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1. Introduction

Consider X has a Burr type XII (BurrXII(α, β)) distribution with probability density function (pdf) and
cumulative density function (cdf), respectively,

f(x) = αβxα−1(1 + xα)−(β+1), x > 0,

F (x) = 1− 1

(1 + xα)β
, x > 0, (1)

where α > 0 and β > 0 are the shape parameters. The Burr type XII has been proposed as a lifetime model in
quality control, reliability analysis and failure time modeling. [17] obtained the maximum likelihood and interval
estimation based on censored and uncensored data. [15] derived maximum likelihood, Bayesian and empirical
Bayesian estimators based on progressive censored samples using various loss functions and [16] considered
empirical Bayesian inference based on record values. For more references in this area, see [1].

An observation Xj is said to be an upper record value if its value exceeds that of all previous observations. Thus,
Xj is an upper record if Xj > Xi for every i < j. By convention X1 is a record value. An analogous definition deals
with lower record values. Data of this type arise in a wide variety of practical situations. Examples of application
areas include industrial stress testing, meteorological analysis, sporting and athletic events, and oil and mining
surveys; see [2] for these types of applications. We denote the nth upper record value by Xn. The joint density of
the first n-records X = (X1, ..., Xn) is given by

fX1,··· ,Xn
(x1, ..., xn) = f(xn)

n−1∏
i=1

f(xi)

1− F (xi)
, x1 < x2 < · · · < xn. (2)
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Also, the marginal pdf. of the nth record, Xn, is given by

fXn
(x) =

[− log(1− F (x))]n−1

(n− 1)!
f(x). (3)

Therefore, from (1) and (2), the likelihood function of β based on X = (X1, ..., Xn) at x = (x1, ..., xn) is given by

L(β) =
αβxα−1

n

(1 + xα
n)

β+1
×

n−1∏
j=1

αβxα−1
j

(1 + xα
j )

= (αβ)n(

n∏
j=1

xα−1
j

1 + xα
j

)e−βy, (4)

where y = ln(1 + xα
n).

A classical method for estimating β is based on sample imformation, for example, calculating the maximum
likelihood estimator (MLE) which can be derived from the equation ∂L(β)

∂β = 0, which is given by β̂ml = n/y. A
Bayesian approach to a statistical problem requires defining a prior distribution over the parameter space and loss
function. Many Bayesians believe that just one prior can be elicited. In practice, the prior knowledge is vague
and any elicited prior distribution is only an approximation to the true one. Various solutions to this problem have
been proposed. The E-Bayesian estimator which was first introduced by [4], is the expectation of the Bayesian
estimator of unknown parameter over the hyperparameter(s). E-Bayesian estimation is investigated by [5, 6, 7],
[9], [13], [10], [12], [11] and [14]. Recently, [8] proposed E-posterior risk of E-Bayesian estimation for measuring
the estimated risk of E-Bayesian estimations.

This paper is the first attempt to compute the E-Bayesian estimation in Burr type XII model and corresponding
E-PMSE based on record observations. To do this, we obtain Bayesian and E-Bayesian estimators of β under the
squared error loss (SEL) function in Section 2. The E-PMSE of E-Bayesian estimators are derived in Section 3.
In Section 4, we perform a simulation study for comparing the performances of proposed estimators. Ilustration of
the proposed estimators is given in Section 5. We end the paper by a concluding remark.

2. Bayesian estimation

Let x = (x1, ..., xn) be record observations from the BurrXII(α, β) distribution with likelihood function given in
(4). By considering gamma conjugate prior density, Ga(a, b) for parameter β with pdf

π(β|a, b) = ba

Γ(a)
βa−1e−bβ , β > 0, a > 0, b > 0, (5)

the posterior density of β given x is again Ga(a+ n, b+ y) with pdf

π(β|x) = (b+ y)n+a

Γ(a+ n)
βa+n−1e−(b+y)β , (6)

where Γ stands for complete gamma function as

Γ(α) =

∫ ∞

0

xα−1e−xdx.

In the following theorem, we obtain the Bayesian estimator of β and its posterior MSE (PMSE) under the SEL
function.

Theorem 2.1. Let x = (x1, ..., xn) be record observations from BurrXII(α, β) distribution. Then, we have the
following results:
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(i) The Bayesian estimate of β is β̂BS =
a+ n

b+ y
.

(ii) The PMSE of the Bayesian estimate is given by PR(β̂BS) =
a+n

(b+y)2 .

Proof

(i) Considering posterior density (6), it is clear that

β̂BS = E[β|x] = a+ n

b+ y
.

(ii) The PMSE of the Bayesian estimator under the SEL function is given by

PR(β̂BS) = V ar[β|x] = a+ n

(b+ y)2
.

3. E-Bayesian estimation

Consider prior π(β|a, b) for β with hyperparameters a and b given in (5). According to [4] the prior parameters a
and b should be selected to guarantee that π(β|a, b) is a decreasing function of β. Therefore, hyperparameters a and
b should be in the ranges 0 < a < 1 and b > 0, respectively, due to dπ(β|a,b)

dβ < 0. A prior distribution with thinner
tail reduces the robustness of Bayesian estimate, see [3]. Accordingly, b should not be too big while 0 < a < 1. For
b > 0, there is a constant, say c, that 0 < b < c.

The E-Bayesian estimator of β is the expectation of the Bayesian estimator for the all hyperparameters which is
defined as

β̂EB(x) =
∫ ∫

D

β̂BS(x)π(a, b)dadb = Ea,b(β̂EB(X)),

where D is the domain of a and b and π(a, b) is the joint prior density function of a and b.
Assuming that a and b are independent with bivariate density function π(a, b) = π(a)π(b). We consider three

prior distributions of the hyperparameters a and b as follows:

π1(a, b) =
au−1(1− a)v−1

cB(u, v)
, 0 < a < 1, 0 < b < c, (7)

π2(a, b) =
2(c− b)au−1(1− a)v−1

c2B(u, v)
, 0 < a < 1, 0 < b < c, (8)

π3(a, b) =
2bau−1(1− a)v−1

c2B(u, v)
, 0 < a < 1, 0 < b < c, (9)

where B(u, v) =
∫ 1

0
tu−1(1− t)v−1dt is the beta function. These distributions are used to investigate the influence

of the different prior distributions on the E-Bayesian estimation, see [9] and [12].
In the following theorem, we obtain the E-Bayesian estimates of β under the SEL function.

Theorem 3.1. Let x = (x1, ..., xn) be record observations from the BurrXII(α, β) distribution. Then, the E-
Bayesian estimates of parameter β corresponding to the priors given in (7)-(9) under the SEL function are given
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respectively by

β̂EB1 =
u+ n(u+ v)

c(u+ v)
ln(

c+ y

y
), (10)

β̂EB2 = 2
u+ n(u+ v)

c2(u+ v)
[(c+ y) ln(

c+ y

y
)− c], (11)

β̂EB3 = 2
u+ n(u+ v)

c2(u+ v)
[y ln(

y

c+ y
) + c]. (12)

Proof
For the joint prior density function π1(a, b) given in (7), the E-Bayesian estimation of β is obtained as

β̂EB1 =

∫ c

0

∫ 1

0

β̂BS π1(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

b+ y

au−1(1− a)v−1

cB(u, v)
dadb

=
1

cB(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da[

∫ c

0

1

b+ y
db]

=
1

cB(u, v)
ln(

c+ y

y
)× [B(u+ 1, v) + nB(u, v)]

=
u+ n(u+ v)

c(u+ v)
ln(

c+ y

y
).

If the joint prior density function is π2(a, b), then the E-Bayesian estimate of β is given by

β̂EB2 =

∫ c

0

∫ 1

0

β̂BS π2(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

b+ y

2(c− b)au−1(1− a)v−1

c2B(u, v)
dadb

=
2

c2B(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da

∫ c

0

c− b

b+ y
db

= 2
u+ n(u+ v)

c2(u+ v)
[(c+ y) log(

c+ y

y
)− c].

Similarly, for the prior density function π3(a, b), we get

β̂EB3 =

∫ c

0

∫ 1

0

β̂BS π3(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

b+ y

2bau−1(1− a)v−1

c2B(u, v)
dadb

=
2

c2B(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da

∫ c

0

b

b+ y
db

= 2
u+ n(u+ v)

c2(u+ v)
[y log(

y

c+ y
) + c].

In the following theorem, we provide a relationship between the proposed E-Bayesian estimators.
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Theorem 3.2. We have the following relation between E-Bayesian estimators given in (10), (11) and (12):

β̂EB3 < β̂EB1 < β̂EB2. (13)

Proof
We have

β̂EB2
− β̂EB1

= β̂EB1
− β̂EB3

=
r(u+ v) + u

c(u+ v)

{
2y + c

c
ln

(
1 +

c

y

)
− 2

}
. (14)

Using the fact ln(1 + x) = x− x2

2
+

x4

3
− x4

4
+ ..., for −1 < x < 1, we can write

2y + c

c
ln

(
1 +

c

y

)
− 2 =

2y + c

c

{
c

y
− 1

2

(
c

y

)2

+
1

3

(
c

y

)3

− 1

4

(
c

y

)4

+ . . .

}
− 2

=

(
2− c

y
+

2

3

(
c

y

)2

− 1

2

(
c

y

)2

+
2

5

(
c

y

)4

+ . . .

)

+

(
c

y
− 1

2

(
c

y

)2

+
1

3

(
c

y

)3

− 1

4

(
c

y

)4

+ . . .

)
− 2

=

(
c2

6y2
− c3

6y3

)
+

(
3c4

6y4
− 2c5

15y5

)
+ . . .

=
c2

6y2

(
1− c

y

)
+

c4

60y4

(
9− 8c

y

)
+ . . . . (15)

Therefore, we get
β̂EB2

− β̂EB1
= β̂EB1

− β̂EB3
> 0,

which completes the proof.

It is noticed here that we can conclude from (13) that

β̂EB3 − β < β̂EB1 − β < β̂EB2 − β,

which gives us the following relation for the bias of E-Bayesian estimators:

Biasβ(β̂EB3) < Biasβ(β̂EB1) < Biasβ(β̂EB2).

4. The E-PMSE of E-Bayesian estimation

The concept of E-PMSE of E-Bayesian estimator is introduced by [8] for measuring the estimated risk of E-
Bayesian estimators. The E-PMSE of E-Bayesian estimator is defined as

EP (β̂EB) =

∫ ∫
D

PR(β̂BS) π(a, b)dadb,

where D is the domain of a and b, PR(β̂BS) is the posterior risk of Bayesian estimation and π(a, b) is the joint
prior density of a and b.

In the following theorem, we present the formulas for E-PMSE of E-Bayesian estimators of β under the SEL
function.
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Theorem 4.1. Let x = (x1, ..., xn) be record observations from BurrXII(α, β) distribution. For the prior density
functions of πi(a, b), i = 1, 2, 3, given in (7), (8) and (9), the E-PMSE of E-Bayesian estimates β̂EBi, i = 1, 2, 3,
are given, respectively, by

EP (β̂EB1) =
u+ n(u+ v)

(u+ v)y(c+ y)
,

EP (β̂EB2) = 2
u+ n(u+ v)

c2(u+ v)
[
c

y
+ ln(

y

c+ y
)],

EP (β̂EB3) = 2
u+ n(u+ v)

c2(u+ v)
[ln(

c+ y

y
)− c

c+ y
].

Proof
Using Theorem 2.1(ii), the definition of E-PMSE, and for π1(a, b) given in (7), we get

EP (β̂EB1) =

∫ c

0

∫ 1

0

PR(β̂BS)π1(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

(b+ y)2
au−1(1− a)v−1

cB(u, v)
dadb

=
1

cB(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da

∫ c

0

1

(b+ y)2
db

=
u+ n(u+ v)

(u+ v)y(c+ y)

Also, for π2(a, b) given in (8), we obtain

EP (β̂EB2) =

∫ c

0

∫ 1

0

PR(β̂BS)π2(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

(b+ y)2
2(c− b)au−1(1− a)v−1

c2B(u, v)
dadb

=
2

c2B(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da

∫ c

0

c− b

(b+ y)2
db

= 2
u+ n(u+ v)

c2(u+ v)
[
c

y
+ ln(

y

c+ y
)].

Similarly, for π3(a, b) given in (9), we obtain

EP (β̂EB3) =

∫ c

0

∫ 1

0

PR(β̂BS)π3(a, b)dadb

=

∫ c

0

∫ 1

0

a+ n

b+ y

2bau−1(1− a)v−1

c2B(u, v)
dadb

=
2

c2B(u, v)

∫ 1

0

(a+ n)au−1(1− a)v−1da

∫ c

0

b

(b+ y)2
db

= 2
u+ n(u+ v)

c2(u+ v)
[ln(

c+ y

y
)− c

c+ y
].
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5. Simulation study

In this section, we perform a simulation study for comparison of proposed estimators of β. For this purpose, we
generate record observations x1, ..., xn of size n ∈ {2, 3, 5, 7, 10, 15, 30} from BurrXII(α, β) distribution with
α = 1 and β = 2, 3, 5 and compute the E-Bayesian estimates and corresponding E-PMSEs for the selected values
c = 0.5, 1, 1.5, u = 2 and v = 3. The performances of the E-Bayesian estimates and corresponding E-PMSEs are
compared for repeated M = 105 times simulation runs and are summarized in Tables 1-3.

The following conclusions can be drawn from the results:

• In all considered situations of parameter β, E-Bayesian estimate and its E-PMSE are robust.
• For fixed values of c and the same values of n, we observe the following relationship between E-Bayesian

estimates and corresponding E-PMSEs:

β̂EB3 < β̂EB1 < β̂EB2,

and

EP (β̂EB3) < EP (β̂EB1) < EP (β̂EB2). (16)

If we use E-PMSE for evaluating the E-Bayesian estimates, then from (16) we conclude that β̂EB3 is superior
to β̂EB1 and β̂EB1 is superior to β̂EB2.

• For fixed c, the performances of E-Bayesian estimates and corresponding E-PMSEs improve by increasing
n.

Table 1. Performances of E-Bayesian estimates and their E-PMSEs for β = 2.

n c β̂EB1 β̂EB2 β̂EB3 EP (β̂EB1) EP (β̂EB2) EP (β̂EB3)

0.5 2.7653 3.1535 2.3772 5.7970 8.2097 3.3843
2 1 2.1713 2.5899 1.7527 3.4991 5.2928 1.7054

1.5 1.8322 2.2498 1.4146 2.5336 3.9806 1.0866
0.5 2.5708 2.7909 2.3506 2.8431 3.5330 2.1533

3 1 2.1578 2.4407 1.8750 1.9395 2.5924 1.2867
1.5 1.8903 2.1998 1.5809 1.4898 2.0849 0.8948
0.5 2.3481 2.4542 2.2420 1.2947 1.4476 1.1418

5 1 2.1065 2.2691 1.9440 1.0152 1.2068 0.8235
1.5 1.9256 2.1230 1.7281 0.8421 1.0459 0.6384
0.5 2.2503 2.3168 2.1837 0.8033 0.8598 0.7468

7 1 2.0838 2.1952 1.9724 0.6790 0.7627 0.5953
1.5 1.9486 2.0921 1.8051 0.5905 0.6888 0.4923
0.5 2.1843 2.2270 2.1416 0.5130 0.5356 0.4905

10 1 2.0708 2.1466 1.9951 0.4575 0.4947 0.4204
1.5 1.9727 2.0748 1.8706 0.4136 0.46066 0.3666
0.5 2.1272 2.1535 2.1008 0.3162 0.3246 0.3077

15 1 2.0539 2.1028 2.0051 0.2937 0.3087 0.2787
1.5 1.9874 2.0556 1.9191 0.2744 0.2945 0.2543
0.5 2.0614 2.0735 2.0493 0.1449 0.1467 0.1431

30 1 2.0264 2.0497 2.0031 0.1399 0.1432 0.1366
1.5 1.9930 2.0268 1.9593 0.1352 0.1400 0.1305
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Table 2. Performances of E-Bayesian estimates and their E-PMSEs for β = 3.

n c β̂EB1 β̂EB2 β̂EB3 EP (β̂EB1) EP (β̂EB2) EP (β̂EB3)

0.5 3.6273 4.2432 3.0114 9.7817 14.3973 5.1662
2 1 2.7483 3.3748 2.1219 5.7007 8.9565 2.4449

1.5 2.2710 2.8746 1.6673 4.0547 6.6075 1.5019
0.5 3.5070 3.8949 3.1191 5.1694 6.6962 3.6426

3 1 2.8355 3.2997 2.3713 3.3522 4.6911 2.0133
1.5 2.4266 2.9130 1.9403 2.5044 3.6725 1.3364
0.5 3.3263 3.5332 3.1193 2.5552 2.9549 2.1555

5 1 2.8884 3.1846 2.5921 1.8949 2.3532 1.4366
1.5 2.5808 2.9245 2.2371 1.5182 1.9789 1.0575
0.5 3.2435 3.3800 3.1071 1.6545 1.8173 1.4918

7 1 2.9229 3.1382 2.7077 1.3287 1.5498 1.1076
1.5 2.6777 2.9432 2.4122 1.1155 1.3602 0.8708
0.5 3.1881 3.2784 3.097 1.0880 1.1569 1.0191

10 1 2.9591 3.1123 2.8060 0.9306 1.0364 0.8249
1.5 2.7709 2.9698 2.5719 0.8151 0.9419 0.6882
0.5 3.1345 3.1915 3.0775 0.6852 0.7121 0.6584

15 1 2.9811 3.0835 2.8787 0.6175 0.6628 0.5722
1.5 2.8468 2.9860 2.7077 0.5625 0.6208 0.5042
0.5 3.0656 3.0923 3.0389 0.3204 0.3262 0.3146

30 1 2.9896 3.0403 2.9389 0.3044 0.3150 0.2937
1.5 2.9185 2.9908 2.8462 0.2899 0.30481 0.2751

Table 3. Performances of E-Bayesian estimates and their E-PMSEs for β = 5.

n c β̂EB1 β̂EB2 β̂EB3 EP (β̂EB1) EP (β̂EB2) EP (β̂EB3)

0.5 4.9570 6.0066 3.9073 18.3526 28.3497 8.3554
2 1 3.5898 4.5807 2.5989 10.2817 16.9092 3.6543

1.5 2.8918 3.8063 1.9772 7.1756 12.2035 2.1478
0.5 5.0300 5.7770 4.2831 10.5218 14.4205 6.6231

3 1 3.8691 4.6837 3.0546 6.4221 9.5319 3.3123
1.5 3.2154 4.0235 2.4073 4.6517 7.2263 2.0771
0.5 5.0258 5.4806 4.5710 5.7496 6.9968 4.5024

5 1 4.1609 4.7516 3.5701 3.9588 5.2282 2.6893
1.5 3.6044 4.2490 2.9599 3.0390 4.2274 1.8507
0.5 5.0326 5.3543 4.7109 3.9467 4.5221 3.3713

7 1 4.3462 4.8099 3.8825 2.9431 3.6339 2.2524
1.5 3.8648 4.4028 3.3268 2.3581 3.0644 1.6518
0.5 5.0504 5.2745 4.8263 2.7151 2.9809 2.4492

10 1 4.5252 4.8777 4.1727 2.1750 2.5408 1.8091
1.5 4.1259 4.5590 3.6927 1.8198 2.2263 1.4134
0.5 5.0498 5.1971 4.9026 1.7736 1.8843 1.6629

15 1 4.6761 4.9260 4.4262 1.5178 1.6895 1.3461
1.5 4.3692 4.6936 4.0447 1.3285 1.5356 1.1214
0.5 5.0239 5.0955 4.9523 0.85982 0.8852 0.8345

30 1 4.8264 4.9582 4.6946 0.79294 0.8376 0.7482
1.5 4.6486 4.8315 4.4658 0.7359 0.7955 0.6763
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6. Real data analysis

In this section, a real data set of testing the efficacy of an analgesic has been analyzed and corresponding parameters
have been estimated. The data are Relief Times (in Hours) for 50 Patients patients receiving a fixed dosage of a
medication. The data set is provided by [18] and presented in Table 4.

The MLE’s of α and β from data are 5.0008 and 8.2689, respectively. A Kolmogrov-Smirnov test was used for
checking the validity of the Burr type XII distribution based on these parameters. The test statistic K-S= 0.1031
with a corresponding p-value= 0.6247 implies that the Burr XII distribution have a good fit to the above data.

The observed record values x = (x1, x2, x3, x4) are obtained to be

x = (0.7, 0.84, 0.85, 0.87).

We get y = ln(1 + (0.87)5.0008)=0.4044, and then, the MLE of β is n
y = 9.8918.

We summarize the E-Bayesian estimates and their E-PMSEs in Table 5 for selected values of c =
0.1, 0.3, 0.4, 0.5, u = 2 and ν = 3. It is observed that β̂EB3 has smaller E-PMSE and therefore is suggested. Also,
the numerical results are consistent with the numerical simulation results.

Table 4. Relief Times (in Hours) for 50 Patients.

0.70 0.84 0.58 0.50 0.55 0.82 0.59 0.71 0.72 0.61
0.62 0.49 0.54 0.72 0.36 0.71 0.35 0.64 0.85 0.55
0.59 0.29 0.75 0.53 0.46 0.60 0.60 0.36 0.52 0.68
0.80 0.55 0.84 0.70 0.34 0.70 0.49 0.56 0.71 0.61
0.57 0.73 0.75 0.58 0.44 0.81 0.80 0.87 0.29 0.50.

Table 5. Results for E-Bayesian estimates and corresponding E-PMSEs.

c β̂EB1 β̂EB2 β̂EB3 EP (β̂EB1) EP (β̂EB2) EP (β̂EB3)

0.1 9.7230 10.0808 9.3652 21.5732 23.1597 19.9867
0.3 8.1395 8.8886 7.3905 15.4477 18.2764 12.6191
0.4 7.5650 8.4253 6.7046 13.5273 16.5802 10.4743
0.5 7.0831 8.0232 6.1430 12.0315 15.1914 8.8716
Range 2.6399 2.0576 3.2222 9.5417 7.9683 11.1152

7. Conclusion

The problem of E-Bayesian estimation in a Burr type XII distribution and its E-PMSE based on record values are
considered. Using different joint prior distributions of hyperparameters, the Bayesian and E-Bayesian estimates of
β are computed. The formulas for the E-PMSE of E-Bayesian estimators are presented for comparing the error of E-
Bayesian estimators. A Monte Carlo simulation study is performed for comparison of the E-Bayesian estimators.
Our findings show that the performances of estimates improve in terms of E-PMSE values when n increases.
Moreover, The results of the real data analysis agree with the simulation results, where the estimator β̂EB3 is better
than other E-Bayesian estimators in terms of their E-PMSEs.
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