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Abstract In this work, we introduce a new G family with two-parameter called the compound reversed Rayleigh-
G family. Several relevant mathematical and statistical properties are derived and analyzed. The new density can
be heavy tail and right skewed with one peak, symmetric density, simple right skewed density with one peak,
asymmetric right skewed with one peak and a heavy tail and right skewed with no peak. The new hazard function
can be “upside-down-constant”, “constant”, “increasing-constant”, “revised J shape”, “upside-down”, “J shape”
and “increasing”. Many bivariate types have been also derived via different common copulas. The estimation of the
model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family
is illustrated by means of two real data sets.
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1. Introduction and motivation

In the last few years, huge efforts have been paid to derive many new G families using the well knowm
methods. These new G families have been used for modeling non-censored and censored real data sets
in many applied studies such as finance, econometrics, value at risk applications, insurance, biology,
engineering, forecasting, medicine and environmental sciences see , for example, Marshall and Olkin [48]
(Marshall-Olkin-G (MO-G) family), Eugene et al. [19] (beta generalized-G (B-G) family), Yousof et al.
[68] (transmuted exponentiated generalized (TEG) family), Rezaei et al. [57] (Topp Leone generated
(TLG) family), Merovci et al. [50] (exponentiated transmuted-G (ET-G) family), Aryal and Yousof [13]
(exponentiated generalized-G Poisson (EGGP) family), Brito et al. [14] (Topp-Leone odd log-logistic-G
(TLOLL-G) family), Yousof et al. [70] (Burr of the type X G (BX-G) family), Hamedani et al. [30] (type
I general exponential-G (TIGE-G) family), Korkmaz et al. [40] (exponential Lindley odd log-logistic-G
(ELOLL-G) family), Cordeiro et al. (2018) (Burr XII-G (BXII-G) family), Hamedani et al. [28] (extended-
G (Ex-G) family), Korkmaz et al. [41] (Marshall-Olkin generalized-G Poisson (MOGGP) family), Yousof
et al. [73] (Burr-Hatke-G (BH-G) family), Nascimento et al. [55] (Nadarajah-Haghighi-G (NH-G) family),
Hamedani et al. [29] ( type II general exponential-G (TIIGE-G) family), Yousof et al. [75] (Weibull G
Poisson (WGP) family), Merovci et al. [51] (Poisson Topp Leone G (PTL-G) family), Karamikabir et
al. [38] (Weibull Topp-Leone generated (WTL-G) family), Korkmaz et al. [39] (Hjorth-G (Hj-G) family),
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Alizadeh et al. [9] (flexible Weibull generated (FWG) family) and Alizadeh et al. [10] (transmuted odd
log-logistic-G (TOLL-G) family), El-Morshedy et al. [22] (Poisson generalized exponential G (PGE-G)
family) among others.

In this paper we propose and study a new family of distributions using the zero truncated Poisson (ZTP)
distribution with a strong physical motivation. Suppose that a system has N subsystems functioning
independently at a given time where N has ZTP distribution with parameter σ. It is the conditional
probability distribution of a Poisson-distributed random variable (R.V), given that the value of the R.V
is not zero (see Maurya and Nadarajah [49]). The probability mass function (PMF) of N is given by

P (N = n) = [σn exp (−σ)] / (n!σ•) |(n=1,2,...), (1)

where
σ• = 1− exp (−σ).

Suppose that the failure time of each subsystem has the inverse Rayleigh (“IR-G(Ω)” for short) defined
by the cumulative distribution function (CDF) and probability density function (PDF) given by

GΩ(z)=exp
[
−β/κ2

Ω (z)
]
|z∈R, (2)

where
κΩ (z) =

WΩ(z)

WΩ(z)
|z∈R,

and Ω is the parameter vector of the baseline model and

WΩ(z) = 1−WΩ(z)

is the survival function of the baseline model and

gΩ(z) = 2βwΩ(z)
WΩ(z)

WΩ(z)3
exp

[
−β/κ2

Ω (z)
]
, z ∈ R, (3)

respectively, Let Yi denote the failure time of the ith subsystem and let

Z = min{Y1, Y2, · · · , YN}.

Due to Aryal and Yousof [13], Korkmaz et al. [41], Yousof et al. [69], Abouelmagd et al. [2], Alizadeh [8]
and Abouelmagd et al. et al. [3], the conditional CDF of Z given N is

F (z|N) = 1− Pr (Z > z|N) = 1−
[
1−GΩ(z)

]N
. (4)

Therefore, the CDF of the compound inverse Rayleigh (CIR-G) family can be expressed as

Fη(z) = σ−1
•
(
1− exp

{
−σexp

[
−β/κ2

Ω (z)
]})

|z∈R, (5)

where η =(σ, β,Ω). The corresponding PDF as

fη(z) = 2σβ
wΩ(z)WΩ(z)

σ•WΩ(z)3
exp

[
−β/κ2

Ω (z)
]
exp

{
−σexp

[
−β/κ2

Ω (z)
]}

|z∈R. (6)

In this work, a special attention is paid to two special members called the compound inverse Rayleigh
exponential and the compound inverse Rayleigh inverse Weibull distributions. The new density of the
compound inverse Rayleigh exponential model can be ”asymmetric right skewed with one peak and a
heavy tail”, ”symmetric” and ”left skewed with one peak”. The new hazard rate function (HRF) of the
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can heavy tail and right skewed with one peak, symmetric density, simple right skewed density with
one peak, asymmetric right skewed with one peak and a heavy tail and right skewed with no peak. The
new hazard function can be ”upside-down-constant HRF”, ”constant HRF”, ”increasing-constant HRF”,
”J-shape HRF”, ”revised J-shape HRF”, ”upside-down HRF” and ”increasing HRF”.

In fact, the statistical literature has many new families, but most researchers study these families from
traditional aspects, and also provide certain theoretical aspects on a repetitive basis. In this work, we have
tried to introduce a new family and we have tried and studied it from different sides and in an interesting
way in presenting the theoretical and practical results. This work also includes a special Section on the
copula and its uses in the derivation of bivariate and multivariate distributions. The new family is better
than the odd Lindley family, Marshall-Olkin family, the Burr-Hatke family, generalized Marshall-Olkin
family, Beta family, Marshall-Olkin Kumaraswamy family, Kumaraswamy family, the Burr of the type
X family and Kumaraswamy Marshall-Olkin family in modeling the bimodal right skewed relief times
data set so the new family could be considered as a good alternative to these families. The new family
is better than the Marshal-Olkin family, Generalized Marshal-Olkin family, Kumaraswamy family, beta
family, Kumaraswamy Marshal-Olkin family and Marshal-Olkin Kumaraswamy family in modeling the
gauge lengths data set so the new family could be considered as a good alternative to these families.

We are motivated to introduce the CIR-G family for the following reasons:

• Creating new PDFs that can be ”symmetric PDF” or ”asymmetric and right skewed with a heavy
tail PDF” We can evaluate many environmental data sets using the family since it is so adaptable
for every new model.

• Introducing a few new unique models with various HRFs, including, decreasing, upside-down and
monomaniacally decreasing. With more distinct failure rate kinds, the distribution’s elasticity
increases. Thanks to these forms, which facilitate their work, many practitioners may use the new
distribution in statistical modelling and mathematical analysis. For this particular reason, we pay
close attention to the problem of monitoring the failure rate function.

• How flexible the new distribution is depends on both the kurtosis and skew coefficients. Furthermore,
the probability distribution’s effectiveness and use in statistical modelling are crucial in this context.
We examined the innovative PDF and discovered that, among other things, it was quite adaptable.
This motivated us to investigate this probability distribution in great detail.

• Modelling the ”bimodal and right skewed heavy tail data” and ”the bimodal and left skewed heavy
tail data” using new continuous models.
The new family has demonstrated a significant advantage in modelling various forms of data, whether
”bimodal and left skewed heavy tail data” or ”the bimodal and right skewed heavy tail data,” as
is demonstrated in this study. Whether modelling ”bimodal and left skewed heavy tail data” or
”the bimodal and right skewed heavy tail data,” the novel model has demonstrated a significant
superiority in this work.

• Whether modelling ”bimodal and left skewed heavy tail data” or ”the bimodal and right skewed
heavy tail data,” the novel system has demonstrated a significant superiority in this research.
Additionally, the new distribution demonstrated a great improvement in simulating actual data,
which includes outliers. The outliers family of distributions, one of the most extensively employed
families in such situations, and the new distribution unquestionably belong to the outliers family.

This paper is organized as follows. In Section 2, we derive some of its mathematical properties. Section
3 deals with some bivariate version via copulas. In Section 4 gives some special submodels. The maximum
likelihood method is discussed in Section 5. In Section 6, we illustrate the importance of the new family
by means of two applications to real data sets. Finally, Section 7 offers some concluding remarks.
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2. Mathematical properties

2.1. Useful expansions
Using the power series

exp

(
υ1

υ2

)
=

+∞∑
υ3=0

1

υ3!

(
υ1

υ2

)υ3

, (7)

the PDF in (6) can be written as

fη(z) = 2β

+∞∑
ℏ3=0

σ1+ℏ3 (−1)
ℏ3

ℏ3!σ•

wΩ(z)WΩ(z)

WΩ(z)3
exp

[
− (1 + ℏ3)β/κ2

Ω (z)
]
, (8)

again applying (7) to (8) we get

fη(z) = 2

+∞∑
ℏ3,ℏ1=0

σ1+ℏ3 (−1)
ℏ3+ℏ1 β1+ℏ1 (1 + ℏ3)ℏ1

ℏ3!ℏ1!σ•
wΩ(z)WΩ(z)

1+2ℏ1WΩ(z)
−2ℏ1−3. (9)

If
∣∣∣υ1

υ2

∣∣∣ < 1 and υ3 > 0 is a real non-integer, the following power series holds(
1− υ1

υ2

)υ3

=

+∞∑
ℏ2=0

(−1)
ℏ2 Γ (1 + υ3)

i! Γ (1 + υ3 − ℏ2)

(
υ1

υ2

)ℏ2

. (10)

Applying (10) to (9) we have

fη(z) = 2

+∞∑
ℏ1,ℏ2,ℏ3=0

(−1)
ℏ1+ℏ2+ℏ3

σ1+ℏ3 (1 + ℏ3)ℏ1 β1+ℏ1Γ (2 + 2ℏ1)
ℏ1!ℏ2!ℏ3!σ•Γ (2 + 2ℏ1 − ℏ2)

wΩ(z)WΩ(z)
ℏ2−2ℏ1−3,

where ϖ = ℏ2 − 2 (1 + ℏ1) , then

fη(z) =

+∞∑
ℏ1,ℏ2=0

∆ℏ1,ℏ2
πϖ (z) , (12)

where

∆ℏ1,ℏ3
= 2

(−1)
ℏ1+ℏ2 β1+ℏ1 (1 + ℏ3)ℏ1 Γ (2 + 2ℏ1)

ℏ!1ℏ2!σ•

×
+∞∑
ℏ3=0

σ1+ℏ3 (−1)
ℏ3

ℏ3!Γ (2 + 2ℏ1 − ℏ3) [ℏ3 − 2 (1 + ℏ1)]
,

and
πϖ (z) = ϖwΩ(z)WΩ(z)

ϖ−1

is the PDF of the exponentiated-G (exp-G) family with power parameter ϖ. Equation (12) reveals that the
density of Z can be expressed as a linear mixture of exp-G densities. So, several mathematical properties
of the new family can be obtained from those of the exp-G distribution. Similarly, the CDF of the CIR-G
family can also be expressed as a mixture of exp-G CDFs given by

F (z) =

+∞∑
ℏ1,ℏ3=0

∆ℏ1,ℏ3
Πϖ (z) , (13)

where
Πϖ(z;Ω) = WΩ(z)

ϖ

is the CDF of the exp-G family with power parameter ϖ.
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2.2. Moments
Let Yϖ be a R.V having density πϖ (z). The rth ordinary moment of Z, say µ′

r,Z , follows from (12) as

µ′
r,Z = E (Zr) =

+∞∑
ℏ1,ℏ3=0

∆ℏ1,ℏ2
E (Y r

ϖ) , (14)

where
E(Y r

ϖ) = ϖ

∫ +∞

−∞
zr wΩ(z)WΩ(z)

ϖ−1 dz

can be evaluated numerically in terms of the baseline qf QG(u) = W−1(u) as

E(Y r
ϖ) = ϖ

∫ 1

0

uϖ−1 [QG(u)]
r
du.

Setting r = 1 in (14) gives the mean of Z.

2.3. Incomplete moments and mean deviations
The rth incomplete moment of Z is defined by

Ir,Z(z) =

∫ z

−∞
zr fη(z)dz.

We can write from (12)

Ir,Z(z) =

+∞∑
ℏ1,ℏ2=0

∆ℏ1,ℏ2
Ir,ϖ(z),

where

Ir,σ(z) =

∫ WΩ(z)

0

uσ−1 [QG(u)]
r
du.

The integral mr,σ(z) can be determined analytically for any special model with closed-form expressions
for the QG(u) or computed at least numerically for most baseline distributions.

2.4. Moment generating function (MGF)
The MGF of Z, say MZ(t) = E (exp (t Z)), is obtained from (12) as

MZ(t) =

+∞∑
ℏ1,ℏ2=0

∆ℏ1,ℏ2
Mϖ,Z (t) ,

where Mϖ(t) is the generating function of Yϖ given by

Mϖ,Z(t) = ϖπ+∞
−∞(z) = ϖπ+1

0 (u).

where
π+∞

−∞(z) =

∫ +∞

−∞
exp (t z)wΩ(z)

[
WΩ(z)

]ϖ−1
dz

and π+1
0 (u) =

∫ 1

0
exp[tQW (u )]uϖ−1du. The two integrals π+∞

−∞(z) and π+1
0 (u) can be numerically

computed for most base line models.
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In view of the theoretical complexities and the fact that the quantile function is not known in a certain
closed form, we will use the methods that provide numerical solutions. We will use ready-made programs
such as ”R” and ”MATHCAD” to facilitate numerical operations. The use of the numerical methods has
become popular recently for many reasons. The most important of which is the availability of ready-made
statistical programs and the presence of lots of mathematically complex distributions and models. The fact
that has become recognized and cannot be ignored in the field of statistical analysis and mathematical
modeling is that the complexity of models is no longer the real problem facing researchers, because
statistical programs and packages have, in fact, contributed a lot in simplifying these complexities by
providing numerical solutions. In this paper, we have used numerical methods in the process of estimation
(see Section 6).

3. Bivariate version via copulas

3.1. FGM copula
Generally, the copula is a multivariate CDF for which the marginal models is a uniform on the interval
[0, 1]. The Copulas can be used to describe the dependence between the R.Vs. In this Section, we present
some new bivariate CIR (B-CIR) type models using the Farlie Gumbel Morgenstern (FGM) copula
(Johnson and Kotz [36]), the modified version of the FGM copula, the Renyi’s copula, the Clayton copula
and also with the Ali-Mikhail-Haq copula. However, many future works could allocated to the study
these new models (see also Al-babtain et al. [4], Elgohari et al. [20], Elgohari et al. [21], Mansour et al.
([42],[43],[44],[45],[46] and [47]), Salah et al. [62], Shehata and Yousof ([63], [64], [65], [66]), Ibrahim et al.
[34], Ali et al. [5] and Ali et al. [6] as examples).

Consider the joint CDF (J-CDF) of the FGM family with dependence parameter λ, where

Fλ(h, v) = hv (1 + λh•v•) |h•=1−h,v•=1−v,

and the two marginal function h = F1, v = F2, λ ∈ (−1, 1) and for every h, v ∈ (0, 1), F (h, 0) = F (0, v) = 0
which is ”grounded-minimum” and F (h, 1) = h and F (1, v) = v which are ”grounded-maximum”. Then,

F (h1, v1) + F (h2, v2)− F (h1, v2)− F (h2, v1) ≥ 0.

A copula is continuous in h and v; actually, it satisfies the stronger Lipschitz condition, where

|F (h2, v2)− F (h1, v1) | ≤ |h2 − h1|+ |v2 − v1|.

For 0 ≤ h1 ≤ h2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1, we have

Pr (h1 ≤ h ≤ h2, v1 ≤ v ≤ v2) = F (h1, v1) + F (h2, v2)− F (h1, v2)− F (h2, v1) ≥ 0.

Then, setting
h• = 1− F (z1)|[h•=(1−h)∈(0,1)]

and
v• = 1− F (z2)|[v•=(1−v)∈(0,1)],

we can esaily obtain the J-CDF of the CIR using the FGM family

Fλ(z1, z2) = σ−1
•1
[
1−Oσ1,β1,Ω (z1)

]
×σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]
×
[
1 + λ

( {
1− σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]}
×
{
1− σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]} )] ,
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where

Oσ1,β1,Ω (z1) = exp

{
−σ1exp

[
− β1

κ2
Ω (z1)

]}
,

Oσ2,β2,Ω (z2) = exp

{
−σ2exp

[
− β2

κ2
Ω (z2)

]}
.

The joint PDF can then be derived from

cλ(h, v) = 1 + λh•v•|(h•=1−2h and v•=1−2v)

or from
cλ(z1, z2) = f(z1, z2) = F (F1, F2) f1f2.

3.2. The modified FGM
The modified FGM copula is defined as

Fλ(h, v) = bυ
[
1 + λA(h)C(v)

]
|λ∈(−1,1)

or
Fλ(h, v) = bυ + λȦhĊv|λ∈(−1,1),

where
Ȧh = hA(h),

and
Ċv = vC(v)

and A(h) and C(v) are two continuous functions on (0, 1) with

A(0) = A(1) = C(0) = C(1) = 0.

3.2.1. Type-I Consider the following functional form for both A(h) and C(v). Then, the B-CIR-FGM
(Type-I) can be derived from

Fλ(z1, z2) = σ−1
•1
[
1−Oσ1,β1,Ω (z1)

]
σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]
+λ


σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]
×
{
1− σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]}
×σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]
×
{
1− σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]}
 |λ∈(−1,1).

3.2.2. Type-II Let A(h) and C(v) be two functional form satisfying all the conditions stated earlier where

A(h)•|(λ1>0) = hλ1 (1− h)
1−λ1

and C
(v)•|(λ2>0) = vλ2 (1− v)

1−λ2 .

Then, the corresponding B-CIR-FGM (Type-II) can be derived from

Fλ,λ1,λ2
(h, v) = bυ

[
1 + λA (h)

•
C(v)•

]
.
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Thus
Fλ,λ1,λ2

(z1, z2) = σ−1
•1
[
1−Oσ1,β1,Ω (z1)

]
σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]

×

1 + λ


{
σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]}λ1

×
{
σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]}λ2

×
(
1− σ−1

•1
[
1−Oσ1,β1,Ω (z1)

])1−λ1

×
(
1− σ−1

•2
[
1−Oσ2,β2,Ω (z2)

])1−λ2




3.2.3. Type-III Let
C•

(h) = h [log (1 + h•)]

and
D•

(v) = v [log (1 + v•)]

for all A(h) and C(v) which satisfy all the conditions stated earlier. In this case, one can also derive a
closed form expression for the associated CDF of the B-CIR-FGM (Type-III) from

Fλ(h, v) = bυ
(
1 + λC•

(h) D
•
(v)

)
.

Then
Fλ(z1, z2) = σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]
σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]
×

1 + λ


σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]
×σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]
×
[
log
(
2− σ−1

•1
[
1−Oσ1,β1,Ω (z1)

])]
×
[
log
(
2− σ−1

•2
[
1−Oσ2,β2,Ω (z2)

])]

 .

3.3. The Clayton copula
The Clayton copula can be considered as

F (v1, v2) =
[
(1/v1)

λ
+ (1/v2)

λ − 1
]− 1

λ

|λ∈(0,+∞).

Setting v1 = F (h) and v2 = F (z), the B-CIR type can be derived from F (v1, v2) = F (F (v1) , F (v2)). Then

F (z1, z2) =

{ {
σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]}−λ

+
{
σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]}−λ − 1

}− 1
λ

|λ∈(0,+∞).

3.4. Ali-Mikhail-Haq copula
Under the stronger Lipschitz condition, the Archimedean Ali-Mikhail-Haq copula can expressed as

F (h, v) = bυ [1− λh•v•]−1 |τ∈(−1,1),

then for any
Fη

1
(z1) = 1− h•|[h•=(1−h)∈(0,1)]

and
Fη

2
(z2) = 1− v•|[v•=(1−v)∈(0,1)]

we have

F (z1, z2) =

{
σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]
×σ−1

•2
[
1−Oσ2,β2,Ω (z2)

] }
1− λ

( {
1− σ−1

•1
[
1−Oσ1,β1,Ω (z1)

]}
×
{
1− σ−1

•2
[
1−Oσ2,β2,Ω (z2)

]} ) .
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Figure 1. Plots of the PDF of the CIREx model.

3.5. The Renyi entropy copula
Using the theorem of Pougaza and Djafari (2011) where

F (h, v) = z2h+ z1v − z1z2,

the associated B-CIR can be derived from

F (z1, z2) = z2σ
−1
•1
[
1−Oσ1,β1,Ω (z1)

]
+ z1σ

−1
•2
[
1−Oσ2,β2,Ω (z2)

]
− z1z2.

4. Special submodels

In this Section we will provide many new distributions based on some common base line models namely:
Log-logistic (LL), Weibull (W), inverse Weibull (IW), Exponential (Ex), inverse exponential (IE), Lomax
(Lx), inverse Lomax (ILx), Rayleigh (R), inverse Rayleigh (IR), Burr XII (BXII), Half-logistic (HL),
Standard Gumbel (Gu), Lindley (L), Nadarajah-Haghighi (NH), Dagum (D), inverse flexible Weibull
(IFW), Gumbel (Gu), Gompertz (Gz) and inverse Gompertz (RGz) (see Table 1). A special attention is
given to the compound inverse Rayleigh exponential (CIREx) and the compound inverse Rayleigh inverse
Weibull (CIRIW) distributions.

Figure 1 and Figure 2 give some plots of the PDF of the CIREx and CIRIW distributions. Figure 3 and
Figure 4 give some plots of the HRF of the CIREx and CIRIW distributions. Figure 1 gives some plots of
the PDF of the CIREx distribution. Based on Figure 1, the new density of the CIREx distribution can be
”heavy tail right skewed with one peak”, ”symmetric” and ”simple right skewed with one peak”. Figure 2
gives some plots of the PDF of the CIRIW distribution. Based on Figure 2, the new density of the CIRIW
model can be ”asymmetric right skewed with one peak and a heavy tail” and ”right skewed with no peak”.
Figure 3 provides different plots of the HRF of the CIREx distribution. Based on Figure 3, the new HRF
of the can be CIREx model can be ”upside-down-constant”, ”constant”, ”increasing-constant”. Figure 4
provides different plots of the HRF of the CIRIW distribution. Based on Figure 4, the new hazard rate
function (HRF) of the can be CIRIW model can be ”revised J-shape”, ”upside-down”, ”J-shape” and
”increasing”. Based on Figure 1 and Figure 2, the family may be useful in modeling the ”heavy tail right
skewed with one peak”, ”symmetric”, ”simple right skewed with one peak”, ”asymmetric right skewed
with one peak and a heavy tail” and ”right skewed with no peak” real data sets. Based on Figure 3 and
Figure 4, the family may be useful in modeling the real data sets which have ”upside-down-constant”,
”constant”, ”increasing-constant”, ”revised J-shape”, ”upside-down”, ”J-shape” and ”increasing” HRFs.
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Figure 2. Plots of the PDF of the CIRIW model.

Table 1: New submodels based on the new CIR-G family.
No. Base line model κΩ (z) Submodel
1 Ex exp (bz)− 1|b>0 CIREx
2 W exp

(
zb
)
− 1|b>0 CIRW

3 IW
[
exp

(
zb
)
− 1
]−1 |b>0 CIRIW

4 IR
[
exp

(
αz−2

)
− 1
]−1 |α>0 CIRIR

5 LL α
b z

α|b,α>0 CIRLL
6 RE

[
exp

(
αz−1

)
− 1
]−1 |α>0 CIRIE

7 ILx
[(
1 + z−1

)b − 1
]−1

b>0
CIRILx

8 NH exp
[
(1 + α z)b − 1

]
− 1|α,b>0 CIRNH

9 Lx (1 + z)
α − 1|α>0 CIRLx

8 R exp (αz)
2 − 1|α>0 CIRR

10 IFW
{
exp

[
exp

(
α
z − bz

)]
− 1
}−1 |α>0 CIRIFW

11 BXII
(
1 + zb

)α − 1|b,α>0 CIRBXII

12 HL
{[

1−exp(−z)
1+exp(−z)

]−1

− 1

}−1

CIRHL

13 IGz
(
exp

{
− b

α

[
exp

(
z
α

)
− 1
]}

− 1
)−1 |α,b>0 CIRIGz

14 Gu (exp {exp [− (z)]} − 1)
−1 CIRGu

15 L exp (αz)
[
1+α+αz

1+α

]−1 − 1|α>0 CIRL

16 HL
{[

1−exp(−αz)
1+exp(−αz)

]−1

− 1

}−1

|α>0 CIRHL

17 Da
{[

1 +
(
z
λ

)−b
]α

− 1
}−1

|α,b,λ>0 CIRDa
18 Gz exp {b [exp (αz)− 1]} − 1|α>0 CIRGz

5. Parameter Estimation

Here, we will consider the estimation of the unknown parameters (σ, β,Ω) of the new G family from
complete samples by maximum likelihood method. Let z1, · · · , zn be a random sample (rs) from the
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Figure 3. Plots of the HRF of the CIREx model.

CIR-G models parameter vector η =(σ, β,Ω⊺)⊺. The log-likelihood function for η is given by

ℓn(η) = n log 2 + n log β + n logσ − n logσ• +
n∑

i=1

logwΩ(zi) +
n∑

i=1

logWΩ(zi)

−
n∑

i=1

β

κ2
zi,Ω

− 3
n∑

i=1

logWΩ(zi)− σ
n∑

i=1

exp

(
− β

κ2
zi,Ω

)
.

The above log-likelihood function can be maximized numerically by using R (optim), SAS (PROC
NLMIXED) or Ox program (sub-routine MaxBFGS), among others. For confidence interval (C.I.)
estimation of the parameters, the elements of the observed information matrix J(η) can be evaluated
numerically, where

Uσ =
∂

∂σ
ℓn(η), Uβ =

∂

∂β
ℓn(η),

and
UΩP

=
∂

∂ΩP

ℓn(η),

where P is the number of parameters of the base line model. Setting the nonlinear system of equations
Uσ = Uβ = UΩP

= 0 and solving them simultaneously yields the maximum likelihood estimations (MLEs)
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Figure 4. Plots of the HRF of the CIREIW model.

of η = (σ, β,Ω⊺)⊺. These equations can be solved numerically using convenient iterative method such
as the Newton-Raphson type algorithms. For interval estimation of these parameters, we can obtain the
observed information matrix

J
(
η̂
)
=

∂2ℓn(η)

∂m∂n
(∀m,n = σ, β,Ω)

which can be computed numerically.

Under standard regularity conditions when n → +∞, the distribution of
(
η̂
)

can be approximated by
a multivariate normal

N(P+1)

(
0,J

(
η̂
)−1
)

distribution to construct approximate confidence intervals for the parameters. Here, J
(
η̂
)

is the total
observed information matrix evaluated at

(
η̂
)
. Large sample theory for these estimators delivers simple

approximations that work well in finite samples.

The normal approximation for the MLEs is easily handled numerically. Likelihood ratio tests can be
performed for the proposed family in the usual way. Theoretically, the issue of identifiability is not easy
to ensure for new models. Ideally, to ensure and prove this property, we have to prove that, for any q ∈R,
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the equality
Fη∗(q)=Fη(q),

implies that η∗=η which means σ∗, β∗,Ω∗ = σ, β,Ω. This equality is clear for q = 0. However, for the
other cases, the complexity of Fη∗(q) is a significant barrier to demonstrating that in full rigor. Our
practical investigations, however, have revealed no problem of this kind, but the rigorous proof remains
a strong mathematical challenge.

6. Real data applications

In this Section we analyze two real data sets. For data the first data set (the first application),
we considered the standard one-parameter exponential distribution as our base line model and then
we compare the fits of the CIREx distribution with other competitive exponential extensions such
as the odd Lindley exponential (OLEx) model, Marshall-Olkin exponential (MOEx) model, the
generalized Marshall-Olkin exponential (GMOEx) model, Marshall-Olkin Kumaraswamy exponential
(MOKumEx) model, the moment exponential (MEx) model, the Burr-Hatke exponential (BrHEx) model,
Kumaraswamy exponential (KumEx), beta exponential (BEx) model, Kumaraswamy Marshall-Olkin
exponential (KumMOEx) model and standard exponential model (see Almamy et al. [7], Dara and Ahmad
[18], Ghitany et al. [23], Yousof et al. [73]).

However, in the statistical literature there are several useful exponential versions which can be used in
comparison such as the transmuted exponentiated generalized E (TEGE) model and the Burr of the type
X exponential (BXEx) model (Yousof et al. [72]), the Poisson-E (PEx) distribution (Cancho et al. [15]),
Burr type XII exponential (BXIIEx) model (Cordeiro et al. [17]), the Burr of the type X exponentiated
exponential (BXEEx) model (see Khalil et al. [37]), generalized odd log-logistic exponentiated Ex
(GOLLEEx) distribution , quasi Poisson Burr of the type X exponentiated exponential (QPBXEEx)
distribution (Mansour et al. [42], [43] and [44]), among others. For data set (the second application),
we considered the standard two-parameters inverse Weibull model as our base line model and then we
compare the fits of the CIRIW model with other competitive inverse Weibull models such as the Marshal-
Olkin inverse Weibull (MOIW) model, standard inverse Weibull (IW) model, Generalized Marshal-Olkin
inverse Weibull (GzMOIW) model, beta inverse Weibull (BIW) model, Kumaraswamy Marshal-Olkin
inverse Weibull (KumMOIW) model, Kumaraswamy inverse Weibull (KumIW) model and Marshal-Olkin
Kumaraswamy inverse Weibull (MOKumIW) distribution. Some details related to the these copetitive
model are available in Ibrahim et al. [33].

For comparing models, we consider the Cramér-Von Mises (CM) and the Anderson-Darling (AD) and
the Kolmogorov-Smirnov (KS) statistic (and its corresponding P-value), the Akaike Information Criterion
(C

1,ℓ̂
), Bayesian Information Criterion (C

2,ℓ̂
), consistent Akaike Information Criterion (C

3,ℓ̂
) and Hannan-

Quinn Information Criterion (C
4,ℓ̂

). However, other potential goodness-of-fit statistic tests for validation
such as Nikulin-Rao-Robson statistic test and the modified Nikulin-Rao-Robson statistic test may be
used (see Goual et al. [24], Ibrahim et al.[35], Ibrahim et al.[32], Goual et al. [26], Goual and Yousof [25],
Yadav et al. [67] and Yousof et al. [71]).

6.1. First application (failure times data)
The failure times data set (see Gross and Clark [27]). The data represent the lifetime data relating to
relief times (in minutes) of patients receiving an analgesic. Table 2 lists the MLEs, standard errors (SEs)
and (1− ε)% confidence intervals ((1− ε)% C.I.s) by providing the lower bound (LB) and the upper
bound (LB). Table 3 lists the C

1,ℓ̂
, C

2,ℓ̂
, C

3,ℓ̂
, C

4,ℓ̂
, AD, CM, K.S. and its p-value. Figure 5 gives the total

time in test (TTT) plot for the relief times data along with the corresponding quantile-quantile (QQ)
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plot , box plot and the nonparametric Kernel density estimation (N-KDE) plot. Based on Figure 5, the
HRF of the relief times is ”monotonically increasing HRF” (top right plot) and this data has an extreme
value ( see top right and bottom right plots) and its density is right skewed and bimodal. Figure 6 gives
the estimated PDF (E-PDF), estimated CDF (E-CDF), estimated HRF (E-HRF) and P-P plot for relief
times data. Based on results of Table 3 and Table 4, it is concluded that the CIREx model is much better
than the exponential, odd Lindley exponential, Marshall-Olkin exponential, moment exponential, the
logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential, Marshall-
Olkin Kumaraswamy exponential, Kumaraswamy exponential, the Burr of the type X exponential and
Kumaraswamy Marshall-Olkin exponential models with C

1,ℓ̂
=36.75, C

2,ℓ̂
=39.74, C

3,ℓ̂
=38.25, C

4,ℓ̂
=37.34,

AD= 0.15, CM=0.027, K.S=0.090 and p-value=0.996 so the new lifetime model is a good alternative to
these models in modeling relief times data set. According to Figures 6, the CIREx distribution provides
adequate fits to the empirical functions.

Table 2: MLEs, SEs, C.I.s (in parentheses) values for the relief times data.
Models Estimates
Ex(b) MLE 0.52639

SE (0.11715)
95%(LB, UB) (0.290, 0.75)

OLEx(b) MLE 0.60443
SE (0.0535)

95%(LB, UB) (0.501, 0.73)
MEx(b) MLE 0.95034

SE (0.15012)
95%(LB, UB) (0.6611, 1.245)

BrHEx(b) MLE 0.52633
SE (0.11823)

95%(LB, UB) (0.431, 0.633)
MOEx(β, b) MLE 54.474, 2.316

SE (35.5821), (0.3742)
95%(LB, UB) (0, 124.212), (1.58, 3.044)

GMOEx(σ, β, b) MLE 0.5192, 89.4623, 3.1688
SE (0.256), (66.278), (0.772)

95%(LB, UB) (0.02, 1.02), (0, 219.37), (1.66, 4.68)
KumEx(σ, β, b) MLE 83.75623, 0.5681, 3.3302

SE (42.3612), (0.3262), (1.1881)
95%(LB, UB) (0.729, 166.8), (0, 1.213), (1, 5.66)

BEx(σ, β, b) MLE 81.6332, 0.5421, 3.5142
SE (120.4122), (0.3266), (1.40114)

95%(LB, UB) (0, 317.63), (0, 1.177), (0.75, 6.28)
MOKumEx(α,σ, β, b) MLE 0.13323, 33.232, 0.5713, 1.6743

SE (0.3322), (57.837), (0.721), (1.814)
95%(LB, UB) (0, 0.783, (0, 146.6), (0, 1.99), (0, 5.2)

KwMOE(α,σ, β, b) MLE 8.8744, 34.8265, 0.2992, 4.8993
SE (9.1463), (22.3128), (0.24), (3.1767)

95%(LB, UB) (10.9, 46.8), (0, 78.6), (0, 0.8), (0, 11.12)
EIBXEx(σ, β, b) MLE 2.09125, 2.89979, 0.5307

SE 2.83243, 1.3667, 0.53723
95%(LB, UB) (0, 7.69), (0, 5.5), (0, 1.56)
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6.2. Second application (gauge lengths data)
The gauge lengths data set (Kundu and Raqab (2009)) consists of 74 observations. Table 5 lists the MLEs,
SEs confidence intervals (C.I.s) for the gauge lengths data. Table 6 lists the C

1,ℓ̂
, C

2,ℓ̂
, C

3,ℓ̂
, C

4,ℓ̂
, AD,

CM, K.S. and p-value. Figure 7 gives the total time test (TTT) plot (Aarset (1987)) for the relief times
data along with the corresponding box plot, QQ plot and the N-KDE plot. Based on Figure 7, the HRF
of the gauge lengths data is ”monotonically increasing HRF” (see top right plot) and this data has no
extreme observation (see top right and bottom right plots) and its density is semi-bimodal. Figure 6 gives
the E-PDF, E-CDF, E-HRF and P-P plot for gauge lengths data.

Based on results Figure 8 and Table 7, it is concluded that the CIRIW model is much better
than the inverse Weibull, Marshal-Olkin inverse Weibull, Generalized Marshal-Olkin inverse Weibull,
Kumaraswamy inverse Weibull, beta inverse Weibull, Kumaraswamy Marshal-Olkin inverse Weibull and
Marshal-Olkin Kumaraswamy inverse Weibull models with C

1,ℓ̂
=108.82, C

2,ℓ̂
=115.74, C

3,ℓ̂
=109.17,

C
4,ℓ̂

=111.58, AD=0.28, CM=0.039, K.S=0.055 and p-value=0.977 so the new lifetime model is a good
alternative to these models in modeling gauge lengths data set. According to Figures 6, the CIRIW
distribution provides adequate fits to the empirical functions.

Table 3: C
1,ℓ̂

, C
2,ℓ̂

, C
3,ℓ̂

, C
4,ℓ̂

for relief data.
Models C

1,ℓ̂
C

2,ℓ̂
C

3,ℓ̂
, C

4,ℓ̂

OLEx 49.12 50.11 49.32 49.30
KumMOEx 42.83 46.84 45.55 43.60

Ex 67.67 68.67 67.89 67.87
MEx 54.32 55.31 54.54 54.50
BEx 43.48 46.45 44.98 44.02

BrHEx 67.67 68.67 67.89 67.87
MOEx 43.51 45.51 44.22 43.90

GMOEx 42.75 45.74 44.25 43.34
KumEx 41.78 44.75 43.28 42.32

MOKumEx 41.58 45.54 44.25 42.30
CIREx 36.75 39.74 38.25 37.34

Table 4: AD,CM,K.S. and p-value for relief times data.
Models AD CM K.S. p-value

Ex 4.602 0.960 0.446 < 0.001
BEx 0.705 0.120 0.166 0.801

MOKumEx 0.602 0.111 0.143 0.872
MEx 2.764 0.536 0.329 0.073

BrHEx 0.629 0.105 0.444 < 0.001
KumEx 0.458 0.078 0.146 0.863
MOEx 0.847 0.144 0.184 0.553

GMOEx 0.512 0.088 0.153 0.788
KumMOEx 1.081 0.199 0.154 0.863

OLEx 1.339 0.228 0.854 < 0.001
CIREx 0.15 0.027 0.090 0.996
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Table 5: MLEs, SEs, C.I.s (in parentheses) values for the gauge lengths data.
Models Estimates
IW(β, b) MLE 4.11022, 2.16921

SE (0.32320), (0.0648)
95%(LB, UB) (3.48,4.75), (2.04, 2.3)

MOIW(σ, β, b) MLE 80.346, 8.03, 1.426
SE (62.01), (0.7634), (0.11005)

95%(LB, UB) (0, 201.93),(6.5, 9.53),(1.2, 1.66)
GzMOIW(α,σ, β, b) MLE 3.7024, 63.707, 5.9181, 1.577

SE (2.687), (38.666), (0.951), (0.144)
95%(LB, UB) (0, 8.967), (0,139.53), (4.06, 7.8), (1.30, 2)

KumIW(α,σ, β, b) MLE 3.218444, 217.0311, 1.00518, 4.3844
SE (1.0359), (268.6), (0.22), (1.01)

95%(LB, UB) (1.2, 5.30), (0, 743.41), (0.6,1.446), (2.40, 6.4)
BIW(α,σ, β, b) MLE 2.039301, 5.8572, 0.2424, 37.17889

SE (1.0153), (1.813), (0.38), (33.51)
95%(LB, UB) (0.04,4.023),(2.30,9.4),(0,0.98),(0,102.9)

KumMOIW(α, a,σ, β, b) MLE 0.01553, 0.827, 16.9853, 0.894, 25.1274
SE (0.0234), (0.789), (24.975), (0.396), 19.688)

95%(LB, UB) (0,0.06), (0,2.4), (0,65.9), (0.11,1.7), (0,63.7)
MOKumIW(α, a,σ, β, b) MLE 7.995, 2.933,35.707,1.221,2.415

SE (13.0634),(0.825),(41.500),(0.412),(1.032)
95%(LB, UB) (0,33.6), (1.3,4.6), (0,18), (0.4,2.03), (0.39,4.4)

CIRIW(σ, β, b) MLE 2991.518, 5.50003, 0.240797
SE 3.88119, 0.460513, 0.004561

95%(LB, UB) (2983.76,2999.28), (4.6, 6.42), (0.23,0.25)

Table 6: C
1,ℓ̂

, C
2,ℓ̂

, C
3,ℓ̂

, C
4,ℓ̂

for the gauge lengths data.
Models C

1,ℓ̂
C

2,ℓ̂
C

3,ℓ̂
C

4,ℓ̂

IW 142.02 146.63 142.19 143.86
GzMOIW 112.80 122.00 113.37 126.48
KumIW 113.68 122.82 114.25 117.36

KumMOIW 113.30 124.82 114.18 117.90
MOKumIW 113.19 124.68 114.07 117.78

BIW 112.63 121.84 113.21 116.30
MOIW 115.06 121.96 115.40 117.81
CIRIW 108.82 115.74 109.17 111.58

Table 7: AD,CM,K.S. and p-value for the lengths data.
Models AD CM K.S. p-value

IW 2.931 0.468 0.151 0.096
GzMOIW 0.399 0.071 0.065 0.946
KumIW 0.370 0.079 0.065 0.924

KumMOIW 0.363 0.055 0.066 0.953
MOKumIW 0.369 0.055 0.063 0.941

BIW 0.446 0.073 0.064 0.931
MOIW 0.788 0.123 0.072 0.862
CIRIW 0.28 0.039 0.055 0.977

Stat., Optim. Inf. Comput. Vol. 11, March 2023



M. K. A. REFAIE AND H. ABDELTAWAB MAHRAN 361

−2 −1 0 1 2

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

norm quantiles

x

11

16

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Box Plot

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

N−KDE

Bandwidth=0.2121 & N=20

Figure 5. QQ, Box, TTT and N-KDE plots for the relief times data.

7. Concluding remarks

In this work, a new one-parameter compound G family of continuous distributions is derived and studied.
Relevant statistical properties such as moments, incomplete moments and moment generating function
are derived. The density of the new family is re-expressed in terms of the exponentiated G family. The
new density can be ”heavy tail right skewed with one peak”, ”symmetric”, ”simple right skewed with
one peak”, ”asymmetric right skewed with one peak and a heavy tail” and ”right skewed with no peak”.
The corresponding hazard function can be ”upside-down-constant”, ”constant”, ”increasing-constant”,
”revised J-shape”, ”upside-down”, ”J-shape” and ”increasing”. Many bivariate types have been also
derived via different common copulas. The estimation of the model parameters is performed by the
maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means
of two real data sets. The new family is better than the odd Lindley family, Marshall-Olkin family,
the Burr-Hatke family, generalized Marshall-Olkin family, Beta family, Marshall-Olkin Kumaraswamy
family, Kumaraswamy family, the Burr of the type X family and Kumaraswamy Marshall-Olkin family
in modeling the bimodal right skewed relief times data set with with C

1,ℓ̂
=36.75, C

2,ℓ̂
=39.74, C

3,ℓ̂
=38.25,
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Figure 6. KM, E-PDF, E-CDF, P-P and E-HRF for relief times data.

C
4,ℓ̂

=37.34, AD= 0.15, CM=0.027, K.S=0.090 and p-value=0.996 so the new family could be considered
as a good alternative to these families. The new family is better than the Marshal-Olkin family,
Generalized Marshal-Olkin family, Kumaraswamy family, beta family, Kumaraswamy Marshal-Olkin
family and Marshal-Olkin Kumaraswamy family in modeling the gauge lengths data set with C

1,ℓ̂
=108.82,
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Figure 7. QQ, Box, TTT and N-KDE plots for the gauge lengths data.

C
2,ℓ̂

=115.74, C
3,ℓ̂

=109.17, C
4,ℓ̂

=111.58, AD=0.28, CM=0.039, K.S=0.055 and p-value=0.977 so the new
family could be considered as a good alternative to these families.

As a potential future work that can be created based on the new family, we can use the compound
inverse Rayleigh family in the field of insurance and actuarial sciences, especially in modeling insurance
payments data and calculating life and death rates (see Mohamed et al. [52], [53] and [54]). Moreover, the
compound inverse Rayleigh family can be applied in (see Rasekhi et al. [56], Saber and Yousof [58], Saber
et al. [59] and Saber et al. [60]). In fact, the new family has great flexibility, which will motivate many
researchers to study it from other aspects. The new family can be used to make more new distributions.
We hope that this family will take a great deal of interest, research and study, especially in the field
of mathematical modeling and application in the field of engineering, medicine and actuarial sciences.
Moreover following Chesneau et al. [16], Yousof et al. [74] and Ibrahim et al. [31], this new family can be
used to generate new discrete families for count data modeling, and we hope that this family will gain the
interest of researchers in the journals of statistics, insurance, actuarial science, and others. The novel G
family can also be used for single, double and multiple acceptance sampling plans with many application
in quality and risk decisions (see Ahmed et al. [12], Ahmed and Yousof [11]).
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Figure 8. KM, E-PDF, E-CDF, P-P and E-HRF for the gauge lengths data.
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