥ 1, and for a sequence of nonrandom functionsfk(t), t ∈ T , k ≥ 1, the series
∞∑
k=1

Eξ2kf2
k (t) converges

for all t ∈ T , then X(t) =
∞∑
k=1

ξkfk(t), t ∈ T, is a φ-sub-Gaussian random process and τ2φ(X(t)−X(s)) ≤

C2E(X(t)−X(s))2, t, s ∈ T .

Sample paths properties of φ-sub-Gaussian processes and fields can be characterized by means of
entropy methods. We will use the following well known result.

Let us consider the metric space (T, ρ), T = {ai ≤ ti ≤ bi, i = 1, ..., N}, ρ(t, s) = maxi=1,N |ti − si| and
X = {X(t), t ∈ T} be a φ-sub-Gaussian process.

Introduce the following conditions.

A.1 ε0 = supt∈T τφ(X(t)) < ∞.

A.2 The process X is separable on the space (T, ρ).

A.3 There exists a strictly increasing continuous function σ = {σ(h), h ≥ 0} such that σ(0) = 0 and

sup
ρ(t,s)<h

τφ(X(t)−X(s)) ≤ σ(h).

A.4 Let r = {r(x), x ≥ 1} be a non-negative, nondecreasing function such that r(ey), y ≥ 0, is convex.

Denote

Ir(δ) =

∫ δ

0

r
( N∏

i=1

( bi − ai
2σ(−1)(u)

+ 1
))

du, δ > 0. (3)

Denote γ0 = σ(maxi=1,N |bi − ai|). For a function f(t), t ≥ 0, we denote by f (−1)(u), u ≥ 0, the inverse
function.

Theorem 1 below is a corollary of the result stated in [3, Theorem 4.4, p. 107] (see also [19, Theorem
3.1], [15]).

Theorem 1. Let for a φ-sub-Gaussian process X = {X(t), t ∈ T} conditions A.1-A.4 hold and suppose
that Ir(γ0) < ∞. Then for all 0 < µ < 1 and u > 0, λ > 0

E exp
{
λ sup

t∈T
|X(t)|

}
≤ 2 exp

{
φ
( λε0
1− µ

)}
A(µ), (4)

P
{
sup
t∈T

|X(t)| ≥ u
}
≤ 2 exp

{
− φ∗

(u(1− µ)

ε0

)}
A(µ), (5)

where
A(µ) = r(−1)

(
Ir(µε0)

µε0

)
. (6)

For a particular form of σ, by choosing an appropriate function r, the expression (6) can be calculated
in the closed form.
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Remark 1. We comment shortly on the conditions of Theorem 1. Let ξ(x), x ∈ T, be a φ-sub-Gaussian
process and ρξ(x, y) = τφ(ξ(x)− ξ(y)), x, y ∈ T (which is a pseudometric on T, see [3]). The integrals of
the form

I(ε) :=

ε∫
0

g(N(v)) dv, ε > 0, (7)

are called entropy integrals, where g(v), v ≥ 1, is a nonnegative nondecreasing function and N(v), v > 0,
is the metric massiveness of the pseudometric space (T, ρX), that is, the smallest number of elements in
a v-covering of T formed by closed balls of radius of at most v. Entropy characteristics of the parametric
set T with respect to the pseudometrics ρξ generated by the process ξ, and the rate of growth of metric
massiveness N(v), or metric entropy H(v) := ln(N(v)), are closely related to the properties of the process
ξ (see [3] for details).

The integrals (7) play an important role in studying properties of sample paths and estimating
modulii of continuity and distribution of supremum of a process. General results of this kind for φ-sub-
Gaussian processes are related to the convergence of the integrals (7), where for g(v) one takes Ψ(ln(v))

with Ψ(v) = v
φ(−1)(v)

, v > 0, for a sub-Gaussian case (φ(x) = x2

2 ) they reduce to the Dudly integrals∫ √
ln(N(v))dv.

As pointed out in [3], integrals (7) with g satisfying condition A.4 are more suitable for the case of
“moderate” growth of the metric entropy and can lead to improved inequalities for upper bound for the
distribution of supremum, in comparison with more general inequalities involving the integrals based on
the above function Ψ. Specifically for T = {ai ≤ ti ≤ bi, i = 1, ..., N}, and in view of condition A.3, the
integral (7) becomes of the form (3) (for more detail, see [3, 15, 19]).
Remark 2. As for the practical use, we mention that Theorem 1 was applied, for example, in [15, 16] for
developing uniform approximation schemes for φ-sub-Gaussian processes. In [8] Theorem 1 was proved
to be effective in studying increments of multifractional Brownian motion and some its functionals, and
in developing statistical estimation methods.
Example 2. Returning to Example 1, let (T, ρ) be as in Theorem 1, suppose additionally that functions
fk are such that for some ck > 0, k ≥ 1, and strictly increasing continuous function σ(h), h ≥ 0, σ(0) = 0,
we have supρ(t,s)<h |fk(t)− fk(s)| ≤ ckσ(h) and

∞∑
k=1

Eξ2kc2k < ∞. Then condition A.3 holds.

3. Results

Let ξ = {ξ(x), x ∈ SN} be a φ-sub-Gaussian random field on the unit sphere SN ⊂ RN+1. We are interested
in evaluation of P

{
sup
x∈SN

|ξ(x)| ≥ u
}

. For x = (x1, . . . , xN+1) ∈ SN introduce the spherical coordinates:

x1 = cos θ1, x2 = sin θ1 cos θ2, . . . , xN =
(N−1∏

i=1

sin θi

)
cos θN , xN+1 =

N∏
i=1

sin θi, (8)

θ ∈ Θ = [0, π]N−1 × [0, 2π).
Denote by d(x, y) = arccos⟨x, y⟩, x, y ∈ SN , the spherical distance on SN .
Define the field ξ̃ = {ξ̃(θ), θ ∈ Θ} as ξ̃(θ) := ξ(x), that is, ξ under the spherical coordinates given above.
Introduce the following conditions.

B.1 ε0 = supx∈SN τφ(ξ(x)) < ∞.

B.2 There exists a strictly increasing continuous function σ = {σ(h), h ≥ 0} such that σ(0) = 0 and

τφ(ξ(x)− ξ(y)) ≤ σ(d(x, y)), x, y ∈ SN .
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We note that P
{

sup
x∈SN

|ξ(x)| ≥ u
}
= P

{
sup
θ∈Θ

|ξ̃(θ)| ≥ u
}

, and therefore, we can apply Theorem 1 for

the field ξ̃ to obtain the result for the field ξ. Consider ξ̃(θ) on the metric space (Θ, ρ) with the metric
ρ(θ, η) = max

i=1,N
|θi − ηi|, θ, η ∈ Θ, and suppose that the next condition holds.

B.3 The field ξ̃ is separable on the space (Θ, ρ).

Denote
Ĩr(δ) =

∫ δ

0

r
(( π

2σ̃(−1)(u)
+ 1
)N−1( 2π

2σ̃(−1)(u)
+ 1
))

du, (9)

where σ̃(u) = σ
(

π
2

√
Nu
)

.

Theorem 2. Let for a φ-sub-Gaussian field ξ = {ξ(x), x ∈ SN} Conditions B.1-B.3 and A.4 hold. Suppose
that Ĩr(γ0) < ∞ for γ0 = σ̃(2π).

Then for all 0 < µ < 1 and u > 0, λ > 0

E exp
{
λ sup

x∈SN
|ξ(x)|

}
≤ 2 exp

{
φ
( λε0
1− µ

)}
A1(µε0), (10)

P
{

sup
x∈SN

|ξ(x)| ≥ u
}
≤ 2 exp

{
− φ∗

(u(1− µ)

ε0

)}
A1(µε0), (11)

where

A1(µε0) = r(−1)

(
Ĩr(µε0)

µε0

)
. (12)

Proof
Since P

{
sup
x∈SN

|ξ(x)| ≥ u
}
= P

{
sup
θ∈Θ

|ξ̃(θ)| ≥ u
}

, we apply Theorem 1 for the field ξ̃.

We have
τφ(ξ̃(θ)− ξ̃(η)) = τφ(ξ(x)− ξ(y)) ≤ σ(d(x, y)). (13)

Using the relation between Euclidean and spherical distances ∥x− y∥ = 2 sin
(

d(x,y)
2

)
and the estimate

2
π t ≤ sin t ≤ t for 0 ≤ t ≤ π

2 , we can write the estimate d(x, y) ≤ π
2 ∥x− y∥. Consider

∥x− y∥2 = (cos η1 − cos θ2)
2 + (sin η1 cos η2 − sin θ1 cos θ2)

2 + . . .

+
( N∏

i=1

sin ηi −
N∏
i=1

sin θi

)2
= 2− 2 cos(η1 − θ1) + 2(sin η1 sin θ1)[1− cos(η2 − θ2)] + . . .

+2
(N−1∏

i=1

sin ηi sin θi

)
[1− cos(ηN − θN )] ≤ 2

N∑
i=1

2 sin2
(ηi − θi

2

)
≤

N∑
i=1

(ηi − θi)
2 = ∥θ − η∥2 ≤ N max

i=1,N
|θi − ηi|2 = Nρ2(θ, η).

Therefore, we can evaluate

d(x, y) ≤ π

2
∥x− y∥ ≤ π

2
∥θ − η∥ ≤ π

2

√
Nρ(θ, η)

and obtain
sup

ρ(θ,η)<h

τφ(ξ̃(θ)− ξ̃(η)) ≤ σ̃(h),
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with σ̃(u) = σ
(

π
2

√
Nu
)

. We conclude that conditions of Theorem 1 are satisfied for the field ξ̃ and applying
this theorem we obtain (10) and (11).

The next result presents the case where the bound can be calculated in the closed form.

Theorem 3. Let under the conditions of Theorem 2 σ(h) = Chβ with C > 0, 0 < β ≤ 1. Then for any
µ ∈ (0, 1) such that µε0 <

(
π
2

)2β
CNβ/2 and any u > 0, λ > 0

E exp
{
λ sup

x∈SN
|ξ(x)|

}
≤ 2 exp

{
φ
( λε0
1− µ

)}
Ã1(µε0), (14)

P
{

sup
x∈SN

|ξ(x)| ≥ u
}
≤ 2 exp

{
− φ∗

(u(1− µ)

ε0

)}
Ã1(µε0), (15)

where
Ã1(µε0) = 21−Nπ2NNN/2(eC)N/β(µε0)

−N/β . (16)

Proof
We evaluate the expression r(−1)

(
Ĩr(µε0)
µε0

)
by choosing r(x) = xα − 1, 0 < α < β/2. We have σ̃(h) =

σ
(

π
2

√
Nh
)
= C

(
π
2

√
N
)β

hβ = c̃ hβ , σ̃(−1)(h) =
(

h
c̃

)1/β
and r(−1)(x) = (x+ 1)1/α.

Consider
Ĩr(µε0) =

∫ µε0

0

((πc̃1/β
2u1/β

+ 1
)(N−1)α(2πc̃1/β

2u1/β
+ 1
)α

− 1
)
du,

let us choose µ such that πc̃1/β

2(µε0)1/β
> 1 then we can write

Îr(µε0) ≤
∫ µε0

0

((πc̃1/β
u1/β

)(N−1)α(2πc̃1/β
u1/β

)α
− 1
)
du =

∫ µε0

0

(
2α
(πc̃1/β
u1/β

)Nα

− 1
)
du

= 2απNα c̃Nα/β
(
1− Nα

β

)−1

(µε0)
1−Nα/β − µε0

and

r(−1)
( Ĩr(µε0)

µε0

)
≤ 2πN c̃N/β

(
1− Nα

β

)−1/α

(µε0)
−N/β .

We now let α → 0 so that
(
1− Nα

β

)−1/α

→ eN/β and insert the expression for c̃ to obtain (16).

Remark 3. An important natural generalization of Gaussian fields is obtained with φ(x) = |x|κ
κ , 1 < κ ≤ 2.

For this case φ∗(x) = |x|γ
γ , where γ ≥ 2, and 1

κ + 1
γ = 1. For such φ-sub-Gaussian field the exponential

term in (15) takes the form exp
{
− uγ(1−µ)γ

γεγ0

}
and in the case of a Gaussian centered field ξ we have the

term exp
{
− u2(1−µ)2

2ε20

}
with ε20 = supx∈SN E(ξ(x))2.

We next present the bounds for the distribution of supremum for the random field ξ over a geodesic disc
on SN with radius a ∈ (0, π) at the center o = (1, 0, . . . , 0) ∈ RN+1 defined as Da = {x ∈ SN : d(x, o) ≤ a}.
With such choice of a center, the set Da under the spherical coordinates is Θa = [0, a]× [0, π]N−2 × [0, 2π).

Denote
Ĩar (δ) =

∫ δ

0

r
(( a

2σ̃(−1)(u)
+ 1
)( π

2σ̃(−1)(u)
+ 1
)N−2( 2π

2σ̃(−1)(u)
+ 1
))

du, (17)

ε̃0 = supx∈Da
τφ(ξ(x)).
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Theorem 4. Under the conditions of Theorem 2 for all 0 < µ < 1 and u > 0, λ > 0

E exp
{
λ sup

x∈Da

|ξ(x)|
}
≤ 2 exp

{
φ
( λε̃0
1− µ

)}
A2(µε̃0), (18)

P
{

sup
x∈Da

|ξ(x)| ≥ u
}
≤ 2 exp

{
− φ∗

(u(1− µ)

ε̃0

)}
A2(µε̃0), (19)

where

A2(µε̃0) = r(−1)

(
Ĩar (µε̃0)

µε̃0

)
. (20)

Let, moreover, σ(h) = Chβ with C > 0, 0 < β ≤ 1. Then for any µ ∈ (0, 1) such that µε̃0 <
(
aπ
4

)β
CNβ/2

and any u > 0, λ > 0 the bounds (18) and (19) hold with the term A2 replaced by the following one:

Ã2(µε̃0) = 21−Naπ2N−1NN/2(eC)N/β(µε̃0)
−N/β . (21)

Remark 4. The results of this section are obtained basing on Theorem 1. This theorem has been applied
in different contexts, e.g., in [8, 11, 15, 16, 19], etc. However, to the best of the author’s knowledge,
specification of this theorem for the case of spherical random fields was not presented in the literature
before. We believe that such results can be useful from the practical point of view. In the next section
we present several particular examples. The interesting and important question would be to compare the
obtained results with the asymptotic results presented in [4, 5] and to check under what conditions the
obtained bounds could be close to optimal. We address these topics to further investigation, in particular,
by numerical methods and considering the examples presented in the next section.

4. Examples

4.1. Spherical fractional Brownian motion
Istas [12], [13] studied the spherical fractional Brownian motion (SFBM) Bβ = {Bβ(x), x ∈ SN} defined
as a centered real-valued Gaussian random field such that Bβ(o) = 0 for some fixed point o ∈ SN and

E(Bβ(x)−Bβ(y))
2 = d2β(x, y), x, y ∈ SN , β ∈ (0, 1/2]. (22)

Note that the covariance function of Bβ is of the form

Rβ(x, y) = Cov(Bβ(x), Bβ(y)) =
1

2
(d2β(x, o) + d2β(y, o)− d2β(x, y)), x, y ∈ SN . (23)

Since we have the Gaussian case, φ(x) = x2

2 , τ2φ(Bβ(x)) = EB2
β(x), and (22) implies the fulfilment of

Condition B.2 with σ(h) = hβ . Applying Theorems 3, 4 we obtain the following bounds for the excursion
probabilities of Bβ over SN and Da for all u > 0 and 0 < µ < 1 (we set the point o = (1, 0, . . . , 0) ∈ RN+1):

P
{

sup
x∈SN

|Bβ(x)| ≥ u
}
≤ 2 exp

{
− u2(1− µ)2

2π2β

}
21−NπNNN/2eN/βµ−N/β ,

P
{

sup
x∈Da

|Bβ(x)| ≥ u
}
≤ 2 exp

{
− u2(1− µ)2

2a2β

}
(2a)1−Nπ2N−1NN/2eN/βµ−N/β .

We used that EB2
β(x) = d2β(x, o) = θ2β1 , in spherical coordinates, therefore, ε0 = sup

x∈SN
(EB2

β(x))
1/2 = πβ

and ε̃0 = sup
x∈Da

(EB2
β(x))

1/2 = aβ .
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4.2. Isotropic Gaussian random fields
Let us consider a zero-mean isotropic Gaussian random field T on the sphere S2 with spectral
representation (in the mean square sense):

T (x) =

∞∑
l=0

+l∑
m=−l

almYlm(x), x ∈ S2, (24)

where
alm =

∫
S2

T (x)Y ∗
lm(x)λ(dx) (25)

are Fourier random coefficients, {Ylm : l ≥ 0, m = −l, . . . , l} are spherical harmonics. The coefficients (25)
are zero-mean Gaussian complex random variables such that E[alma∗l′m′ ] = δl

′

l δ
m′

m Al, where Al, l ≥ 0, is
the angular power spectrum of the random field T (Here δba is the Kronecker’s delta and the symbol “∗”
stands for complex conjugation.) We refer to [24] for more details and results for such fields.

The angular power spectrum Al, l ≥ 0, fully characterizes, under Gaussianity, the dependence structure
of T . The behavior of sample paths and other properties can be characterized basing on the decay of the
angular spectrum (see, e.g., [24], [23]). So, it would be useful to provide the conditions in spectral terms
for Theorem 2 to hold for isotropic Gaussian fields.

From [23, Lemma 4.3] it follows that if the angular power spectrum satisfies the summability condition

∞∑
l=0

All
β+1 < +∞ (26)

for some β ∈ [0, 2], then there exists a constant Cβ such that for all x, y ∈ S2

E(T (x)− T (y))2 ≤ Cβd
β(x, y).

Therefore, for the field T with the angular spectrum satisfying condition (26) we can write the following
bounds for the probabilities of excursions over the whole sphere S2 and over a geodesic disc Da of a radius
a with an arbitrary center:

P
{

sup
x∈SN

|T (x)| ≥ u
}
≤ 2 exp

{
− u2(1− µ)2

2ε20

}
π4C

2/β
β e4/β(µε0)

−4/β ,

P
{

sup
x∈Da

|T (x)| ≥ u
}
≤ 2 exp

{
− u2(1− µ)2

2ε20

}
aπ3C

2/β
β e4/β(µε0)

−4/β ,

for arbitrary u > 0, 0 < µ < 1 such that µε0 <
(

π√
2

)β
C

β/2
β , where ε20 = ET 2(x) =

∑∞
l=0

2l+1
4π Al. The

constant Cβ can be represented in terms of the algular spectrum as Cβ = π−1
∑∞

l=0 Al(2l + 1)(l(l + 1))β/2

(see the proof of Lemma 4.2 in [23]). Therefore, the above bounds are completely representable in terms
of the angular power spectrum of the field T .

4.3. Class of φ-sub-Gaussian spherical random fields with the Karhunen–Loève type representation
Consider the covariance function (23), and let us take N = 2. It was shown in [13] that the following
Mercer’s representation can be written for this covariance:

Rβ(x, y) =

∞∑
l=0

+l∑
m=−l

(−πdl)(Ylm(x)− Ylm(o))(Y ∗
lm(x)− Y ∗

lm(o)), x, y ∈ S2,
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where {Ylm : l ≥ 0, m = −l, . . . ,+l} are spherical harmonics, dl =
1∫

−1

arccos2β(x)Pl(x) dx with Pl, l ≥ 0,

being the Legendre polynomials. And the SFBM has the following Karhunen–Loève representation:

Bβ(x) =

∞∑
l=0

+l∑
m=−l

√
−πdlεlm(Ylm(x)− Ylm(o)), x ∈ S2,

with εlm being independent centered standard normal variables (see [13] for more detail).
Let us consider the spherical random field ξ defined by means of the following expansion:

ξ(x) =

∞∑
l=0

+l∑
m=−l

√
−πdlξlm(Ylm(x)− Ylm(o)), x ∈ S2,

where ξlm, l ≥ 0, m = −l, . . . , l, are independent identically distributed φ-sub-Gaussian random variables
and suppose that φ(

√
·) is a convex function. In this case, in view of Example 1, we conclude that ξ(x)

is a φ-sub-Gaussian field and τ2φ(ξ(x)− ξ(y)) ≤ CE(ξ(x)− ξ(y))2 = C2d2β(x, y), x, y ∈ S2, C = τφ(ξlm).
Therefore, Condition B.2 is satisfied with σ(h) = hβ and Theorems 3, 4 can be applied.

5. Conclusion

In this paper, bounds for distributions of suprema of φ-sub-Gaussian random fields defined over the N -
dimensional unit sphere are presented. Powerful techniques for investigation of sample paths properties
of φ-sub-Gaussian processes and fields have been elaborated in the literature (see, e.g., [3]). Applications
of these techniques in various theoretical and practical contexts can be found in the recent papers
[10, 11, 15, 17, 18, 19, 27], among others. Here we apply the classical results from [3] for spherical random
fields. We believe that such results can be useful from the practical point of view. For illustation, several
particular examples are given in Section 4, the results obtained can be also applied to other models, such
as those presented in [7]. The interesting and important question for future research would be to compare
the obtained results with the asymptotic results presented in [4, 5], in particular, by numerical methods.
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