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1. Introduction

The modeling and analyzing lifetime data are crucial in many applied sciences including medicine, engineering,
insurance and finance, amongst others. It is well known that the Lindley distribution is one of the fundamental
models applied for reliability models. The Lindley distribution has been discussed by many authors in different
practical cases, such as Bayesian estimation Ali et al. (2013), loading-sharing system mode Singh and Gupta (2012)
and stress-strength reliability model Al-Mutairi el al. (2013). It deserves mentioning that the Lindley distribution
provides a flexible shape to model the lifetime data. Moreover, Ghitany et al. (2008) presented a comprehensive
study about its important mathematical and statistical properties, estimation of parameter and application showing
the superiority of Lindley distribution over of the bank customers.
Since the distribution was proposed, it has been overlooked in the literature partly due to the popularity of the
exponential distribution in the context of reliability analysis. Nonetheless, it has recently received considerable
attention as a lifetime model to analyze survival data in the competing risks analysis and stress-strength reliability
studies; see, for example, Ghitany et al. (2008), Mazucheli and Achcar (2011), Gupta and Singh (2013), Al-Mutairi
el al. (2013), and Wang (2013), Valiollahi et al. (2017), Altun (2019), Kumar and Jose (2019), and Ibrahim et al.
(2019), among others.
Ghitany et al. (2008) provide a nice overview of various statistical properties of the Lindley distribution.
Furthermore, they argue that the Lindley distribution could be a better lifetime model than the exponential
distribution using a real data set.
Therefore, it is a clear need to check whether the Lindley model is a satisfactory model for the observations.
Goodness of fit (GOF) tests are designed to measure how well the observed sample data fits some proposed
model. One class of GOF tests that can be used consists of tests based on the distance between the empirical and
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hypothesized distribution functions. Five of the known tests in this class are Cramer-von Mises (W 2), Kolmogorov-
Smirnov (D), Kuiper (V ), Watson (U2), and Anderson-Darling (A2). For more details about these tests, see
D’Agostino and Stephens (1986).
In parametric statistics, based on Neyman-Pearson lemma the maximum likelihood ratio test is a uniformly most
powerful test. Suppose that X1, ..., Xn are a random sample and we wish to test the hypothesis

H0 : X1, ..., Xn ∼ f0,

versus
H1 : X1, ..., Xn ∼ f1.

The most powerful test statistic for the above hypothesis is the likelihood ratio

n∏
i=1

f1(Xi)

n∏
i=1

f0(Xi)

.

where f0(x) and f1(x) are completely known.
As we know in nonparametric statistics, the alternative distribution is unknown and therefore, for goodness of fit
tests based on EL ratio, we need to estimate the likelihood function

∏n
i=1 f1(Xi) and then we can use the likelihood

ratio statistic. Vexler and Gurevich (2010) estimated the likelihood ratio as

n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) ,
and then introduced a test statistic for goodness of fit. Their test statistic is as

Tmn =

n∏
i=1

2m

n(X(i+m)−X(i−m))
n∏

i=1

f0(Xi; θ̂)

,

where θ̂ is the maximum likelihood estimator (MLE) of θ. Also, X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics
obtained from X1, ..., Xn and X(i) = X(1) if i < 1, and X(i) = X(n) if i > n.
Since Tmn depends on m, they proposed the following test statistic.

Tmn =

min
1≤m≤nδ

n∏
i=1

2m

n(X(i+m)−X(i−m))
n∏

i=1

f0(Xi; θ̂)

.

Here, δ ∈ (0, 1) and θ̂ is the MLE of θ.
They used their test statistic and proposed tests for the normal and uniform distributions. Moreover, Vexler et al.
(2011) applied the above test statistic and introduced a goodness of fit test for the inverse Gaussian distribution.
Recently, the empirical likelihood methods are applied in many statistical problems see for example, Vexler et al.
(2011b,c), Vexler and Gurevich (2011), Gurevich and Vexler (2011), Shan et al. (2011), Vexler and Yu (2011), Yu
et al. (2011), Vexler et al. (2012a,b), and Vexler et al. (2014), Vexler and Zou (2018), Gurevich and Vexler (2018),
Zou el al. (2019), Vexler el al. (2019) and Vexler (2020).
The main contribution of the paper can express as follows. In this paper, we apply ELR-based test for the Lindley
distribution. The method of Vexler and Gurevich (2010) is stated and based on this method, we propose a goodness
of fit test for the Lindley distribution. Table of critical values and properties of the tests are presented. We show

Stat., Optim. Inf. Comput. Vol. 12, July 2024



H. ALIZADEH NOUGHABI AND M. SHAFAEI NOUGHABI 871

through extensive simulation studies that the proposed goodness of fit test is more powerful, or at least as good as
the classical EDF-tests for different choices of sample sizes and alternatives. We also investigate the behavior of
the tests for the Lindley model with real data.
This article is organized as follows. Section 1 describes the Lindley distribution and the procedure for estimating
the parameter of this model. Section 3 presents the EL statistic for test of fit for the Lindley distribution. Section
4 gives the results of the power comparison of the proposed test with some known competing tests under various
alternatives. Section 5 contains an illustrative example. The following section contains a brief conclusion.

2. The Lindley Distribution

If the density function of the random variable X be as follows, then we say that X has a Lindley distribution.

f0(x; θ) =
θ2

θ + 1
(1 + x)e−θx , x > 0, θ > 0.

Lindley distribution was proposed by Lindley (1958) in the context of Bayesian statistics, as a counter example of
fiducial statistics. The cumulative distribution function of the Lindley distribution is as

F0(x; θ) = 1− θ + 1 + θx

θ + 1
e−θx .

The mean and variance of the distribution are

µ = E(X) =
θ + 2

θ(θ + 1)
,

and

σ2 = V ar(X) =
θ2 + 4θ + 2

θ2(θ + 1)
2 .

Ghitany et al. (2008) conducted a detailed study about various properties of Lindley distribution including
skewness, kurtosis, hazard rate function, mean residual life function, stochastic ordering, stress-strength reliability,
among other things; estimation of its parameter and application to model waiting time data in a bank.
In the literature of survival analysis and reliability theory, the exponential distribution is widely used as a model of
lifetime data. However, the exponential distribution only provides a reasonable fit for modeling phenomenon with
constant failure rates. Distributions like gamma, Weibull and lognormal have become suitable alternatives to the
exponential distribution in many practical situations. Ghitany et al. (2008) found that the Lindley distribution can
be a better model than one based on the exponential distribution.
The Lindley distribution belongs to an exponential family and it can be written as a mixture of an exponential with
parameter and a gamma distribution with parameters (2, θ).

f0(x; θ) = pf1(x) + (1− p)f2(x) x > 0,

where p = θ/(1 + θ) , f1(x) = θe−θx and f2(x) = θ2xe−θx.
Shanker et al. (2015) discussed a comparative study of Lindley and exponential distributions for modelling

various lifetime data sets from biomedical science and engineering, and concluded that there are lifetime data where
exponential distribution gives better fit than Lindley distribution and in majority of data sets Lindley distribution
gives better fit than exponential distribution.

Since for computing the test statistics, we need to estimate the parameter θ, we apply the MLE approach
to estimate the unknown parameter. Suppose X1, ..., Xn is a random sample from the Lindley distribution, the
estimator for both MLE and method of moments estimate of the parameter θ is

θ̂ =
−
(
X̄ − 1

)
+

√(
X̄ − 1

)2
+ 8X̄

2X̄
, X̄ > 0.
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Ghitany et al. (2008) showed that the estimator θ̂ of θ is positively biased: E(θ̂)− θ > 0 , and it is consistent and
asymptotically normal

√
n
(
θ̂ − θ

)
→ N(0, 1

/
σ2).

We will use the ML estimator for the proposed statistic to test the goodness of fit for the Lindley distribution.
In complete sample case, Ghitany et al. (2008) developed different distributional properties, reliability

characteristics and some inferential procedures for the Lindley distribution. Krishna and Kumar (2011) discussed
reliability estimation in Lindley distribution with progressively type II right censored sample. Gupta and Singh
(2013) gave parameter estimation of Lindley distribution with hybrid censored data. Also, Al-Mutairi et al. (2013)
studied inferences on stress-strength reliability for Lindley distribution with complete sample information. Kumar
et al. (2015) discussed estimation of stress-strength reliability using progressively first failure censoring. These
studies suggest that in many real-life situations Lindley distribution serves as a better lifetime model than the so
far popular distributions like exponential, gamma, Rayleigh, Weibull etc.

3. The EL Goodness of Fit Test

Given a random sample X1, ..., Xn from a continuous probability distribution F with a density function f(x), the
hypothesis of interest is

H0 : f(x) = f0(x; θ) =
θ2

θ + 1
(1 + x)e−θx , for some θ ∈ Θ,

where θ is specified or unspecified and Θ = R+. The alternative to H0 is

H1 : f(x) ̸= f0(x; θ) , for any θ ,

The likelihood ratio test statistic for the above hypothesis is defined as

LR =

n∏
i=1

fH1(Xi)

n∏
i=1

f
H0

(Xi; θ)

.

When density function under H1 is known (f
H1

), Neyman-Pearson lemma guarantees that the LR test is the
uniformly most powerful (UMP) test. If it is unknown, we will apply the maximum empirical likelihood method
to estimate the numerator. Also, the maximum likelihood method will be applied to estimate the parameter θ of a
Lindley distribution under the null hypothesis.

Consider

Lf =

n∏
i=1

fH1(Xi) =

n∏
i=1

fH1(X(i)) =

n∏
i=1

fi ,

where X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics of the observations and f(X(i)) = fi. We apply the
empirical likelihood method to derive the values of fi that maximize Lf with the constraint

∫
f(s)ds = 1 under

the alternative hypothesis. The following lemma, proved by Vexler and Gurevich (2010), express this constraint
more explicitly.

Lemma 1. Let f(x) be a density function. Then

n∑
j=1

∫ X(j+m)

X(j−m)

f(x)dx = 2m

∫ X(n)

X(1)

f(x)dx−
m−1∑
k=1

(m− k)

∫ X(n−k+1)

X(n−k)

f(x)dx−
m−1∑
k=1

(m− k)

∫ X(k+1)

X(k)

f(x)dx ,

where X(j) = X(1) if j ≤ 1 and X(j) = X(n) if j ≥ n.
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Let

∆m =
1

2m

n∑
j=1

∫ X(j+m)

X(j−m)

f(x)dx,

and since
∫ X(n)

X(1)
f(x)dx ≤

∫∞
−∞ f(x)dx = 1, from Lemma 1,

∆m ≤ 1.

When m/n → 0 as m,n → ∞, we can expect that ∆m ≈ 1.
The integration

∫ X(j+m)

X(j−m)
f(x)dx can be approximated by

(
X(j+m) −X(j−m)

)
fj and thus

n∑
j=1

∫ X(j+m)

X(j−m)

f(x)dx ≈
n∑

j=1

(
X(j+m) −X(j−m)

)
fj .

Therefore, ∆m can be approximated by

∆̂m =
1

2m

n∑
j=1

(
X(j+m) −X(j−m)

)
fj .

Now, we apply the Lagrange multiplier method to maximize l = log(Lf ) =
n∑

j=1

log fj , under the constrain

∆̂m ≤ 1. We have

l(f1, f2, ..., fn, η) =

n∑
j=1

log fj + η

(
1

2m

n∑
j=1

(
X(j+m) −X(j−m)

)
fj − 1

)
,

where η is a Lagrange multiplier. By taking the derivative of the above equation respect to each fj and η, we obtain
the values of f1, f2, ..., fn. The form of values is as

fj =
2m

n
(
X(j+m) −X(j−m)

) , j = 1, ..., n ,

where X(j) = X(1) if j ≤ 1 and X(j) = X(n) if j ≥ n.

We therefore construct the likelihood ratio test statistic to test the goodness of fit for the Lindley distribution
based on the maximum empirical likelihood method as

Tmn =

n∏
j=1

2m

n(X(j+m)−X(j−m))

max
θ

n∏
j=1

f
H0

(Xj ; θ)

,

where θ is the parameter of a Lindley distribution.
Clearly, the test statistic Tmn strongly depends on the value of m and for a given n, the value of m must be
determined. It is not possible to have one value of m, for a given n, that would result in a test attaining the
maximum power for all alternatives. Therefore, similar to Vexler and Gurevich (2010) and Vexler et al. (2011), we
propose the following test statistic.

Tn =

min
1≤m<nδ

n∏
j=1

2m

n(X(j+m)−X(j−m))

max
θ

n∏
j=1

f
H0

(Xj ; θ)

,
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where δ ∈ (0, 1). Here, we choose δ = 0.5 for the power study of our test because for this value of δ, we attain
good (not best) powers for all alternative distributions.
The following theorems give some asymptotic properties of the proposed test statistic. First, we denote

h(x, θ) =
∂ log fH0(x; θ)

∂θ
.

Assume the following conditions are hold.
(C1) E(log f(X1))

2
< ∞ ;

(C2) under the null hypothesis,
∣∣∣θ − θ̂

∣∣∣→ 0 as n → ∞;
(C3) under the alternative hypothesis, θ → θ0 as n → ∞, where θ0 is a constant vector with finite components;
(C4) There are open intervals Θ0 ⊆ R2 and Θ1 ⊆ R2 containing θ and θ0, respectively. There also exists a function
s(x) such that |h(x, ξ)| ≤ s(x) for all x ∈ R and ξ ∈ Θ0 ∪Θ1.

Theorem 1. Assume that the conditions C1-C4 hold. Then, under H0,

1

n
log(Tn) → 0,

in probability as n → ∞.

Theorem 2. Assume that the conditions C1-C4 hold. Then, under H1,

1

n
log(Tn) → E log

(
fH1(X1)

f
H0

(X1; θ0)

)
,

in probability as n → ∞. Hence, the test is consistent.

Vexler and Gurevich (2010) showed that the above theorems are satisfied for any null family of distributions.
Therefore, when the null hypothesis is the Lindley distribution Theorems 1 and 2 hold.

4. Simulation Study

Since deriving the exact distribution of the proposed test statistic is complicated, we study the null distribution of
the test statistic Tn via Monte Carlo simulations using 100,000 runs for each sample size. Upper tail percentiles
are obtained for values 0.99, 0.95, and 0.90. These values are presented in Table 1.

We evaluate in Table 2 the estimated type I error control using the 0.05 percentiles of the proposed test
(α = 0.05). We generated random samples from a spectrum of Lindley populations and then obtained the actual
sizes of the test. The results are presented in Table 2. We observe that the empirical percentiles given in Table 1
provides an excellent type I error control.

Through Monte Carlo simulations, the power values of the proposed test against various alternatives are
computed. Since the tests of fit based on the empirical distribution function are commonly used in practice,
we compare the performance of the EDF-tests and the proposed ELR based goodness of fit test under various
alternative distributions. The well-known EDF-tests are Cramer-von Mises (W 2), Kolmogorov-Smirnov (D),
Kuiper (V ), Watson (U2), and Anderson-Darling (A2). The test statistics of these tests are briefly described as
follows. For more details about these tests, see D’Agostino and Stephens (1986).
Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random sample X1, ..., Xn.
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Table 1. Critical values of the log (Tn)/n statistic.

α

n 0.01 0.05 0.10
5 1.5671 1.1695 0.9908
10 0.8458 0.6569 0.5722
15 0.6241 0.4944 0.4344
20 0.4887 0.3904 0.3454
25 0.4062 0.3268 0.2900
30 0.3543 0.2866 0.2558
40 0.2839 0.2318 0.2077
50 0.2376 0.1959 0.1763
100 0.1432 0.1196 0.1082

Table 2. Type I error control of the proposed test for the nominal significance level α = 0.05.

n θ = 0.5 θ = 2 θ = 4 θ = 8

10 0.0539 0.0467 0.0465 0.0456
20 0.0572 0.0461 0.0440 0.0446
30 0.0572 0.0450 0.0439 0.0436
50 0.0558 0.0443 0.0428 0.0405

1. The Cramer-von Mises statistic (1931):

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); θ̂)

)2

.

2. The Watson statistic (1961):
U2 = W 2 − n

(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); θ̂), i = 1, ..., n.
3. The Kolmogorov-Smirnov statistic (1933):

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); θ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); θ̂)−

i− 1

n

}
.

4. The Kuiper statistic (1960):
V = D+ +D−.

5. The Anderson-Darling statistic (1952):

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{
logF0(X(i); θ̂) + log

[
1− F0(X(n−i+1); θ̂)

]}
.

In the above test statistics, F0(x) is the cumulative distribution function of the Lindley distribution and θ̂ is the
maximum likelihood estimate of the parameter θ.

Stat., Optim. Inf. Comput. Vol. 12, July 2024



876 EMPIRICAL LIKELIHOOD RATIO-BASED GOODNESS OF FIT TEST

The following alternatives are considered in power comparison.

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ);

• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)

2
/
(2θ2)

)
;

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the modified extreme value EV (θ), with distribution function 1− exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1 + θx) exp
(
−x− θx2

/
2
)
;

• Dhillon’s (1981) distribution with distribution function 1− exp
(
−(log(x+ 1))

θ+1
)

;

• Chen’s (2000) distribution CH(θ), with distribution function 1− exp
(
2
(
1− ex

θ
))

.

These alternatives include densities f with decreasing failure rates (DFR), increasing failure rates (IFR) as well
as models with unimodal failure rate (UFR) functions and bathtub failure rate (BFR) functions.

We compute the power values of the tests under the above alternatives by Monte Carlo simulations as follows.
Under each alternative 100,000 samples of size 10, 20, 30 and 50 are generated and the test statistics are calculated.
Then power of the corresponding test is computed by the frequency of the event “the statistic is in the critical
region”. Tables 3 and 4 display and compare the power values of the tests at the significance level α = 0.05. For
each sample size and alternative, the bold type in these tables indicates the tests achieving the maximal power.

From Table 3, the increasing failure rates alternatives, it is seen that the tests based on Tn and W 2 statistics have
the most power. The power differences between the test Tn and the other tests are substantial, especially where
Unif(0, 1) was the alternative. Also, it is evident from Table 3, for small sample sizes the proposed test has the
most power. For the rest alternatives, the Anderson-Darling test and the proposed test have the most power.
Therefore, although there is no uniformly most powerful test against all alternatives, the tests based on Tn, W 2 and
A2 statistics can be recommended. The powerful tests against different alternatives are presented in Table 5.
In general, we can conclude that the proposed test Tn has a good performance against IFR alternatives and therefore
can be used in practice.
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Table 3. Empirical powers of the tests against IFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 Tn

W (1.4) 10 0.1303 0.1174 0.1104 0.1170 0.0894 0.1580
20 0.2258 0.1966 0.1761 0.1884 0.1917 0.2196
30 0.3237 0.2691 0.2330 0.2635 0.2967 0.2924
50 0.5098 0.4231 0.3736 0.4167 0.5036 0.4210

Γ(2) 10 0.1175 0.1028 0.1101 0.1188 0.0810 0.1679
20 0.2011 0.1754 0.1772 0.1935 0.1800 0.2415
30 0.2879 0.2412 0.2369 0.2687 0.2827 0.3257
50 0.4745 0.4014 0.3875 0.4408 0.5104 0.4711

HN 10 0.0952 0.0887 0.0844 0.0875 0.0678 0.1059
20 0.1364 0.1234 0.1084 0.1149 0.1076 0.1309
30 0.1835 0.1552 0.1340 0.1446 0.1492 0.1647
50 0.2839 0.2321 0.1960 0.2139 0.2445 0.2330

U 10 0.3386 0.2647 0.3088 0.2957 0.2615 0.4227
20 0.6318 0.4888 0.6071 0.5477 0.5793 0.7899
30 0.8309 0.6764 0.8143 0.7416 0.8056 0.9557
50 0.9756 0.9000 0.9777 0.9417 0.9756 0.9994

CH(1) 10 0.0937 0.0868 0.0772 0.0789 0.0673 0.0986
20 0.1364 0.1220 0.0998 0.1061 0.1074 0.1252
30 0.1826 0.1557 0.1230 0.1332 0.1477 0.1613
50 0.2796 0.2301 0.1810 0.1933 0.2379 0.2294

CH(1.5) 10 0.4268 0.3505 0.3359 0.3553 0.3348 0.4311
20 0.7600 0.6343 0.6239 0.6480 0.7160 0.7156
30 0.9200 0.8205 0.8176 0.8370 0.9071 0.8890
50 0.9943 0.9684 0.9736 0.9763 0.9943 0.9896

LF (2) 10 0.1386 0.1235 0.1113 0.1187 0.0972 0.1438
20 0.2282 0.1943 0.1706 0.1802 0.1851 0.1964
30 0.3292 0.2723 0.2327 0.2527 0.2828 0.2591
50 0.5133 0.4204 0.3663 0.3955 0.4662 0.3794

LF (4) 10 0.2056 0.1790 0.1594 0.1700 0.1469 0.2065
20 0.3777 0.3160 0.2752 0.2980 0.3192 0.3061
30 0.5308 0.4386 0.3864 0.4204 0.4758 0.4160
50 0.7680 0.6595 0.6067 0.6401 0.7313 0.6052

EV (0.5) 10 0.0923 0.0861 0.0749 0.0782 0.0670 0.0980
20 0.1384 0.1221 0.1020 0.1074 0.1068 0.1260
30 0.1833 0.1557 0.1242 0.1345 0.1467 0.11589
50 0.2779 0.2262 0.1803 0.1933 0.2378 0.2303

EV (1.5) 10 0.1681 0.1456 0.1420 0.1547 0.1170 0.1965
20 0.3359 0.2706 0.2529 0.2634 0.2658 0.3157
30 0.4612 0.3645 0.3618 0.3805 0.4152 0.4478
50 0.7218 0.5906 0.5811 0.5943 0.6880 0.6816
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Table 4. Empirical powers of the tests against UFR, DFR and BFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 Tn

LN(0.8) 10 0.1413 0.1302 0.1279 0.1403 0.1068 0.1686
20 0.2221 0.1968 0.2204 0.2448 0.2110 0.2847
30 0.3180 0.2720 0.3268 0.3652 0.3440 0.4160
50 0.5147 0.4436 0.5541 0.6054 0.6131 0.6225

LN(1.5) 10 0.5140 0.4823 0.3849 0.4001 0.5544 0.2399
20 0.8027 0.7664 0.6690 0.6869 0.8197 0.5861
30 0.9257 0.9020 0.8342 0.8489 0.9306 0.7834
50 0.9900 0.9842 0.9642 0.9697 0.9905 0.9439

DL(1) 10 0.0877 0.0813 0.0809 0.0862 0.0629 0.1074
20 0.1185 0.1064 0.1139 0.1236 0.1041 0.1401
30 0.1486 0.1274 0.1445 0.1619 0.1445 0.1803
50 0.2123 0.1771 0.2245 0.2533 0.2394 0.2427

DL(1.5) 10 0.1999 0.1735 0.1751 0.1937 0.1462 0.2587
20 0.3844 0.3271 0.3228 0.3634 0.3601 0.4030
30 0.5568 0.4783 0.4598 0.5241 0.5677 0.5498
50 0.8123 0.7363 0.7129 0.7832 0.8509 0.7505

W (0.8) 10 0.1960 0.1750 0.1288 0.1366 0.2748 0.0238
20 0.3570 0.3095 0.2295 0.2438 0.4417 0.0833
30 0.4933 0.4319 0.3201 0.3476 0.5752 0.1517
50 0.7062 0.6330 0.5093 0.5395 0.7720 0.2788

Γ(0.4) 10 0.5137 0.4712 0.3701 0.3914 0.7163 0.0731
20 0.8109 0.7663 0.6579 0.6850 0.9222 0.3885
30 0.9354 0.9074 0.8310 0.8551 0.9810 0.6493
50 0.9943 0.9894 0.9697 0.9762 0.9990 0.8992

CH(0.5) 10 0.3912 0.3546 0.2711 0.2860 0.5728 0.0980
20 0.6670 0.6127 0.4979 0.5281 0.8141 0.2122
30 0.8331 0.7839 0.6733 0.7102 0.9251 0.4089
50 0.9669 0.9464 0.8924 0.9137 0.9903 0.6948

Table 5. Powerful tests against different alternatives

IFR UFR DFR-BFR

W 2 &Tn A2 &Tn A2

5. An Illustrative Example

Through an example, we illustrate how the proposed test can be applied to test the goodness of fit for the Lindley
distribution when the observations are available.

Example 1. We consider the data set discussed by Ghitany et al. (2008). The data set consists waiting times (in
minutes) before service of 100 bank customers. The waiting times (in minutes) are as follows:
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0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7,
4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6,
8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9,
13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,
21.9, 23.0, 27.0, 31.6, 33.1, 38.5.
Histogram of these data and a fitted Lindley density function are displayed in Figure 1.

Figure 1. Histogram of data in Example 1 and a fitted Lindley density function.

Krishna and Kumar (2011) considered four reliability models, namely exponential, Lindley, gamma, and
lognormal. According to Bayesian information criterion (BIC), they found that the Lindley model is the best
fit for these data. Thus, Lindley distribution is fitting the above data quite satisfactorily. The main advantage of
using Lindley distribution over gamma and lognormal distributions is that it involves only one parameter. Hence,
maximum likelihood and other inferential procedures become simple to deal with, especially from computational
point of view. The proposed procedure can be used to investigate whether the data come from a Lindley distribution.
The ML estimator of θ is computed as:

θ̂ = 0.1866 .

The value of the test statistic is Tn = 3027.424(log (Tn)/n = 0.0802) and the critical value at the 5% is obtained
from Table 1 as 0.1196. Since the values of the test statistic is smaller than the critical value, the Lindley hypothesis
is accepted for these data at the significance level of 0.05. Therefore, we can conclude that the data come from a
Lindley distribution.

6. Conclusions

In this paper, we have proposed a goodness of fit test for the Lindley distribution based on the empirical likelihood
ratio, and have shown that the test outperform the EDF-goodness of fit tests which are commonly used in practice.
We have carried out an extensive power comparison using Monte Carlo simulations. Through the obtained results,
we have shown that the proposed test outperforms in most cases all other competitor tests. Finally, we have
presented a real data set and have illustrated how the proposed test can be applied to test the goodness of fit
for the Lindley distribution when a sample is available.
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