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Abstract The Lindley distribution may serve as a useful reliability model. Applications of this distribution are presented
in statistical literature. In this article, goodness of fit tests for the Lindley distribution based on the empirical distribution
function (EDF) are considered. In order to compute the test statistics, we use the maximum likelihood estimate (MLE)
suggested by Ghitany et al. (2008), which is simple explicit estimator. Critical points of the proposed test statistics are
obtained by Monte Carlo simulation. Power comparisons of the considered tests are carried out via simulations. Finally, two
illustrative examples are presented and analyzed.
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1. Introduction

The modeling and analyzing lifetime data are crucial in many applied sciences including medicine, engineering,
insurance and finance, amongst others. It is well known that the Lindley distribution is one of the fundamental
models applied for reliability models. The Lindley distribution has been discussed by many authors in different
practical cases, such as Bayesian estimation Ali et al. (2013), loading-sharing system mode Singh and Gupta (2012)
and stress-strength reliability model Al-Mutairi el al. (2013). It deserves mentioning that the Lindley distribution
provides a flexible shape to model the lifetime data. Moreover, Ghitany et al. (2008) presented a comprehensive
study about its important mathematical and statistical properties, estimation of parameter and application showing
the superiority of Lindley distribution over of the bank customers.
Since the distribution was proposed, it has been overlooked in the literature partly due to the popularity of the
exponential distribution in the context of reliability analysis. Nonetheless, it has recently received considerable
attention as a lifetime model to analyze survival data in the competing risks analysis and stress-strength reliability
studies; see, for example, Ghitany et al. (2008), Mazucheli and Achcar (2011), Gupta and Singh (2013), Al-Mutairi
el al. (2013), and Wang (2013), Valiollahi et al. (2017), Altun (2019), Kumar and Jose (2019), Ibrahim et al. (2019),
Chesneau et al. (2021), and Tomy et al. (2021a,b) among others. Also, a retrospective study on Lindley distribution
can be found in Tomy (2018).
Ghitany et al. (2008) provide a nice overview of various statistical properties of the Lindley distribution.
Furthermore, they argue that the Lindley distribution could be a better lifetime model than the exponential
distribution using a real data set.
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Therefore, it is a clear need to check whether the Lindley model is a satisfactory model for the observations.
A Goodness of Fit (GOF) test determines how well your analysis data fits the calculated data model.
• If your data passes the GOF test, your data follows the data model closely, and you can rely on the predictions
made by model.
• If your data fails the GOF test, it may not follow the model closely enough to confidently rely on model
predictions.
A statistical hypothesis test uses to determine whether a variable is likely to come from a specified distribution or
not. It is often used to evaluate whether sample data is representative of the full population.
Goodness-of-fit (GOF) tests are designed to measure how well the observed sample data fits some proposed
model. One class of GOF tests that can be used consists of tests based on the distance between the empirical and
hypothesized distribution functions. Five of the known tests in this class are Kolmogrov-Smirnov, Cramer-von-
Mises, Anderson-Darling, Watson and Kuiper tests. These tests are valid when there are no unknown parameters in
the hypothesized distribution. These tests become extremely conservative if they are used in case where unknown
parameters must be estimated from the sample data.
Goodness of fit tests based on the empirical distribution function (EDF) are well-known in the literature
and commonly used in practice and statistical Software. The known EDF-tests are Cramer-von Mises (W 2),
Kolmogorov-Smirnov (D), Kuiper (V ), Watson (U2), and Anderson-Darling (A2). For more details about these
tests, see D’Agostino and Stephens (1986).
Many researchers have been interested in goodness of fit tests for different distributions and then different
tests are developed in the literature. For example, see D’Agostino and Stephen (1986), Chen and Balakrishnan
(1995), Huber-Carol et al. (2002), He and Xu (2013), Alizadeh and Chahkandi (2015), Alizadeh (2015,2016) and
Jahanshahi et al. (2016). Moreover, goodness of fit tests based on censored samples are developed by some authors
including Balakrishnan et al. (2004), Balakrishnan et al. (2007), Lin et al. (2008), Habibi Rad et al. (2011), Pakyari
and Balakrishnan (2012, 2013) and Alizadeh and Balakrishnan (2015).
Moreover, Zhang (2002) introduced three goodness of fit test statistics based on the empirical distribution function
and applied them for testing normality and showed that the new tests have higher power than the competing tests.
In the present paper, we will apply these test statistics to test the hypothesis of the Lindley distribution and compare
the power of these tests with the other tests.
The main contribution of the paper can express as follows. In this paper, we apply EDF-tests for the Lindley
distribution. Moreover, the method of Zhang (2002) is stated and based on this method, we propose three goodness
of fit tests for the Lindley distribution. Table of critical values and properties of the tests are presented. We show
through extensive simulation studies that the proposed goodness-of-fit tests are more powerful, or at least as good
as the classical EDF-tests for different choices of sample sizes and alternatives. We also investigate the behavior of
the tests for the Lindley model with real data.
In Section 2, a summary of the Lindley distribution is presented. In Section 3, we consider goodness of fit test
statistics based on the empirical distribution function and apply them for the Lindley distribution. In Section 4, the
critical values of the test statistics are obtained by Monte Carlo simulations. Then power values of the tests are
computed and then compared with each other. All simulations were carried out by using R 4.1.1 and with 100,000
replications. Section 5 contains applications of the tests in real examples.

2. A Summary of the Lindley Distribution

If the density function of the random variable X be as follows, then we say that X has a Lindley distribution.

f0(x; θ) =
θ2

θ + 1
(1 + x)e−θx , x > 0, θ > 0.

Lindley distribution was proposed by Lindley (1958) in the context of Bayesian statistics, as a counter example
of fiducial statistics. The cumulative distribution function of the Lindley distribution is as
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F0(x; θ) = 1− θ + 1 + θx

θ + 1
e−θx .

The mean and variance of the distribution are

µ = E(X) =
θ + 2

θ(θ + 1)
,

and

σ2 = V ar(X) =
θ2 + 4θ + 2

θ2(θ + 1)
2 .

Ghitany et al. (2008) conducted a detailed study about various properties of Lindley distribution including
skewness, kurtosis, hazard rate function, mean residual life function, stochastic ordering, stress-strength reliability,
among other things; estimation of its parameter and application to model waiting time data in a bank.
In the literature of survival analysis and reliability theory, the exponential distribution is widely used as a model of
lifetime data. However, the exponential distribution only provides a reasonable fit for modeling phenomenon with
constant failure rates. Distributions like gamma, Weibull and lognormal have become suitable alternatives to the
exponential distribution in many practical situations. Ghitany et al. (2008) found that the Lindley distribution can
be a better model than one based on the exponential distribution. The Lindley distribution belongs to an exponential
family and it can be written as a mixture of an exponential with parameter and a gamma distribution with parameters
(2, θ).

f0(x; θ) = pf1(x) + (1− p)f2(x) x > 0,

where p = θ/(1 + θ) , f1(x) = θe−θx and f2(x) = θ2xe−θx.
Shanker et al. (2015) discussed a comparative study of Lindley and exponential distributions for modelling

various lifetime data sets from biomedical science and engineering, and concluded that there are lifetime data where
exponential distribution gives better fit than Lindley distribution and in majority of data sets Lindley distribution
gives better fit than exponential distribution.

Since in EDF-based test statistics, we need to estimate the parameter θ, we apply the maximum likelihood
estimate (MLE) approach to estimate the unknown parameter.
Suppose X1, ..., Xn is a random sample from the Lindley distribution, the estimator for both maximum likelihood
estimate (MLE) and method of moments estimate of the parameter θ is

θ̂ =
−
(
X̄ − 1

)
+

√(
X̄ − 1

)2
+ 8X̄

2X̄
, X̄ > 0.

Ghitany et al. (2008) showed that the estimator θ̂ of θ is positively biased: E(θ̂)− θ > 0 , and it is consistent and
asymptotically normal

√
n
(
θ̂ − θ

)
→ N(0, 1

/
σ2).

We will use the ML estimator for the EDF-test statistics to test the goodness-of-fit for the Lindley distribution.
In complete sample case, Ghitany et al. (2008) developed different distributional properties, reliability
characteristics and some inferential procedures for the Lindley distribution. Krishna and Kumar (2011) discussed
reliability estimation in Lindley distribution with progressively type II right censored sample. Gupta and Singh
(2013) gave parameter estimation of Lindley distribution with hybrid censored data. Also, Al-Mutairi et al. (2013)
studied inferences on stress-strength reliability for Lindley distribution with complete sample information. Kumar
et al. (2015) discussed estimation of stress-strength reliability using progressively first failure censoring. These
studies suggest that in many real-life situations Lindley distribution serves as a better lifetime model than the so
far popular distributions like exponential, gamma, Rayleigh, Weibull etc.
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3. GOF Tests for the Lindley Distribution

The GOF test checks whether our sample data is likely to be from a specific theoretical distribution. We have a set
of data values, and an idea about how the data values are distributed. The test gives us a way to decide if the data
values have a “good enough” fit to our idea, or if our idea is questionable. GOF tests are designed to measure how
well the observed sample data fits some proposed model.
Suppose X1, ..., Xn are a random sample from a continuous probability distribution F with density f . We are
interested to test the hypothesis

H0 : f(x) = f0(x; θ) =
θ2

θ + 1
(1 + x)e−θx , for some θ ∈ Θ,

against the general alternative
H1 : f(x) ̸= f0(x; θ) , for any θ ,

where θ is specified or unspecified and Θ = R+.
Here, we consider the popular and common tests which are used in practice and statistical software. The test
statistics of these tests are briefly described as follows. For more details about these tests, see D’Agostino and
Stephens (1986).
Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random sample X1, ..., Xn.

1. The Cramer-von Mises statistic (1931):

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); θ̂)

)2

.

2. The Watson statistic (1961):
U2 = W 2 − n

(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); θ̂), i = 1, ..., n.
3. The Kolmogorov-Smirnov statistic (1933):

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); θ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); θ̂)−

i− 1

n

}
.

4. The Kuiper statistic (1960):
V = D+ +D−.

5. The Anderson-Darling statistic (1952):

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{
logF0(X(i); θ̂) + log

[
1− F0(X(n−i+1); θ̂)

]}
.

In the above test statistics, F0(x) is the cumulative distribution function of the Lindley distribution and θ̂ is the
maximum likelihood estimate of the parameter θ.

Moreover, we consider the EDF-based tests proposed by Zhang (2002). Briefly, the approach of Zhang (2002)
for the Lindely distribution is described as follows. Let

Ht : F (t) = F0(t) = 1− θ + 1 + θx

θ + 1
e−θx,
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and H̄t : F (t) ̸= F0(t). According Zhang (2002), testing H vs H̄ is equivalent to testing Ht vs H̄t for every
t ∈ (0,∞) in the sense that

H =
⋂

t∈(0,∞)

Ht

and
H̄ =

⋃
t∈(0,∞)

H̄t .

Now, define a binary random sample to test Ht vs H̄t for each t;

Xit = I (Xi ≤ t) i = 1, 2, ..., n,

where P (Xit = 1) = F (t) and P (Xit = 0) = 1− F (t).

Let Zt denotes a statistic based on Xit for testing Ht vs H̄t where large values of Zt reject Ht. For testing Ht vs
H̄t, Zhang (2002) proposed two test statistics given by

Z =

∫
Ztdw(t) and Zmax = sup

t∈(0,∞)

[Ztw(t)] ,

where w(t) is some weight function. Also, large values of these statistics reject H . Zhang (2002) for Zt considered
Pearson’s Chi squared statistic

X2
t =

n[Fn(t)− F0(t)]
2

F0(t) [1− F0(t)]
,

and the likelihood ratio statistic

G2
t = 2n

{
Fn(t) log

Fn(t)

F0(t)
+ [1− Fn(t)] log

1− Fn(t)

1− F0(t)

}
,

where Fn(t) is the empirical distribution function.
If we set Zt = X2

t with

w(t) = n−1F0(t) [1− F0(t)] , dw(t) = n−1F0(t) [1− F0(t)] dF0(t),

and w(t) = F0(t), then the traditional Kolmogorov–Smirnov, Cramer–von Mises and Anderson–Darling statistics
are obtained.
Moreover, if we consider Zt = G2

t with w(t) = 1, dw(t) = F0(t)
−1[1− F0(t)]

−1
dF0(t) and dw(t) =

Fn(t)
−1[1− Fn(t)]

−1
dFn(t), respectively, and further, Fn(X(i)) =

i−0.5
n , then the test statistics proposed by

Zhang (2002) are obtained. These test statistics for the Lindley distribution are as

ZA = −
n∑

i=1

 logF0(X(i); θ̂)

n− i+ 0.5
+

log
[
1− F0(X(i); θ̂)

]
i− 0.5

 ,

ZC =

n∑
i=1

(
log

{
F0(X(i); θ̂)

−1
− 1

(n− 0.5)/(i− 0.75)− 1

})2

,

ZK = max
1≤i≤n

(
(i− 0.5) log

{
i− 0.5

nF0(X(i); θ̂)

}
+ (n− i+ 0.5) log

{
n− i+ 0.5

n(1− F0(X(i); θ̂))

})
.

It is obvious that for large values of the above test statistics the null hypothesis will be rejected. The test statistics
are invariant under any affine transformation on the sample data. Therefore, they are distribution-free within the
Lindley distribution family.
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4. Critical Points and Power Comparison

Because deriving the exact distribution of the test statistics are complicated, we obtain the critical values of the
test statistics by Monte Carlo simulations. These values for different sample sizes are presented in Table 1.
It should be mentioned that the empirical percentiles given in Table 1 provides an excellent type I error control.

Table 1. Critical values of the statistics at level 0.05%

n W 2 D V U2 A2 ZA ZC Zk

10 0.1994 0.3140 0.4879 0.1560 1.203 3.778 13.057 1.993
20 0.2017 0.2270 0.3526 0.1568 1.224 3.599 15.527 2.463
30 0.2028 0.1876 0.2920 0.1576 1.238 3.522 17.016 2.729
40 0.2019 0.1627 0.2538 0.1569 1.242 3.477 18.031 2.880
50 0.2030 0.1464 0.2276 0.1569 1.245 3.449 18.924 3.018
60 0.2019 0.1335 0.2083 0.1572 1.236 3.427 19.426 3.105
70 0.2033 0.1244 0.1934 0.1578 1.243 3.412 20.034 3.191
80 0.2032 0.1165 0.1813 0.1573 1.246 3.399 20.422 3.280
90 0.2027 0.1098 0.1713 0.1574 1.243 3.389 20.780 3.312
100 0.2032 0.1042 0.1624 0.1573 1.242 3.382 21.179 3.361

By Monte Carlo simulations, power of the tests against various alternatives are evaluated. The following
alternatives are considered in power comparison.

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ);

• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)

2
/
(2θ2)

)
;

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the modified extreme value EV (θ), with distribution function 1− exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1 + θx) exp
(
−x− θx2

/
2
)
;

• Dhillon’s (1981) distribution with distribution function 1− exp
(
−(log(x+ 1))

θ+1
)

;

• Chen’s (2000) distribution CH(θ), with distribution function 1− exp
(
2
(
1− ex

θ
))

.

These alternatives include densities f with decreasing failure rates (DFR), increasing failure rates (IFR) as well
as models with unimodal failure rate (UFR) functions and bathtub failure rate (BFR) functions.
To assess the power values of the tests, we generate 100,000 random samples from the alternative hypothesis for
different choices of sample sizes and then the test statistics are calculated. Then power of the corresponding test is
computed by the frequency of the event “the statistic is in the critical region”. Tables 2 and 3 display and compares
the power values of the tests for sample sizes n = 10, 20, 30, 50 at the significance level α = 0.05.
For each sample size and alternative, the bold type in these tables indicates the tests achieving the maximal power.

Stat., Optim. Inf. Comput. Vol. 11, June 2023



H. ALIZADEH NOUGHABI AND M. SHAFAEI NOUGHABI 725

Table 2. Empirical powers of the tests against IFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 ZA ZC ZK

W (1.4) 10 0.1303 0.1174 0.1104 0.1170 0.0894 0.1421 0.1278 0.0926
20 0.2258 0.1966 0.1761 0.1884 0.1917 0.2755 0.2431 0.1739
30 0.3237 0.2691 0.2330 0.2635 0.2967 0.3891 0.3491 0.2491
50 0.5098 0.4231 0.3736 0.4167 0.5036 0.5846 0.5404 0.4088

Γ(2) 10 0.1175 0.1028 0.1101 0.1188 0.0810 0.1474 0.1280 0.0864
20 0.2011 0.1754 0.1772 0.1935 0.1800 0.3073 0.2592 0.1889
30 0.2879 0.2412 0.2369 0.2687 0.2827 0.4540 0.3873 0.2909
50 0.4745 0.4014 0.3875 0.4408 0.5104 0.6815 0.6155 0.5063

HN 10 0.0952 0.0887 0.0844 0.0875 0.0678 0.0919 0.892 0.0701
20 0.1364 0.1234 0.1084 0.1149 0.1076 0.1371 0.1268 0.0885
30 0.1835 0.1552 0.1340 0.1446 0.1492 0.1787 0.1608 0.1054
50 0.2839 0.2321 0.1960 0.2139 0.2445 0.2777 0.2389 0.1531

U 10 0.3386 0.2647 0.3088 0.2957 0.2615 0.2876 0.2893 0.1707
20 0.6318 0.4888 0.6071 0.5477 0.5793 0.6444 0.5826 0.3495
30 0.8309 0.6764 0.8143 0.7416 0.8056 0.9004 0.8174 0.6838
50 0.9756 0.9000 0.9777 0.9417 0.9756 0.9986 0.9867 0.9898

CH(1) 10 0.0937 0.0868 0.0772 0.0789 0.0673 0.0867 0.0835 0.0681
20 0.1364 0.1220 0.0998 0.1061 0.1074 0.1294 0.1209 0.0873
30 0.1826 0.1557 0.1230 0.1332 0.1477 0.1723 0.1546 0.1010
50 0.2796 0.2301 0.1810 0.1933 0.2379 0.2659 0.2278 0.1451

CH(1.5) 10 0.4268 0.3505 0.3359 0.3553 0.3348 0.4089 0.4035 0.2708
20 0.7600 0.6343 0.6239 0.6480 0.7160 0.7607 0.7502 0.5319
30 0.9200 0.8205 0.8176 0.8370 0.9071 0.9287 0.9180 0.7391
50 0.9943 0.9684 0.9736 0.9763 0.9943 0.9968 0.9950 0.9521

LF (2) 10 0.1386 0.1235 0.1113 0.1187 0.0972 0.1309 0.1255 0.0913
20 0.2282 0.1943 0.1706 0.1802 0.1851 0.2192 0.2039 0.1393
30 0.3292 0.2723 0.2327 0.2527 0.2828 0.3091 0.2830 0.1892
50 0.5133 0.4204 0.3663 0.3955 0.4662 0.4748 0.4285 0.2968

LF (4) 10 0.2056 0.1790 0.1594 0.1700 0.1469 0.1922 0.1845 0.1309
20 0.3777 0.3160 0.2752 0.2980 0.3192 0.3479 0.3302 0.2320
30 0.5308 0.4386 0.3864 0.4204 0.4758 0.4877 0.4567 0.3225
50 0.7680 0.6595 0.6067 0.6401 0.7313 0.7172 0.6766 0.5190

EV (0.5) 10 0.0923 0.0861 0.0749 0.0782 0.0670 0.0872 0.0837 0.0688
20 0.1384 0.1221 0.1020 0.1074 0.1068 0.1291 0.1198 0.0881
30 0.1833 0.1557 0.1242 0.1345 0.1467 0.1706 0.1544 0.1040
50 0.2779 0.2262 0.1803 0.1933 0.2378 0.2650 0.2289 0.1437

EV (1.5) 10 0.1681 0.1456 0.1420 0.1547 0.1170 0.1488 0.1472 0.1024
20 0.3359 0.2706 0.2529 0.2634 0.2658 0.3038 0.2932 0.1825
30 0.4612 0.3645 0.3618 0.3805 0.4152 0.4725 0.4380 0.2624
50 0.7218 0.5906 0.5811 0.5943 0.6880 0.7300 0.6495 0.4412
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Table 3. Empirical powers of the tests against UFR, DFR and BFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 ZA ZC ZK

LN(0.8) 10 0.1413 0.1302 0.1279 0.1403 0.1068 0.1726 0.1430 0.1126
20 0.2221 0.1968 0.2204 0.2448 0.2110 0.4129 0.3128 0.2564
30 0.3180 0.2720 0.3268 0.3652 0.3440 0.6510 0.5054 0.4371
50 0.5147 0.4436 0.5541 0.6054 0.6131 0.9127 0.8086 0.7546

LN(1.5) 10 0.5140 0.4823 0.3849 0.4001 0.5544 0.4511 0.4371 0.4706
20 0.8027 0.7664 0.6690 0.6869 0.8197 0.7253 0.7356 0.7405
30 0.9257 0.9020 0.8342 0.8489 0.9306 0.8747 0.8856 0.8820
50 0.9900 0.9842 0.9642 0.9697 0.9905 0.9756 0.9793 0.9764

DL(1) 10 0.0877 0.0813 0.0809 0.0862 0.0629 0.0982 0.0835 0.0630
20 0.1185 0.1064 0.1139 0.1236 0.1041 0.1945 0.1539 0.1152
30 0.1486 0.1274 0.1445 0.1619 0.1445 0.2845 0.2241 0.1712
50 0.2123 0.1771 0.2245 0.2533 0.2394 0.4588 0.3649 0.3051

DL(1.5) 10 0.1999 0.1735 0.1751 0.1937 0.1462 0.2491 0.2201 0.1558
20 0.3844 0.3271 0.3228 0.3634 0.3601 0.5408 0.2201 0.1558
30 0.5568 0.4783 0.4598 0.5241 0.5677 0.7416 0.6787 0.5611
50 0.8123 0.7363 0.7129 0.7832 0.8509 0.9333 0.9031 0.8335

W (0.8) 10 0.1960 0.1750 0.1288 0.1366 0.2748 0.1959 0.1975 0.2262
20 0.3570 0.3095 0.2295 0.2438 0.4417 0.3197 0.3401 0.3610
30 0.4933 0.4319 0.3201 0.3476 0.5752 0.4330 0.4650 0.4724
50 0.7062 0.6330 0.5093 0.5395 0.7720 0.6341 0.6630 0.6632

Γ(0.4) 10 0.5137 0.4712 0.3701 0.3914 0.7163 0.6698 0.6776 0.6941
20 0.8109 0.7663 0.6579 0.6850 0.9222 0.8973 0.9060 0.9055
30 0.9354 0.9074 0.8310 0.8551 0.9810 0.9722 0.9748 0.9727
50 0.9943 0.9894 0.9697 0.9762 0.9990 0.9984 0.9986 0.9980

CH(0.5) 10 0.3912 0.3546 0.2711 0.2860 0.5728 0.5048 0.5141 0.5454
20 0.6670 0.6127 0.4979 0.5281 0.8141 0.7534 0.7701 0.7835
30 0.8331 0.7839 0.6733 0.7102 0.9251 0.8868 0.8982 0.9012
50 0.9669 0.9464 0.8924 0.9137 0.9903 0.9814 0.9835 0.9836

Table 4. Powerful tests against different alternatives

IFR UFR DFR-BFR

W 2 &ZA A2 &ZA A2

Based on the power values in Table 2, it is seen that the tests based on W 2 and ZA statistics have the most power
against IFR alternatives. The power differences between these tests and the other tests are substantial. Although
for this type of alternatives the tests W 2 and ZA have the most power but the power differences of these tests with
each other are small and we can select one of the tests based on W 2 or ZA statistic as a powerful test.
From Table 3, it is evident that the tests based on A2 and ZA statistics have the most power against UFR alternatives
and power differences between these tests and the other tests are substantial.
Tables 3 reveals a superiority of the test based on A2 statistic to all other tests as we can say that this test outperforms
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all other tests against DFR and BFR alternatives.
Although there is no uniformly most powerful test against all alternatives, the tests based on W 2, A2, ZA statistics
can be recommended in practice. In general, we can conclude that the proposed tests W 2, A2 and ZA have a good
performance and therefore can be used in practice.
Finally, we summarized the results in Table 4. This table presents the best test in terms of power against different
alternatives.

5. Illustration with real data

We illustrate, by two real examples, how the tests can be applied to test the goodness-of-fit for the Lindley
distribution when a random sample is available.

Example 1. We use the data set of waiting times (in minutes) before service of 100 bank customers as discussed
by Ghitany et al. (2008). The waiting times (in minutes) are as follows:

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6,
4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2,
8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9,
13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,
21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

Krishna and Kumar (2011) considered four reliability models, namely exponential, Lindley, gamma, and
lognormal. According to Bayesian information criterion (BIC), they found that the Lindley model is the best
fit for these data. Thus, Lindley distribution is fitting the above data quite satisfactorily. The main advantage of
using Lindley distribution over gamma and lognormal distributions is that it involves only one parameter. Hence,
maximum likelihood and other inferential procedures become simple to deal with, especially from computational
point of view.
Here, we apply the EDF procedures to this data set. First, the ML estimator of is computed as:

θ̂ =
−
(
X̄ − 1

)
+

√(
X̄ − 1

)2
+ 8X̄

2X̄
= 0.1866 .

Then, the value of each test statistic is computed and also the critical value of each test at the significance level
0.05 is obtained from Table 1. Results are summarized in Table 3. Because the value of each test statistic is smaller
than the corresponding critical value, the Lindley hypothesis is accepted for these data at the significance level of
0.05. Therefore, we can conclude that the underlying distribution of these data is a Lindley distribution.

Example 2. The following data are 15 electronic components in an accelerated life test, presented by Lawless
(1982):

1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23.0, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.

The proposed tests can be used to investigate whether the data come from a Lindley distribution. Based on the
test statistics described in Section 3, the values of the proposed statistics are as

W 2 = 0.0375, D = 0.1103, V = 0.2184, U2 = 0.0371,
A2 = 0.3187, ZA = 3.335, ZC = 2.666, ZK = 0.4140,

and at 5% significance level, the critical values of the tests are 0.2006, 0.2596, 0.4038, 0.1561, 1.2158, 3.6671,
14.535 and 2.2734, respectively. Therefore, the proposed tests accept the null hypothesis that the electronic
components follow a Lindley model at significance level of 0.05.
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6. Conclusions

In this paper, we have evaluated the empirical distribution function-based goodness-of-fit tests for the Lindley
distribution, and have shown that the considered tests have a good performance. Through Monte Carlo simulations,
we have carried out an extensive power study on the considered tests. It is shown that some of the tests outperform
in most cases all other tests. Finally, we have used two real data sets and have illustrated how the considered tests
can be applied to test the goodness-of-fit for the Lindley distribution when a random sample is available.
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