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Abstract We analyze the chances of winning a tournament under the assumption that the probabilities of winning
individual matches follow Bradley-Terry model [2]. We present an exact solution and show a few examples of its
use. The examples are from California volleyball tournaments, the round of sixteen in the World Cup and the
Champions League, the group stage of the Association of Tennis Professionals tournament, and the volleyball
SuperLega in Italy.
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approximations via multivariate Gaussian laws.
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1. The setup

This is a problem in the mathematics of sports that was graciously communicated to the authors by
Professor Sheldon Ross. This manuscript follows up on [6].

The problem is concerned with the probability of a team (or a person in individual sports) winning a
competition, when we have information about the values (strengths) and the schedule of matches for each
team (or a person in individual sports). We cast the paper in the context of “teams,” and its understood
how to switch to the language of individual sports simply by replacing “team” with “person.”

There are many tournament structures. We develop the combinatorial formulas for general tournaments
with a predesignated schedule of matches, where the individual matches have a win-lose format (no draws).
The most common form of this tournament structure is the round-robin, where every contestant plays
every other contestant. Also common in tournaments is to play several rounds (typically two), with each
round in the round-robin format. We focus the evaluation of the formulas by restricting to round-robin
tournaments with multiple-rounds.

We analyze the chances of winning such a tournament under the assumption that the probabilities of
winning individual matches follow Bradley-Terry model [2] (more on this below). In [6], Ross is concerned
with structural issues in these tournaments; here we look into computational questions. The number of
potential winners in a tournament that follows Bradley-Terry model has been studied in [3]. In [3], the
team values are allowed to be random variables. Compared to the asymptotic studies in [3], our study
is more on the applied perspective and focuses more on related real world examples. In a recent study,
Bradley-Terry model is used to forecast tennis match results in [4]. Compared to the predictive model
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in [4], our study is not limited to tennis and provide some asymptotic analysis. To generalize the match
format, a Bradley-Terry type model that allows multiple outcomes is considered in [7]. While the study in
[7] focuses on the winning probability of an individual match, our scope is on finding overall probability
of winning a tournament. Compared to our study, one advantage of the study in [7] is to allow for ties.
This is a direction where we can further generalize our model.

There are r teams, numbered 1, . . . , r, participating in a tournament. The tournament has a fixed
schedule specifying Ni,j , the number of times Team i plays Team j, for 1 ≤ i, j ≤ r, with i ̸= j. Then,
of course, Ni,j = Nj,i over the range of indices. The results of individual matches are independent. For
example, for single round-robin tournaments, we have Ni,j = 1, for 1 ≤ i < j ≤ r.

2. Real-world examples

Since the general combinatorial formulas we develop work for tournaments that are not round-robin, we
show some round-robin examples and one example that is not round-robin.

In volleyball, matches are in the form win-lose, with no possible ties. Southern California Municipal
Athletic Federation has published rules for breaking the ties in certain volleyball tournaments by having
the top teams compete in a one-round tournament in the round-robin style. The teams that qualify for
the final, typically r = 3 or 4, play a round-robin tournament, where each team meets every other team
once (Ni,j = 1), for i ̸= j.

The round of sixteen of the World Cup as well as the Champions League is made up of only win-lose
matches. The teams are numbered, say 1, 2, . . . , 16, and listed such that Team 2i− 1 is paired against
Team 2i, for i = 1, 2, . . . , 8. According to the rules, this round has a knockout format. In this example, we
have N2i−1,2i = 1 for i = 1, 2, . . . , 8, and otherwise Ni,j = 0.

The Association of Tennis Professionals (ATP) tournament is a competition among top ranked
professional tennis players. The players are organized in two groups, and each group goes into a round-
robin competition. The top two players in a group advance for a semifinal stage. In the semifinal, the top
player in the first group is paired for a match against the runner-up of the second group, and vice versa.
The losers of the semifinals are eliminated, and the top two players advance to the final. The group stage
fits our setup with r = 4 (in each of the two groups) and Ni,j = 1, for 1 ≤ i < j ≤ 4.

SuperLega is the highest level men’s volleyball club competition in Italy. The tournament consists of two
phases: a regular season round-robin competition, where each pair of teams plays twice and the standings
are determined based on points gained (win-lose format), and a playoff tournament among the first eight
teams in the standings. The regular season phase is an example for our setup, where r = 12 (there were
r = 13 teams previously and the number is reduced to 12 in 2021) and Ni,j = 2, for 1 ≤ i < j ≤ 12.

3. Bradley-Terry model

To evaluate the winning probabilities of the teams of a tournament, one needs the winning probabilities
of the teams of each match. One model that fits this setup is the Bradley-Terry probability model.

In a Bradley-Terry model, according to training, skill, and quality of the players, each team has a value
(strength). Let vi ∈ R+ be the value of Team i, for i = 1, . . . , r. Let the symbol � stand for “beats.” For
example, the terminology i� j means Team i beats Team j in a scheduled meeting in the tournament.
In this model, the probability that Team i defeats Team j is

pi,j := P(i� j) =
vi

vi + vj
, 1 ≤ i, j ≤ r;

we take i and j to be distinct. Certainly, we have pj,i = 1− pi,j . However, as we shall see, the use of pj,i
“symmetrizes” the formulas and makes them compact.
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For instance, in the case of the Champions League, we can use the published “market values” for the
teams as measures of strength. In 2020, the top three values are 1.18 (Manchester City), 1.13 (Liverpool)
and 0.8816 (Chelsea); the unit of measurement is billions of dollars.

An interesting question is What is the probability that Team i wins the tournament? This question has
two interpretations: Team i is the sole winner, or shares the top position with other teams (perhaps more
than one). For example, in the round of sixteen of the Champions League, the tournament is structured
for eight teams to share the top position of this round and advance to the next round. Such a question
can be addressed via joint distributions. In this study, we show combinatorial expression for both the
probability of being the sole winner, and the probability of being the winner and sharing it with other
teams. Since the computation of these two probabilities are similar, for the exact case, we show the
probability of being the sole winner, and for the asymptotics, we show the probability of being the winner
and sharing it with other teams. In each case, the alternative probability can be computed similarly.

4. Exact joint distribution of wins

In this section, we develop the exact joint distribution of wins. Although we start with a combinatorial
expression that works for tournaments that are not necessarily round-robin, as later needed in the
asymptotic analysis, we confine the rest of the paper to tournaments of n rounds, with each round in the
round-robin format, that is Ni,j = n, for all i ̸= j. The quantity

∑r
j=1
j ̸=i

Ni,j = n
(
r
2

)
:= Q is a fixed number.

In this setup, the team who wins the most number of games wins the competition, with no advantage in
the count of wins for a team by playing more games than other teams. Let Wi be the number of times
Team i wins by the end of the tournament. We construct a formula for

P(W1 = w1, . . . ,Wr = wr).

In vector notation, using T for the transpose, we write the vector (W1, . . . ,Wr)
T as W, and the vector

(w1, . . . , wr)
T of target values as w. So, the latter probability is reduced to the compact form P(W = w).

We need to address the question at a feasible vector (w1, . . . , wr)
T . The probabilities are 0 outside

the range of feasibility. Such a feasible vector puts a restriction on each component, and on the overall
structure of how they are inter-related. To avoid the exclusion of the indices in the sums (such as repeatedly
writing i ̸= j), most of the time we write the full range of the indices from 1 to r, with the interpretation
that Ni,i = 0 and pi,i = 0. We must have

0 ≤ wi ≤
r∑

j=1

Ni,j = n(r − 1), for i = 1, . . . , r,

together with

w1 + w2 + · · ·+ wr =
∑

1≤i<j≤r

Ni,j = n

(
r

2

)
= Q,

where n is the number of times each pair of teams meet. We shall see other restrictions in the joint
distribution formula.

We use the notation Bin(n, p) to denote a binomial random variable counting successes in n independent
identically distributed trials each of success probability p.

Let Ki,j be the (random) number of times Team i beats Team j. And so, we have

Wi = Ki,1 +Ki,2 + · · ·+Ki,r,

with the interpretation Ki,i = 0. The random variable Ki,j is distributed like Bin(Ni,j , pi,j), for i ̸= j.
Then, we have Kj,i = Ni,j −Ki,j . We use the wiggly notation Wi for the event that Team i wins the
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tournament (possibly sharing the top position with other teams), and W∗
i for the event that Team i is

the sole winner. Note that the sum of the probabilities P(Wi) may exceed 1, accounting for the ties at
the top position.

The realization Ki,j = ki,j occurs with probability p
ki,j

i,j p
kj,i

j,i

(
Ni,j

ki,j

)
. By independence, the joint probability

follows:
P(W1 = w1, . . . ,Wr = wr) =

∑ ∏
1≤i<j≤r

p
ki,j

i,j p
kj,i

j,i

(
Ni,j

ki,j

)
, (1)

where the sum is taken over all feasible realizations ki,j ’s of the Ki,j ’s. That is, realizations satisfying the
constraints

r∑
s=1

km,s =
(m−1∑

s=1

Ns,m −
m−1∑
s=1

ks,m

)
+

r∑
s=m+1

km,s = wm, m = 1, . . . , r,

and
0 ≤ ki,j ≤ Ni,j , 1 ≤ i, j ≤ r, i ̸= j.

This is a general formula that works even when the Ni,j ’s are not all equal.
From the joint distribution, we get the winning probabilities for Team i (possibly sharing the top

position with other teams):

P(Wi) =
∑

wi=max (w)

P(W1 = w1, . . . ,Wr = wr), (2)

the sum is taken over every feasible w = (w1, . . . , wk) in which wi is a maximal component.
To find the probability W∗

i , we compute (1), then proceed with

P(W∗
i ) =

∑
wi>wj

j ̸=i

P(W1 = w1, . . . ,Wr = wr). (3)

This probability is equal to or smaller than then one given in Eq. (2). The formulas (1)–(3) are
computationally demanding. However, they are amenable to hand or computer evaluation for a small
number of teams, and a small number of matches played by each team. When r or Ni,j is in the middle
range or is large, we resort to asymptotic approximations and simulations.

4.1. Cases amenable to computation
As an example, take r = 4, and the four teams compete in a round-robin tournament of only one round
(Ni,j = 1). In the exact formula, all ki,j ≤ Ni,j = 1 are in {0, 1}. Hence, all the binomial coefficients are
1. In expanded form, the probability of Team 1 being the sole winner of the tournament is

P(W∗
1 ) = p1,2p1,3p1,4p2,3p2,4p3,4 + p1,2p1,3p1,4p3,2p2,4p3,4 + p1,2p1,3p1,4p3,2p4,2p4,3

+ p1,2p1,3p1,4p3,2p4,2p3,4 + p1,2p1,3p1,4p2,3p2,4p4,3 + p1,2p1,3p1,4p2,3p4,2p4,3

+ p1,2p1,3p1,4p2,3p3,4p4,2 + p1,2p1,3p1,4p3,2p2,4p4,3

=
v31
(
v2v3(v2 + v3) + v2v4(v2 + v4) + v3v4(v3 + v4) + 2v2v3v4

)
(v1 + v2)(v1 + v3)(v1 + v4)(v2 + v3)(v2 + v4)(v3 + v4)

.

Similar (symmetrical) formulas can be written for the probabilities of the events W∗
2 , W∗

3 and W∗
4 .

This applies directly to the groups of the ATP tournament. The ATP keeps track of the players via
“points” accrued throughout the playing history of a player. The point calculation is a combination of
the number of wins in major tournaments and the total prize money earned. We use the player’s points
as his value. The 2021 ranking and points are published on the ATP web page. A summary of the ranks
and points is in the following table:
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rank player points
1 Novak Djokovic 12,030
2 Rafael Nadal 9,850
3 Daniil Medvedev 9,735
4 Dominic Thiem 9,125

Assuming these players appear in a group in the ATP competition, the probabilities associated with
these values are

p1,2 = 0.5498171846, p2,1 = 0.4501828154,

p1,3 = 0.5527222605, p3,1 = 0.4472777395,

p1,4 = 0.5686598913, p4,1 = 0.4313401087,

p2,3 = 0.5029359203, p3,2 = 0.4970640797,

p2,4 = 0.5191040843, p4,2 = 0.4808959157,

p3,4 = 0.5161717922, p4,3 = 0.4838282078.

The probability that Djokovic is at the top of the group having won more games than anyone else in the
group is only 0.1728135784. The probability is small in view of the closeness of all the values of the player
in the group.

Although we restrict the scope of this study to round-robin tournaments, the combinatorial expression
works for a general tournament in which the number of matches that a pair of teams play is prespecified.
An example with light computation is a knockout round of sixteen, as most Ni,j ’ s are 0. In the proposed
notation in Section 2, each Wi is a simple Bernoulli random variable (coming in dependent pairs). For
i = 1, 2, . . . , 8, we have W2i−1 = Bernoulli(p2i−1,2i), and W2i = 1−W2i−1 = Bernoulli(p2i,2i−1). Prediction
of the bracket in the round of sixteen comes with a lot of excitement in the world. The formula (1) comes
down to

P(W1 = w1, . . . ,W16 = w16)

=
∑

k1,2=w1

∑
k3,4=w3

∑
k5,6=w5

∑
k7,8=w7

∑
k9,10=w9

∑
k11,12=w11

∑
k13,14=w13

∑
k15,16=w15

p
k1,2

1,2 p
k2,1

2,1

× p
k3,4

3,4 p
k4,3

4,3 p
k5,6

5,6 p
k6,5

6,5 p
k7,8

7,8 p
k8,7

8,7 p
k9,10

9,10 p
k10,9

10,9 p
k11,12

11,12 p
k12,11

12,11

× p
k13,14

13,14 p
k14,13

14,13 p
k15,16

15,16 p
k16,15

16,15

(subject to the constraints k1,2 + k2,1 = 1, . . . , k15,16 + k16,15 = 1), which is not hard to compute, for any
consistent set of wi’s all in {0, 1}. We have, for example,

P(W2i−1,i = 1,W2i = 0, i = 1, . . . , 8) = p1,2p3,4p5,6p7,8p9,10p11,12p13,14p15,16.

4.2. Complexity of the exact solution
The calculation of the exact probability requires too many operations. The multiplicand has a fixed
number of multiplications. Let us take that as the unit of computing time. The product in (1) has

(
r
2

)
terms. Then, we sum over the equations

w1 = k1,1 + k1,2 + k1,3 + · · ·+ k1,r;

w2 = k2,1 + k2,2 + k2,3 + · · ·+ k2,r;

...
wr = kr,1 + kr,2 + kr,3 + · · ·+ kr,r,
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subject to the constraints 0 ≤ ki,j ≤ n and ki,j = n− kj,i. (Recall that ki,i = 0, for i = 1, . . . , r.) The term
ki,j can be 0, 1, . . . , or n. So, the pair (ki,j , kj,i) can be chosen in Ni,j + 1 ways, because the value ki,j
determines kj,i. Hence, the equations have a total of

∏
1≤i<j≤r(Ni,j + 1) solutions. To determine the

probability in (1), one needs ∏
1≤i<j≤r

(Ni,j + 1) = (n+ 1)(
r
2)

time units. For instance, if r = 20 and Ni,j = 2, for i ̸= j, one needs

3(
20
2 ) = 4.498196225× 1090

formidable time units.

4.3. Asymptotics for round-robin tournaments
For a round-robin tournament with n rounds, it is evident that for large r or large n, the exact formula may
be intractable. In these cases, we resort to asymptotic approximations. As it is set up, Ki,j is distributed
like Bin(Ni,j , pi,j). We have

Wi = Ki,1 +Ki,2 + · · ·+Ki,r, (4)
and Wi is a convolution (sum of independent random variables). Here, we have Ki,j = Bin(n, pi,j). Note
that Ni,i = 0, pi,i = 0, and the corresponding binomial Ki,i = Bin(Ni,i, pi,i) = Bin(0, 0) ≡ 0.

We denote an m-component multivariate normally distributed random vector with mean µ and
covariance matrix Σ by Nm(µ,Σ). Customarily, the index m is dropped when it is one, in which case µ
and Σ are written as scalars.

For large n, the binomial distribution of Bin(n, p) is well approximated by the normal distribution
of N (np, np(1− p)). Thus, for n in mid-range or is large, Wi can be well approximated by a sum
of independent normal random variates. The sum of independent normal variates is itself normally
distributed, with the means adding up as the collective mean, and the variances adding up as the collective
variance. Namely, Eq. (4) can be approximated by normal distributions:

Wi ≈ N
(
n

r∑
j=1

pi,j , n

r∑
j=1

pi,jpj,i

)
,

when the parameter n is large enough to allow it. Note again that Ni,i = 0, pi,i = 0, and N (Ni,i, pi,i) ≡ 0.
All the (dependent) wins Wi, for i = 1, . . . , r, are approximated by normal variates, and their joint

distribution is a multivariate normal. However, such a distribution is improper, in view of the constraint

W1 +W2 + · · ·+Wr =
∑

1≤i<j≤r

Ni,j = n

(
r

2

)
.

The rank of the covariance matrix is r − 1, and the matrix is not invertible.
However, any r − 1 components of W have a proper multivariate distribution, with an invertible

covariance matrix. We consider the vector comprised of the first r − 1 components, which has an
approximate multivariate distribution:  W1

...
Wr−1

 ≈ Nr−1(µ,Σ),

where

µ = n


∑r

j=1 p1,j∑r
j=1 p2,j

...∑r
j=1 pr−1,j

 ,
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and Σ is an (r − 1)× (r − 1) covariance matrix. The diagonal elements of the covariance matrix are
the variances Var[Wi] =

∑r
j=1 npi,jpj,i, for i = 1, . . . , r − 1. The off-diagonal elements are determined as

follows:

Cov[Wi,Wj ] = Cov[Ki,1 +Ki,2 + · · ·+Ki,r, Kj,1 +Kj,2 + · · ·+Kj,r]

= Cov[Ki,j ,Kj,i] +
∑

1≤k,ℓ≤r
(k,ℓ) ̸=(j,i)

Cov[Ki,k,Kj,ℓ]

= Cov[Ki,j , Ni,j −Ki,j ] + 0 (by independence)
= −Cov[Ki,j ,Ki,j ]

= −Var[Ki,j ]

= −npi,jpj,i.

For concreteness, we write the entire covariance matrix:

Σ = n


∑r

j=1 p1,jpj,1 −p1,2p2,1 −p1,3p3,1 . . . −p1,r−1pr−1,1

−p2,1p1,2
∑r

j=1 np2,jpj,2 −p2,3p3,2 . . . −p2,r−1pr−1,2

...
...

... . . . ...
−pr−1,1p1,r−1 −pr−1,2p2,r−1 −pr−1,3p3,r−1 . . .

∑r
j=1 pr−1,jpj,r−1

 .

A mutivariate normal vector Y = (Y1, . . . , Yr−1)
T with mean vector µ and covariance matrix Σ has the

joint density

fY(y) = fY1,...,Yr
(y1, . . . , yr−1) =

e−(y−µ)TΣ−1(y−µ)√
(2π)r−1|Σ|

; (5)

here |Σ| is the determinant of Σ.
Now, we are in a position to compute the approximate probabilities of winning (the case of sole winner

can be computed similarly by Eq. (3)):

P(Wi) = P(W1 ≤Wi,W2 ≤Wi, . . . ,Wi−1 ≤Wi,Wi+1 ≤Wi, . . . ,Wr ≤Wi)

= P
(
W1 ≤Wi,W2 ≤Wi, . . . ,Wi−1 ≤Wi,Wi+1 ≤Wi, . . . ,

Q−
r−1∑
k=1

Wk ≤Wi

)
≈

∫ ∫
. . .

∫
V

f(w1, . . . , wr−1) dw1 . . . dwr−1;

the integration is taken over the volume V ∈ Rr−1 defined by the inequalities

Q−
r−k−1∑

j=1
j ̸=i

wj − (k + 1)wi ≤ wr−k ≤ wi, k = 1, . . . , r − i− 1;

Q−
r−k−1∑

j=1
j ̸=i

wj − kwi ≤ wr−k ≤ wi, k = r − i+ 1, . . . , r − 1.

To discern how the limits on the integrals come about, we construct these inequalities in a bottom-up
bootstrapping sequence. Here, we have Q := n

(
r
2

)
is the total number of matches in the tournament. For
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the event Wi to occur the following bounds should be satisfied:

w1 ≤ wi;

w2 ≤ wi;

...
wi−1 ≤ wi;

wi+1 ≤ wi;

...
wr ≤ wi.

The bottom inequality is
wr = Q− (w1 + w2 + · · ·+ wr−1) ≤ wi.

Rearranging, we get

Q− (w1 + w2 + · · ·+ wi−1 + 2wi + wi+1 + · · ·+ wr−2) ≤ wr−1 ≤ wi.

The limits of the innermost integration are now determined. We then move up the chain of inequalities.
Plugging this in the penultimate inequality, we get

Q− (w1 + w2 + · · ·+ wi−1 + 3wi + wi+1 + · · ·+ wr−3) ≤ wr−2 ≤ wi.

Iterating this k < r − i steps, we get

Q− (w1 + w2 + · · ·+ wi−1 + (k + 1)wi + wi+1 + · · ·+ wr−k−1) ≤ wr−k ≤ wi.

We repeat this for k = 1, . . . , r − i− 1. Going further steps back, we establish the pattern of similar
inequalities—we only need to observe a shift in indexing starting at the inequality wi−1 ≤ wi.

Furthermore, wi cannot be the maximum, unless it is at least Q/r. So, the outer integral on wi runs
from Q/r to infinity. As an instance, take the case where r equals 4, and all Ni,j are 30, we have

P(W2) ≈
∫ ∞

w2=45

∫ w2

w1=180−3w2

∫ w2

w3=180−w1−2w2

f(w1, w2, w3) dw1 dw2 dw3.

4.4. Small r and large n

We have successfully tried the approach in Section 4.3 on approximations for small r and large n,
1 ≤ i, j ≤ r. We provide a worked out example.

Take the case r = 3, all Ni,j = n = 30, for 1 ≤ i, j ≤ 3, and team values

v1 = 100, v2 = 102, v3 = 112.

In view of the constraint
W1 +W2 +W3 = 90,

we are looking at the reduced vector
(

W1

W2

)
, with mean

µ =

 155250
5353

318240
10807

 =

29.00242854

29.44758027

 ,
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and covariance matrix  429109500
28654609 − 76500

10201

− 76500
10201

1749870180
116791249

 .

Hence, we have the approximate bivariate distribution(
W1

W2

)
= N2

 155250
5353

318240
10807

 ,

 429109500
28654609 − 76500

10201

− 76500
10201

1749870180
116791249

 .

The density of such a bivariate distribution is

f(x, y) =
572771

√
612876894

367726136400π

× exp
(
− 1606335077

36051582000
x2 − 32160241

721031640
yx− 3275249777

73545227280
y2

+
93684867

24034388
x+

94128863

24034388
y − 2744477955

24034388

)
.

We get
P(W1) ≈

∫ ∞

w1=30

∫ w1

w2=90−2w1

f(w1, w2) dw1 dw2 ≈ 0.2439864192.

Similarly, we get

P(W2) ≈ 0.2767548809,

P(W3) ≈ 0.47925869991.

These approximations are quite reasonable in comparison with the exact probabilities, which we
obtained by computing (1)–(2) using a computer. The exact probabilities are

P(W1) = 0.2714855085 . . . ,

P(W2) = 0.3057791749 . . . ,

P(W3) = 0.5132831108 . . . .

Remark 4.1
The three probabilities P(Wi), for i = 1, 2, 3, are not mutually exclusive. As such, their sum exceeds 1,
since, for example, P(W1 ∩W2) > 0. To obtain P(W3), we looked at the reduced vector

(
W1

W3

)
, and reran

the computer program. The alternative would be a somewhat unpleasant inclusion-exclusion approach.
Remark 4.2
The results for integrations are obtained symbolically. If we use Monte Carlo integration with sample size
105, we get P(W1) ≈ 0.2426, P(W2) ≈ 0.2763 and P(W3) ≈ 0.4784. Since the difference between symbolic
integration and numerical integration is small, we can use numerical integration when r is moderately
large.
Remark 4.3
Since for a fixed r, all Ni,j , for 1 ≤ i, j ≤ r, are the same and are equal to n. Consider now the scaled wins

Wi

n
=

Ki,1

n
+

Ki,1

n
+ · · ·+ Ki,1

n
.

Recall that Ki,j are independent and binomially distributed. By the strong law of large numbers, we have
Ki,j

a.s.−→ pi,j , for i ̸= j (recall that Ki,i = 0). So, we have
Wi

n

a.s.−→ pi,1 + pi,2 + · · ·+ pi,r =: w∗
i .
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Next, assume w∗
i < w∗

j Then, we have

P(Wi) = P(W1 ≤Wi,W2 ≤Wi, . . . ,Wi−1 ≤Wi,Wi+1 ≤Wi, . . . ,Wr ≤Wi)

≤ P(Wj ≤Wi)

= P
(Wj

n
≤ Wi

n

)
→ P(w∗

j ≤ w∗
i )

= 0.

Unless w∗
i is the highest, the corresponding Wi has 0 limiting probability. In contrast, if w∗

i is one of the
highest w∗’s we have

P(Wi) = P
(W1

n
≤ Wi

n
,
W2

n
≤ Wi

n
, . . . ,

Wi−1

n
≤ Wi

n
,
Wi+1

n
≤ Wi

n
, . . . ,

Wr

n
≤ Wi

n

)
→ P

(
w∗

1 ≤ w∗
i , w

∗
2 ≤ w∗

i , . . . , w
∗
i−1 ≤ w∗

i , w
∗
i+1 ≤ w∗

i , . . . , w
∗
r ≤ w∗

i )

= 1.

Indeed, the strongest team (and there can be more than one), has a chance to shine over a very large
number of matches and recover from losing streaks.

4.5. Large r and small n
The case in Subsection 4.4 (small r and large Ni,j , for all 1 ≤ i, j ≤ r) is of theoretical interest but may
not be of practical value. There are not many tournaments that have small r and large Ni,j . The world
chess championship title is one of few competitions that used to follow this structure in the past, with
r = 2 and n = 24.

More common is a case where a medium or large number of teams participate in a tournament in which
each team faces every other team a few number of times.

In this case, Wi is a sum of a large number of binomial random variables, each on a small number of
experiments. Namely, we have

Wi = Bin(n, pi,1) + Bin(n, pi,2) + · · ·+Bin(n, pi,r);

all the binomial variables in this expression are independent. Under the right conditions, the central limit
theorem ascertains that, for large r, the sum can be approximated by a normally distributed random
variable:

Wi ≈ N
(
n

r∑
j=1

pi,j , n

r∑
j=1

pi,jpj,i

)
.

The central limit theorem here is in a general form (say Lindeberg’s form (Theorem 27.2 in [1]) that deals
with possibly non-identically distributed but independent variables. The “right conditions” here are

s2i (r) := n

r∑
j=1

pi,jpj,i →∞,

and for any ε > 0, we have

1

s2i (r)

r∑
j=1

∑
|Bin(n,pi,j)−npi,j

∣∣>εsi(r)

∣∣Bin(n, pi,j)− npi,j
∣∣2 → 0.
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Such conditions are satisfied, if pi,j ’s are “close.” By close, we mean none of them is dominant. The
closeness condition is satisfied, if

max
1≤j≤r

npi,jpj,i∑
1≤j≤r

npi,jpj,i
→ 0, as r →∞,

which is Feller’s condition.
For instance, in a league with Ni,j = 2, with equal team values, we have

s2i (r) := 2

r∑
j=1
j ̸=r

1

2
× 1

2
=

1

2
(r − 1)→∞, as r →∞.

Lindeberg’s condition is also satisfied, because for large r, the factor si(r) is large, while∣∣∣Bin(2, pi,r)− 2pi,r
∣∣ = ∣∣∣Bin(2, 1

2

)
− 2× 1

2

∣∣∣ ≤ 2 + 1 = 3.

So, for large Ni,j , the sum is empty (equal to 0), and si(r)→ 0.
The asymptotic probability is to be computed by an r-fold multiple integral. This remains to be a

formidable computational challenge.

Remark 4.4
This approach does not provide a good approximation for the first round in a ladder with 2r (large)
teams. In this case, we have

s22i−1(r) = p2i−1,2ip2i,2i−1 <
1

4
,

and s22i−1(r) does not diverge to infinity when we have n = 1. Fortunately, the case is amenable to direct
computation from the exact joint distribution in (1), as discussed in Section 2.

One possible application that fits this setup is the Italian SuperLega, which is the highest level
championship in the Italian Male Volleyball League. As of the 2020–2021 season, the SuperLega has
12 competing teams, and each team plays twice against every other team. This is an example with r = 12
and n = 2. To calculate the winning probabilities for the 2020–2021 season according to Bradley-Terry
model, we use the points gained in last season as the values:

rank team points
1 Lube 53
2 Modena 52
3 Perugia 51
4 Trentino 45
5 Milano 36
6 Porto Robur Costa 26
7 Kioene Padova 25
8 Verona 24
9 Volley Milano 23
10 Gas Sales Piacenza 21
11 Top Volley Latina 16
12 Volley Callipo 16
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4.6. Simulation of SuperLega
As an alternative to a possibly tough integration, we can obtain results via simulation. We conducted a
Monte Carlo simulation on the SuperLega of Italy, with the number of points scored in the 2020 season
as values. The Monte Carlo simulation is implemented in the statistical programming langauge R with
sample size s = 105. The multivariate normal samples are generated using the package “mvtnorm”[5]. The
empirical probabilities are obtained from frequency counts. For example, to empirically compute P(W1),
we generate samples from the 11-dimensional multivariate normal specified in Subsection 4.3, and count
the number of times that the value of the first coordinate is the maximum.

The algorithmic steps to compute the mean vector µ and covariance matrix Σ from the values
are straightforward implementations of the formulas presented in Subsection 4.3. These computations,
together with the desired number of simulations, s, are fed as parameters into the a subroutine shown
below in pseudocode. The built-in function rmvnorm receives as input the dimensions of a random vector
and µ and Σ, and returns a multivariate normally distributed random vector, which we call W. After
such vector is generated, we add 1 to a counting vector at each position corresponding to a winner.

The simulation algorithm assumes the existence of an external function argmax that takes in an integer
and a vector of that dimension, and returns a vector Whoiswinning that flags (with 1’s) the indeces that
attain the maximal value in the input vector. The indeces corresponding to teams that did not win are
flagged with 0. At the end of the computation, the frequencies of winning are recorded in counter. These
frequencies are turned into probabilities stored in the vector P, which is returned to the caller of the
subroutine.

Input parameters: n,µ,Σ, s
Primitives function: rmvnorm
Local array: W[1 .. n− 1], counter[1 .. n− 1],

Whoiswinning[1 .. n− 1]
Local control variable: i, j

counter ← 0
for i = 1 .. s do

W← rmvnorm(n− 1,µ,Σ)
call argmax(n− 1, W, Whoiswinning)
for j ← 1 .. n− 1 do

if Whoiswinning [j] = 1 then
counter[j]← counter[j] + 1

for i = 1 .. n− 1 do
P[i] := counter[i]/s

return P

We present the results in the figure below.
Via this simulation the winning probabilities (of possibly multiple winners) are

P(W1) ≈ 0.26495, P(W2) ≈ 0.24626, P(W3) ≈ 0.23019,

P(W4) ≈ 0.15272, P(W5) ≈ 0.06464, P(W6) ≈ 0.01224,

P(W7) ≈ 0.01034, P(W8) ≈ 0.00797, P(W9) ≈ 0.00072,

P(W10) ≈ 0.00348, P(W11) ≈ 0.00047, P(W12) ≈ 0.00031.

We see that the top three teams from the past season share high probabilities to be a winner in terms
of points in this season, while the last six teams have a very slim chance to get to the top position. The
accuracy of the results depends on the rate of convergence of approximation by normal distributions and
the rate of convergence of the numerical integration. The results get more accurate when the number of
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teams or the rounds in the tournament is relatively large. The error from the numerical integration is
usually ignorable when the sample size taken is large.
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