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Abstract Ranked set sampling is considered as an alternative to simple random sampling and maximum ranked set
sampling is a very useful modification of ranked set sampling. In this paper we focused on information content of ranked
set sampling and maximum ranked set sampling with unequal samples in terms of past extropy measure and also considered
the information content of negative cumulative extropy and its dynamic version based on maximum ranked set sampling
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1. Introduction

Ranked set sampling (RSS ) has been used widely since its introduction by [11]. It cover the entire gamut of
values in the population. It also merges several other sources of information like auxiliary information, professional
knowledge etc besides simple random sampling (SRS ). It is a representative part of the population than the same
number of observations obtained via SRS .

The method of RSS as suggested by [11] as follows: From the population, the first set which contains n samples
are chosen and the unit which is in the lowest position is taken for the actual measurement of variable of interest
and the remaining items are discarded. Similarly a second set is chosen and unit corresponding to the second lowest
position is chosen. This is continued until the nth unit is selected. The cycle can be repeated according to our choice.
Without loss of generality, throughout the article we assume that only one cycle. Now, these n units selected under
one cycle comprises a ranked set sample (rss) and are usually denoted by Xn

RSS = {Xi:n ; i = 1, 2, ...., n}. In the
case of perfect judgement ranking, Xi:n is distributed as the ith order statistic of a random sample of size n, its
probability density function (pdf ) and cumulative distribution function (cdf ) are respectively given by

fi:n(x) =
1

β(i, n− i+ 1)
(F (x))i−1(1− F (x))n−if(x), (1)
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Fi:n(x) =

n∑
j=i

(F (x))j(1− F (x))n−j =
βF (t)(i, n− i+ 1)

β(i, n− i+ 1)
, (2)

where f(.) and F (.) are the pdf and cdf of the parent population and β(., .) is the beta function. In judgement
ranking process errors occurs in the ranking process and ith judgement order statistic are not the ith order statistic.
For imperfect judgement ranking, X∗

RSS =
{
X[i]i ; i = 1, 2, ...., n

}
, the pdf of X[i]i is f[i]i(x) =

∑
pirfi(x) where

pir is the probability that rth item is judgement ranked. For more idea of RSS , one can go through the book by [3].
The two important modifications of RSS are maximum RSS with unequal samples (maxRSSU ) and minimum

RSS with unequal samples (minRSSU ). Some inferential aspects based on maxRSSU and minRSSU , one can
refer [2]. Here, we focused only on maxRSSU .

In one cycle maxRSSU , n random sample are drawn and then the observations in the ith sample is ranked from
smallest to largest. In the next step ith order statistic is taken from the ith sample of size i. Then the one cycle
maxRSSU is represented by Xn

maxRSSU =
{
X(i)i ; i = 1, 2, ...n

}
. Based on the assumption of perfect judgement

ranking, X(i)i is distributed as the ith order statistic based on simple random sample (srs) from X of size i. The
pdf and cdf of X(i)i are respectively given by

f(i)i(x) = i(F (x))i−1f(x),−∞ ≤ x ≤ ∞ (3)

and
F(i)i(x) = (F (x))i,−∞ ≤ x ≤ ∞. (4)

A very important approach to quantify the information, in statistical framework is based on the concept of Fisher
information (FI). [1] investigated that FI in usual rss data is always larger than that of srs data. But, in information
theory, Shannon entropy (see, [16]) or its generalizations should be considered as appropriate measures to quantify
the information content of a sample than the FI. [7] explained about the information content of rss in certain
uncertainty measures and made a comparison with srs data.

[6], bestowed a new measure of uncertainty called ‘extropy’as a complementary dual to Shannon entropy. For a
non-negative absolutely continuous random variable (rv) X , it is given by

J(X) = −1

2

∫ ∞

0

f2(x)dx = −1

2

∫ 1

0

f(F−1(u))du, (5)

where F−1(u) is the quantile function. [14] studied the information content of RSS in terms of extropy
function. [13], thoroughly discussed information properties of extropy based on maxRSSU and minRSSU . Also
analogy to the developments of Shannon entropy, some researchers started to study extensions/generalizations
of extropy. Analogous to past entropy ([4]), [10] introduced the concept past extropy for the random variable
tX = [t−X|X < t]. It is given by,

J(tX) = −1

2

∫ ∞

0

f2
tX(x) = − 1

2F 2(t)

∫ t

0

f2(x)dx, (6)

where ftX(x) = f(t−x)
F (t) for xϵ(0, t).

[8] proposed a new measure called cumulative residual extropy with the motivation that survival function is more
regular than the pdf and is given by

J∗(X) = −1

2

∫ ∞

0

F̄ 2(x)dx. (7)

[17] considered an information measure termed by negative cumulative residual extropy(NCEX ) and is defined as

CJ (X) =
1

2

∫ ∞

0

[1− F 2(x)]dx =

∫ 1

0

ϕ(u)

f(F−1(u))
du, (8)
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where ϕ(u) = 1−u2

2 , 0 < u < 1. Note that 0 ≤ CJ (X) < ∞.
[9], provide non-parametric estimators of past extropy under α-mixing dependence condition. A study on recursive
and non-recursive kernel estimation of negative cumulative extropy under α-mixing conditions has been done by
[15]. But not much work is seen in the available literature on analysis of past extropy properties using RSS and
its modifications. Similarly is the case of negative cumulative extropy. This motivated us to analyse information
content of past extropy based on RSS , and one of its important modification maxRSSU . Information content of
negative cumulative extropy based on maxRSSU are also considered.

The paper is structured as follows. In Section 2, we obtain the expression for past extropy of RSS . In Section
3, the expression for past extropy of maxRSSU has acquired and also bounds for maxRSSU data are studied.
A theorem related to monotone property is also there in this section. In Section 4, a comparison for past extropy
measure based on SRS , RSS and maxRSSU has done. In Section 5, we discussed, the discrimination information
among SRS , RSS and maxRSSU . Section 6 deals with negative cumulative extropy properties of maxRSSU and
SRS designs.

2. Past extropy of ranked set sampling

Assume that the rv , X is absolutely continuous with mean µ and variance σ2 and consider n independent and
identically distributed (iid ) sample chosen according to SRS . The collection of this samples are represented by
Xn

SRS = {Xi ; i = 1, 2, ...., n}. Then the past extropy of Xn
SRS can be defined as

J(tX
n
SRS ) = −1

2

∫ ∞

0

.....

∫ ∞

0

f2
tX(x1)......f

2
tX(xn)dx1dx2....dxn = −1

2

n∏
i=1

∫ ∞

0

f2
tX(xi)dxi

= − 1

2(F (t))2n

n∏
i=1

∫ t

0

f2(xi)dxi = −1

2
[−2J(tX)]n.

In case of perfect judgement ranking Xn
RSS is the collection of order statistics from the pdf f(.) and are

independent. Therefore,

J(tX
n
RSS ) = −1

2

n∏
i=1

[−2J(tXi:n)], (9)

where J(tXi:n) is the ith order statistic of past extropy. The pdf of ith order statistic is given in equation (1) and
f(x) =

∑n
i=1 fi:n(x)/n (see, [3]).

Proposition 1
The expression for the past extropy of RSS with pdf f(.) and cdf F (.) is given by

J(tX
n
RSS ) = −1

2

n∏
i=1

1

β2
F (t)(i, n− i+ 1)

∫ F (t)

0

u2i−2(1− u)2n−2if(F−1(u))du, (10)

where

βF (t)(i, n− i+ 1) =

∫ F (t)

0

ui−1(1− u)n−idu.

Proof
We have the equation for past extropy of ith order statistic as

J(tXi:n) = −1

2

∫ t

0

f2
i:n(x)

F 2
i:n(t)

, (11)

where

Fi:n(t) =
βF (t)(i, n− i+ 1)

β(i, n− i+ 1)
= IF (t)(i, n− i+ 1).

Stat., Optim. Inf. Comput. Vol. 11, June 2023



M. R. IRSHAD, R. MAYA, K. ARCHANA AND S.TAHMASEBI 743

Now,

J(tX
n
RSS ) = −1

2

n∏
i=1

∫ t

0

f2
i:n(x)

F 2
i:n(t)

dx

= −1

2

n∏
i=1

1

I2F (t)(i, n− i+ 1)

∫ t

0

(F (x))2i−2(1− F (x))2n−2if2(x)

β2(i, n− i+ 1)
dx

= −1

2

n∏
i=1

1

β2
F (t)(i, n− i+ 1)

∫ F (t)

0

u2i−2(1− u)2n−2if(F−1(u))du.

Hence proved.

Example 1
Let U be uniformly distributed random variable on (0, 1) and f(F−1(u)) = 1 , 0 ≤ u ≤ 1. Then,

J(tU
n
RSS ) = −1

2

n∏
i=1

βF (t)(2i− 1, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

.

Example 2
Let Z be an exponentially distributed random variable with failure rate λ and f(F−1(u)) = λ(1− u). Then,

J(tZ
n
RSS ) = −λn

2

n∏
i=1

βF (t)(2i− 1, 2n− 2i+ 2)

β2
F (t)(i, n− i+ 1)

.

3. Past extropy of maximum ranked set sampling

As in the case of past extropy of RSS , the past extropy of Xn
maxRSSU can be defined as

J(tX
n
maxRSSU ) = −1

2

n∏
i=1

[−2J(tX(i)i)]. (12)

Proposition 2
Let Xn

maxRSSU be the collection of maximum RSS with unequal samples from a population X with pdf f(.) and
cdf F (.). Then the expression for past extropy is as follows:

J(tX
n
maxRSSU ) = − (n!)2

2(2n− 1)!

n∏
i=1

1

F 2i(t)

∫ F (t)

0

(2i− 1)u2i−2f(F−1(u))du. (13)

Proof
Using (6), we can write the equation for past extropy of maximum RSS with unequal samples as

J(tX
n
maxRSSU ) = −1

2

n∏
i=1

∫ ∞

0

f2
tX(i)i

(x)dx = −1

2

n∏
i=1

1

F 2i(t)

∫ t

0

i2(F (x))2i−2f2(x)dx

= − (n!)2

2(2n− 1)!

n∏
i=1

1

F 2i(t)

∫ t

0

(2i− 1)(F (x))2i−2f2(x)dx

= − (n!)2

2(2n− 1)!

n∏
i=1

1

F 2i(t)

∫ F (t)

0

(2i− 1)u2i−2f(F−1(u))du.

Hence proved.
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Example 3
Let U be a random variable having uniform distribution on (0,1) and f(F−1(u)) = 1, 0 ≤ u ≤ 1. Then,

J(tU
n
maxRSSU ) = − n!2

2(F (t))n(2n− 1)!
. (14)

Example 4
Let Z be a random variable having exponential distribution with parameter λ, f(F−1(u)) = λ(1− u), 0 ≤ u ≤ 1.
Then,

J(tZ
n
maxRSSU ) = −n!2

2

n∏
i=1

βF (t)(2i− 1, 2)

F (2i)(t)
. (15)

Theorem 3
Let Xn

maxRSSU be the collection of maximum RSS with unequal samples from a population X with pdf f(.) and
cdf F (.). If f(F−1(u))≥ 1 for all 0 < u < 1, then J(tX

n
maxRSSU ) is decreasing in n≥1.

Proof

J(tX
n+1
maxRSSU )

J(tXn
maxRSSU )

=

∏n+1
i=1

[
−2J(tX(i)i)

]∏n
i=1

[
−2J(tX(i)i)

]
=

1

F 2n+2(t)

∫ F (t)

0

(n+ 1)2u2nf(F−1(u))du

≥ (n+ 1)2

(2n+ 1)F (t)

≥ 1.

Since past extropy is non-positive, we have J(tX
n+1
maxRSSU ) ≤ J(tX

n
maxRSSU ). Thus the theorem is proved.

Theorem 4
Let Xn

maxRSSU , Xn
SRS be the collection of maxRSSU and simple random samples from a common distribution

F (.). Then,
J(tX

n
maxRSSU ) ≥ −(n!)2J(tX

n
SRS). (16)

Proof
We have

J(tX
n
maxRSSU ) = − (n!)2

2

n∏
i=1

1

F 2i(t)

∫ F (t)

0

(u)2i−2f(F−1(u))du.

Since F 2(x) ≥ F 2i(x) for i ≥ 1, we can write

J(tX
n
maxRSSU ) ≥ − (n!)2

2

n∏
i=1

1

F 2(t)

∫ F (t)

0

f(F−1(u))du

= − (n!)2

2

[∫ F (t)

0
f(F−1(u))du

F 2(t)

]n

= −(n!)2J(tX
n
SRS).

Hence the result is proved.
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Theorem 5
Let X be a random variable with mode M , that is, f(x)≤ M for all x. Then for all n≥1,

J(tX
n
maxRSSU ) ≥ −1

2

(n!)2Mn

(2n− 1)!Fn(t)
. (17)

Proof
We have

J(tX
n
maxRSSU ) = − (n!)2

2(2n− 1)!

n∏
i=1

1

F 2i(t)

∫ F (t)

0

(2i− 1)u2i−2f(F−1(u))du

≥ − (n!)2Mn

2(2n− 1)!

n∏
i=1

1

F 2i(t)

∫ F (t)

0

(2i− 1)u2i−2du

= −1

2

(n!)2Mn

(2n− 1)!Fn(t)
.

Thus the theorem is proved.

Theorem 6
Let

M = −An(n!)2

2

[
n∏

i=1

∫ t

t−λ

f2(x)dx

]
and

m = −An(n!)2

2

[
n∏

i=1

∫ λ

0

f2(x)dx

]
and suppose that f(.) never increases, where A = 1

F 2(t) and x < t. Then,

1. m ≤ J(tX
n
maxRSSU ) ≤ M.

2. If f(.) never decreases then the inequality is reversed.

Proof
Using Hayashi inequality (see, [12], p.107-109), we can obtain exact bounds for the past extropy of RSS .
Let

λ =
1

A

∫ t

0

(
F (x)

F (t)

)2i−2 (
1

F 2(t)

)
dx, 0 ≤

(
F (x)

F (t)

)2i−2
1

F 2(t)
≤ A,

where A is a constant greater than 0. In case if f(.) never increases, using Hayashi inequality we can write the
inequality as

A

∫ t

t−λ

i2f2(x)dx ≤
∫ t

0

i2
(
F (x)

F (t)

)2i−2 (
1

F 2(t)

)
f2(x)dx

≤ A

∫ λ

0

i2f2(x)dx.

Also,

An
n∏

i=1

∫ t

t−λ

i2f2(x)dx ≤
n∏

i=1

∫ t

0

i2
(
F (x)

F (t)

)2i−2 (
1

F 2(t)

)
f2(x)dx

≤ An
n∏

i=1

∫ λ

0

i2f2(x)dx.
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So we can write the exact bounds for the maxRSSU of past extropy as

−An(n!)2

2

n∏
i=1

∫ λ

0

f2(x)dx ≤ − (n!)2

2

n∏
i=1

∫ t

0

(
F (x)

F (t)

)2i−2 (
1

F 2(t)

)
f2(x)dx

≤ −An(n!)2

2

n∏
i=1

∫ t

t−λ

f2(x)dx.

(18)

Hence the proof of result1 is complete. The proof of the result2 is similar to that of result1 and the only difference
is that the inequality is reversed.

4. Comparison

In this section we made a comparison between the expression for past extropy based on SRS , RSS and maxRSSU
in case of uniform and exponential distribution.

Example 5
Let X be uniformly distributed on (0, b). Then for n = 2, the expression for past extropy based on SRS , RSS and
maxRSSU are respectively given by

J(tX
n
SRS ) = − 1

2t2
,

J(tX
n
RSS ) = −

t3( t
b2 − t2

b3 + t3

3b4 )

6b4( t3

3b3 − t4

4b4 )
2( t2

2b2 − 2t3

3b3 + t4

4b4 )
2

and

J(tX
n
maxRSSU ) = − 2

3t2
.

For n = 2, the difference between the above three equations are given by,

D1(t) = J(tX
n
SRS )− J(tX

n
maxRSSU ) =

1

6t2
, (19)

D2(t) = J(tX
n
SRS)− J(tX

n
RSS) = − 1

2t2
+

1152b8(3b2 − 3bt+ t2)

(4b− 3t)2t6(6b2 − 8bt+ 3t2)
, (20)

and

D3(t) = J(tX
n
maxRSSU )− J(tX

n
RSS) = − 2

3t2
+

1152b8(3b2 − 3bt+ t2)

(4b− 3t)2t6(6b2 − 8bt+ 3t2)
. (21)

The figures 1, 2, 3 shows the plot of D1(t), D2(t) and D3(t) for 0 < t < 1. Here we assume that b > 0.

Figure 1. Plot of D1(t)
for 0 < t < 1 for U(0, b)
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Figure 2. Plot of D2(t)
for 0 < t < 1 for U(0, b)
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Figure 3. Plot of D3(t)
for 0 < t < 1 for U(0, b)
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From the above equations (19), (20) and (21) we can conclude that in case of U(0, b), b > 0 and for n = 2,

J(tX
n
RSS) < J(tX

n
maxRSSU ) < J(tX

n
SRS). (22)
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4.1. Simulation

A comparison between SRS, RSS and maxRSSU has been done by simulation for different values of n. Here we
take b = 1 and t = 1. Let

D1(t) = J(tX
n
SRS )− J(tX

n
maxRSSU ), (23)

D2(t) = J(tX
n
SRS)− J(tX

n
RSS) (24)

and
D3(t) = J(tX

n
maxRSSU )− J(tX

n
RSS). (25)

The values of D1(t), D2(t) and D3(t) for different values of n are presented in the table 1. From table 1 it is clear

Table 1. Values of D1(t),D2(t) and D3(t) for U(0, 1)

n D1(t) D2(t) D3(t)

2 3.378×10−1 3.383×102 3.045×102

3 3.714×102 1.707×102 1.670×102

4 2.812×103 5.768×102 5.768×102

5 9.504×101 2.562×101 1.612 ×101

6 3.4644 ×101 9.392 ×101 5.928 ×101

7 1.559×104 5.370×104 5.370 ×104

8 1.720×103 3.719 ×104 3.547 ×104

9 1.772×102 1.329 ×102 1.329 ×102

10 3.971×101 3.061 ×101 3.061 ×101

11 3.943 ×107 1.031 ×101 1.031 ×101

12 1.044 ×101 3.969 ×103 3.969 ×103

13 8.613 ×103 1.342 ×102 1.342 ×102

14 4.456 ×102 9.277 ×102 9.277 ×102

15 1.056 ×102 7.513 ×102 7.513 ×102

16 1.437 ×103 7.854 ×102 7.710 ×102

17 1.499 ×101 1.0312 ×102 1.396 ×102

18 3.963 ×104 1.157 ×104 1.157 ×104

19 4.365 ×103 2.82 ×103 2.82 ×103

20 2.93 ×102 7.367 ×102 7.368×102

that the simulation result 4.1 matches with the theoretical result 22. Hence past extropy of RSS is less than that of
SRS and maxRSSU .

Example 6
Suppose X follows exponential distribution with mean = 1

θ , θ > 0. Then for n = 2, the expression for past extropy
based on SRS , RSS and maxRSSU are respectively given by

J(tX
n
SRS) = − (−2 + w)2θ2

8w2
,

J(tX
n
maxRSSU ) =

(4− 3w)(−2 + w)θ2

12w2
and

J(tX
n
RSS) =

(4− 3w)(−2 + w)w4(2 + (−2 + w)w)θ2

96(w
3

3 − w4

4 )2(w
2

2 − 2w3

3 + w4

4 )2
,

where w = (1− e−tθ) and 0 < w < 1.
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For n = 2, the difference between the above three equations are given by

D1(w) = J(tX
n
SRS)− J(tX

n
maxRSSU ) =

(−2 + w)(−2 + 3w)θ2

24w2
, (26)

D2(w) = J(tX
n
SRS)− J(tX

n
RSS) =

(−2 + w)(2− w + 1728(2−2w+w2)
w4(−4+3w)(6−8w+3w2)2 )θ

2

8w2
(27)

and

D3(w) = J(tX
n
maxRSSU )− J(tX

n
RSS) =

(4− 3w)(−2 + w)(8− 20736(2−2w+w2)
(4−3w)2w4(6−8w+3w2)2 )θ

2

96w2
. (28)

The following plot 4, 5,6 represents the value of D1(w), D2(w) and D3(w) against w.

Figure 4. Plot of D1(w)
for 0 < w < 1 for expo-
nential distribution
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Figure 5. Plot of D2(w)
for 0 < w < 1 for expo-
nential distribution
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Figure 6. Plot of D3(w)
for 0 < w < 1 for expo-
nential distribution
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From the above equations (26), (27) and (28) it can be easily verified that for n=2,

J(tX
n
RSS) < J(tX

n
SRS) < J(tX

n
maxRSSU ). (29)

4.2. Simulation

In this case we take θ = 1 and t = 1. We have

D1(w) = J(tX
n
SRS)− J(tX

n
maxRSSU ), (30)

D2(w) = J(tX
n
SRS)− J(tX

n
RSS), (31)

D3(w) = J(tX
n
maxRSSU )− J(tX

n
RSS). (32)

where w = 1− e−t. Table 2 gives the values of D1(w),D2(w) and D3(w) for n = 2, ..., 20. The result from
simulation 4.2 is same as the theoretical result 29 which is clear from table 2. This shows that in case of exponential
distribution RSS for past extropy measure is less than SRS for past extropy measure and both are less than
maxRSSU for past extropy measure.

Example 7
Let X follows standard normal distribution with pdf ϕ(x) and cdf Φ(x). Then the expression for past extropy in
case of SRS, RSS and maxRSSU are ,

J(tX
n
SRS) = − 1

2(Φ(t))2n

n∏
i=1

∫ t

0

ϕ2(xi)dxi (33)

J(tX
n
RSS) = −1

2

n∏
i=1

1

β2
Φ(t)(i, n− i+ 1)

∫ t

0

Φ(x)2i−2(1− Φ(x))2n−2iϕ2(x)du (34)

J(tX
n
maxRSSU ) = − (n!)2

2(2n− 1)!

n∏
i=1

1

Φ2i(t)

∫ t

0

(2i− 1)(Φ(x))2i−2ϕ2(x)dx (35)

Furthur simplifications of the equations 33, 34, 35 are not possible since those doesnot have a closed form. But
comparison between SRS,RSS and maxRSSU for standard normal distribution is done by simulation.
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Table 2. Values of D1(w),D2(w) and D3(w) for exp(1)

n D1(w) D2(w) D3(w)

2 -3.482×10−2 6.631×10−2 1.011×10−2

3 -4.581×10−2 5.678×10−1 5.678×10−1

4 -4.261×10−5 5.202×10−3 5.202 ×10−3

5 -9.56×10−3 3.076×10−1 3.172×10−1

6 -7.489×10−3 1.472×10−1 1.547×10−1

8 -4.259×10−3 2.098×10−3 2.140×10−1

9 -3.068×10−2 3.641×10−2 3.641×10−2

10 -7.489×10−3 1.472×10−1 1.547×10−1

11 -4.156×10−2 4.401×10−2 8.563×10−2

12 -7.888×10−3 8.562×101 8.562×101

13 -2.338×10−4 4.176×10−5 2.338×10−5

14 -3.062×10−5 3.634×10−4 3.634×10−4

15 -2.929×10−3 6.054×10−1 6.083×10−1

16 -7.479×10−2 1.574×101 1.574×101

17 -8.246×10−3 5.986×101 5.986×101

19 -4.259×10−3 2.098×10−1 2.140×10−1

20 -1.915×10−4 4.613×101 4.613×101

4.3. Simulation

We have,
D1(t) = J(tX

n
SRS)− J(tX

n
maxRSSU ), (36)

D2(t) = J(tX
n
SRS)− J(tX

n
RSS), (37)

D3(t) = J(tX
n
maxRSSU )− J(tX

n
RSS). (38)

Table 3 gives the values of equations 36, 37 and 38 by simulation for n = 2, 3, ..., 20 in case of standard normal
distribution. From the above table 3 we get the result for standard normal distribution as

J(tX
n
RSS) < J(tX

n
maxRSSU ) < J(tX

n
SRS). (39)

From the above result 39 it is clear that in case of standard normal distribution past extropy of RSS is always less
than that of both maxRSSU and SRS. This shows that RSS is always better than both SRS and maxRSSU .

5. Discrimination information

This section deals with discrimination information between distribution of RSS , maxRSSU statistic and underlying
data. [14] defined discrimination information between rv’s X and Y with pdf ’s f and g respectively as

R(X,Y ) =
1

2

∫ ∞

−∞

f(x)

g(x)
f(x)dx.

[5] has given a measure of discrimination between past lifetime random variables. So in this case in order to deal
with the discrimination information between the past lifetime random variables tX and tY with pdf ’s ftX(x) and
g
tX(x), cdf ’s F

tX(t) and G
tX(t), can be defined as

Dt(tX, tY ) =
1

2F
tX(t)

∫ t

0

ftX(x)
ftX(x)/FtX(t)

g
tX(x)/G

tX(t)
dx. (40)
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Table 3. Values of D1(t),D2(t) and D3(t) for N(0, 1)

n D1(t) D2(t) D3(t)

2 1.336×102 4.911×101 8.455×101

3 1.984×10−1 9.637×10−2 1.025×10−1

4 1.321×10−2 2.197×10−2 8.768×10−1

5 1.004×102 5.587×102 1.005×102

6 4.597×104 5.641×100 4.596×104

7 7.728×10−3 8.555×10−1 7.725×10−3

8 2.412×103 3.550×103 2.143×103

9 1.048×10−2 1.726×10−2 6.7811×10−3

10 2.101×103 6.498×103 2.102×103

11 2.744×103 7.631×104 2.745×104

12 1.554×105 6.610×101 1.553×105

13 6.824×105 1.057×105 6.823×105

14 1.608×104 1.421×105 1.609×104

15 9.810×104 6.054×104 9.810×104

16 6.880×10−1 9.775×10−2 5.902×10−1

17 9.324×104 2.389×104 9.324×104

18 1.9365×106 1.526×103 1.934×101

19 2.363×105 2.551×105 2.363×105

20 4.018×10−5 5.854×10−2 5.850×101

Proposition 7
The discrimination information between the distribution of ith RSS statistic fi:n and the data distribution f can be
expressed as

Dt(f(i:n)(x), f(x)) =
F (t)

2

βF (t)(2i− 1, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

. (41)

Proof
It follows from equation (40) that

Dt(fi:n(x), f(x)) =
1

2Fi:n(t)

∫ t

0

fi:n(x)
fi:n(x)

Fi:n(t)

F (t)

f(x)
dx. (42)

Using equation (1) and (2), the equation (42) can be written as

Dt(fi:n(x), f(x)) =
1

2β2
F (t)(i, n− i+ 1)

∫ t

0

(F (x))2i−2(1− F (x))2n−2if(x)F (t)dx

=
F (t)

2β2
F (t)(i, n− i+ 1)

∫ F (t)

0

u2i−2(1− u)2n−2idu

=
F (t)

2

βF (t)(2i− 1, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

.

Hence the result is attained.

Proposition 8
The discrimination information between the distribution of ith maxRSSU statistic f(i)i and the data distribution f
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can be expressed as

Dt(f(i)i(x), f(x)) =
i2

2(2i− 1)
. (43)

Proof
Using equation (40),(3) and (4), we can write the equation for discrimination information as

Dt(f(i)i(x), f(x)) =
1

2Fi(t)

∫ t

0

f(i)i(x)
f(i)i(x)

Fi(t)

F (t)

f(x)
dx

=
1

2(F (t))2i−1

∫ F (t)

0

i2u2i−2du

=
i2

2(2i− 1)
.

Hence the result is holds.

Proposition 9
The discrimination information between the distribution of ith RSS statistic fi:n and the ith maxRSSU statistic
f(i)i can be expressed as

Dt(fi:n(x), f(i)i(x)) =
(F (t))i

2i

βF (t)(i, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

. (44)

Proof
From equations(40),(1),(2),(3),(4),

Dt(fi:n(x), f(i)i(x)) =
1

2Fi:n(t)

∫ t

0

fi:n(x)
fi:n(x)

Fi:n(t)

Fi(t)

f(i)i(x)
dx

=
(F (t))i

2iβ2
F (t)(i, n− i+ 1)

∫ F (t)

0

ui−1(1− u)2n−2idu

=
(F (t))i

2i

βF (t)(i, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

.

Hence the proof is completed.

Theorem 10
For tX

n
RSS and tX

n
SRS designs, we can define the discrimination information as

Dt(tX
n
RSS , tX

n
SRS) =

(F (t))n

2

n∏
i=1

βF (t)(2i− 1, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

. (45)

Proof
We have,

Dt(tX
n
RSS ,t X

n
SRS) =

1

2

n∏
i=1

1

Fi:n(t)

∫ t

0

fi:n(x)
fi:n(x)

Fi:n(t)

F (t)

f(x)
dx.

Proceeding as Proposition (7), proof can be obtained.

Theorem 11
For tX

n
maxRSSU and tX

n
SRS designs, we can define the discrimination information as

Dt(tX
n
maxRSSU , tX

n
SRS) =

n!2

2(2n− 1)!
. (46)
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Proof

Dt(tX
n
maxRSSU , tX

n
SRS) =

1

2

n∏
i=1

1

Fi(t)

∫ t

0

f(i)i(x)
f(i)i(x)

Fi(t)

F (t)

f(x)
dx.

The proof follows by recalling Proposition(8).

Theorem 12
For tX

n
RSS and tX

n
maxRSSU designs, we can define the discrimination information as

Dt(tX
n
RSS , tX

n
maxRSSU ) =

1

2n!

n∏
i=1

(F (t))i
βF (t)(i, 2n− 2i+ 1)

β2
F (t)(i, n− i+ 1)

. (47)

Proof

Dt(tX
n
RSS , tX

n
maxRSSU ) =

1

2

n∏
i=1

1

Fi:n(t)

∫ t

0

fi:n(x)
fi:n(x)

Fi:n(t)

Fi(t)

fi(i)(x)
dx.

By referring Proposition (9), proof can be obtained.

6. NCEX of maxRSSU

If the NCEX of X is less than that of another random variable, say Y , that is CJ (X) ≤ CJ (Y ), i.e. X has more
uncertainty than Y . Now let CJ (X) < +∞. Then, for the maxRSSU and SRS designs, we have

CJ (Xn
maxRSSU ) =

1

2

n∏
i=1

[2CJ (X(i)i)] =
1

2

n∏
i=1

∫ 1

0

1− u2i

f(F−1(u))
du

=
1

2

n∏
i=1

E
[

1− U2i

f(F−1(U))

]
, (48)

and
CJ (Xn

SRS) =
1

2
[2CJ (X)]n. (49)

To compare the above measures, let us consider the following examples.

Example 8
If U ∼ Uniform(0, θ), then

CJ (Un
maxRSSU ) =

1

2

n∏
i=1

[
1− 1

(2i+ 1)θ2i

]
≥ CJ (Un

SRS) =
1

2

(
1− 1

3θ2

)n

, θ ≥ 1. (50)

Example 9
Let Z be a random variable with the cdf F (z) = za, 0 < z < 1, a > 1. Then, f(F−1(u)) = au1− 1

a , 0 < u < 1,
and we have

CJ (Zn
maxRSSU ) =

1

2

n∏
i=1

[1− 1

2ia+ 1
] > CJ (Zn

SRS) =
1

2
[1− 1

2a+ 1
]n. (51)

Theorem 13
Let Xn

maxRSSU be the maxRSSU from population X with cdf F . Then, CJ (Xn
maxRSSU ) ≥ CJ (Xn

SRS) for n > 1.
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Proof
Since 1− F 2(x) ≤ 1− F 2i(x) for i ≥ 1, we have(∫ ∞

0

[1− F 2(x)]dx

)n

≤
n∏

i=1

∫ ∞

0

[1− F 2i(x)]dx.

The proof follows by recalling (48) and (49).

Proposition 14
Let Y = aX + b with a > 0 and b ≥ 0. Then, CJ (Y n

maxRSSU ) = anCJ (Xn
maxRSSU ).

Proposition 15
If f(F−1(u)) ≥ 1, 0 < u < 1, then CJ (Xn

maxRSSU ) is decreasing in n ≥ 1.

Proof
From (48), we get

CJ (Xn+1
maxRSSU )

CJ (Xn
maxRSSU )

=

∫ 1

0

u2n+2

f(F−1(u))
du ≤ 1

2n+ 3
≤ 1,

and the result follows readily.

Now, we can define a generalized measure of NCEX as

CJ (X; t) =
1

2

∫ t

0

[
1− F (x)

F (t)

]2
dx. (52)

Moreover
CJ (Xn

SRS ; t) =
1

2
[−2CJ (X, t)]n. (53)

Under the maxRSSU design, it is clear to show that

CJ (Xn
maxRSSU ; t) =

1

2

n∏
i=1

[2CJ (X(i)i; t)] =
1

2

n∏
i=1

∫ t

0

(
1− [

F (x)

F (t)
]2i
)
dx

=
1

2

n∏
i=1

E
[

(1− U2i)F (t)

f(F−1(UF (t)))

]
, (54)

where U ∼ Uniform(0, 1).

Theorem 16
Let X be a non-negative random variable. Then, for n > 1

CJ (Xn
maxRSSU ; t) ≥ CJ (Xn

SRS ; t). (55)

Proof
The proof is similar to Theorem 13.

7. Conclusion

In this paper we have considered the information content of both RSS and maxRSSU data for past extropy
and NCEX . We also compared these two designs with SRS in uniform and exponential distributions for
n = 2 and also by simulation for n = 2, ..., 20 ,in the case of past extropy measure. For U(0, b) if b > 0 we
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obtained the result as J(tXn
RSS) < J(tX

n
maxRSSU ) < J(tX

n
SRS), and J(tX

n
RSS) < J(tX

n
SRS) < J(tX

n
maxRSSU )

for exponential distribution. And both the results are exactly the same as the simulation result. In case of standard
normal distribution the result acquired is J(tX

n
RSS) < J(tX

n
maxRSSU ) < J(tX

n
SRS). We obtained several results

related to bounds, monotone properties and sharp bounds under some assumptions for maxRSSU data. Results
related to discrimination information which is a measure of closeness among SRS, RSS and maxRSSU are also
developed. We also compared maxRSSU and SRS schemes for NCEX and its dynamic version.
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