
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, March 2023, pp 368–389.
Published online in International Academic Press (www.IAPress.org)

On Kernel-Based Estimator of Odds Ratio Using Different Stratified
Sampling Schemes

Abbas Eftekharian,1 Hani Samawi2 and Haresh Rochani2

1Department of Statistics, School of Sciences, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
2 Department of Biostatistics, Jiann-Ping Hsu College of Public Health, Georgia Southern University,

P.O. Box 8015, Statesboro, GA 30460, USA

Abstract The kernel-based estimator of Cochran Mantel-Haenszel odds ratio based on stratified simple and
ranked set sampling is proposed. The expectation and variance of the estimator are analytically obtained. Using a
simulation study, the estimator based on stratified ranked set sampling is more efficient than its counterpart based
on stratified simple random sampling. Finally, the estimator’s performance is investigated by using base deficit
data.

Keywords Cochran Mantel-Haenszel odds ratio, Kernel estimation, Odds ratio, Stratified simple random
sampling, Stratified ranked set sampling.

AMS 2010 subject classifications 62G30

DOI: 10.19139/soic-2310-5070-1425

1. Introduction

Odds ratio (OR) is widely used in medical, social, behavioral, and public health sciences. The OR is
equally valid for retrospective, prospective, and cross-sectional sampling designs. The OR is the ratio of
odds of an event occurring in one group to the other group’s odds. Let the probabilities of an event in
each of the groups be π1 (first group) and π2 (second group) respectively, and then the OR is

π1/(1− π1)

π2/(1− π2)
. (1)

OR of 1 indicates that the condition or event under study is equally likely to occur in both groups. The
OR of greater than 1 means that the condition is more likely to happen in the first group. However, the
OR less than 1 indicates that the condition is less likely to occur in the first group. The OR must be
greater than or equal to zero if it is defined. It is undefined if π2(1− π1) equals zero.

The OR estimation problem has been widely discussed in the literature by many authors. Most of
the literature has developed under the simple random sampling (SRS) method by focusing on different
estimation methods of the distribution functions of two populations and using different types of data. [1]
presented some properties of OR based on the categorical data. Some of the recent contributions are by
[19], [13], [39], [37], [18], [26].

In some situations, the actual measurement is expensive or time-consuming and/or challenging to
obtain. Simultaneously, judgment ranking or visual inspection for some variable is more straightforward
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than the exact measurement. Using judgment ranking, many researchers have used sampling methods
such as ranked set sampling (RSS) to collect the data, which was first introduced by [21]. This method is
widely discussed in biomedical and agriculture studies, especially for estimating population parameters
such as the mean and distribution function. By performing the following steps, you can obtain an RSS
as follows:

• Select r independent sets, each involving r independent and identically distributed (iid) sampling
units from an underlying population.

• Rank each set by judgment based on the certain knowledge of the subject or by visual inspection,
without actual measurement of the interesting variable.

• Measure the jth smallest one from the jth set (j = 1, · · · , r).

The aforementioned steps present one cycle of an RSS data set. By repeating the process for m times,
an RSS data set is obtained with m and n = mr cycles and size. If judgment rankings are done without
error, then ranking is perfect, and otherwise, it is called imperfect ranking. Recently, some attempts are
performed on the effect of imperfect ranking, as in [14] and [36].

Some authors have recently introduced new schemes based on RSS ideas such as [2], [23] and [31]. An
extension of RSS is stratified RSS (SRSS), which is introduced by [30]. SRSS is a sampling scheme in
which a population is separated into L mutually distinct strata, with set size rh of the ranked set sample,
which is quantified within the stratum h. In other words, this scheme can be considered as a set of L
distinct ranked set samples. To explain SRSS, suppose that the population is divided into L mutually
distinct strata and(

X∗
h11, X

∗
h12, · · · , X∗

h1rh

)
;
(
X∗

h21, X
∗
h22, · · · , X∗

h2rh

)
; · · · ;

(
X∗

hrh1
, X∗

hrh2
, · · · , X∗

hrhrh

)
be rh independent random samples with size rh selected from the hth stratum (h = 1, 2, · · · , L). Hereafter,
assume that Xhji stands for the quantitative measurement of the unit X∗

hji. Let (Xh1i, Xh2i, · · · , Xhrhi; i =
1, 2, · · · ,mh) be the simple random sample with size nh = mhrh which is collected from the hth
subpopulation characterized by Fh(x) and fh(x) as the cumulative distribution function (CDF) and
probability density function (PDF), respectively. We should highlight that the CDF of the underlying
population can be written as F (x) =

∑L
h=1 WhFh(x), where Wh is the weight of the hth stratum

and predetermined from the sampling scheme. To performing RSS scheme in the population with h
subpopulation, we can consider the SRSS scheme as a two-phase sampling scheme. First, rank the
units in each sample with respect to the variable of interest without actual measurement. In the
hth stratum, the judgment ordered sample corresponding to the jth sampling units is denoted by
(X∗

hj[1]i, X
∗
hj[2]i, · · · , X

∗
hj[rh]i

; i = 1, 2, · · · ,mh). Second, the ranked set sample with size nh = mhrh in the
hth stratum is given by (Xh1[1]i, Xh2[2]i, · · · , Xhrh[rh]i; i = 1, 2, · · · ,mh). Also, suppose that N1, N2, · · · , NL

are the number of sampling units within each stratum such that N =
∑L

h= Nh represents the total
underlying population size. In addition, let n1, n2, · · · , nL denote the number of sampling units measured
within each stratum such that n =

∑L
h=1 nh represents the total sample size. It should be noted that the

notation [·] in subscript is used for imperfect ranked set sample.
Recently, some papers have been published based on the SRSS scheme; [33] presented a ratio estimation

for the ratio of means of two dependent variables. Modified ratio estimators for the mean of the
finite population have been introduced by [20] using auxiliary variable information. [28] published a
kernel density estimation based on the SRSS with optimal allocation. Also, [29] used SRSS to improve
distribution and quality estimations’ performance. Moreover, [12] proposed a kernel-based estimator of
the quantile based on SRSS with optimal allocation.

Unlike the SRS case, a few numbers of papers addressed the OR problem using RSS scheme. The
evaluation and the estimation of OR were investigated in the literature when the sampling scheme is
moving extreme RSS by [32] and [15]. They used the moving extreme RSS empirical distribution function
to estimate OR. By the definition of the OR, it is clear that one can estimate the parameter using the
CDF estimation, for example, by an empirical distribution function. Although the empirical distribution
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function is the most well-known non-parametric estimation of the CDF, it is a step function. The empirical
estimator’s deficiency share is that it can not show the corresponding continuous parameter’s smoothness
being estimated. Furthermore, such an estimator may represent much bias near the boundaries, which
implies that it cannot estimate beyond the extreme observations.

On the other hand, in the most practical situations, such as lifetime and biomedical, the underlying
population is continuous, and the OR is a continuous parameter. We want to find a smoother estimator
than the empirical estimator, for example, a kernel estimator. It is obvious that the kernel estimator is
a continuous and smooth function, and on the one hand, it is mentioned by many authors that smooth
estimators have better performance than that of empirical counterparts, provided that a proper bandwidth
is chosen. Therefore, these motivations encourage us to use a smooth estimator such as the kernel estimator
for estimating the OR. The kernel estimator is more efficient than the empirical in the literature (see [4])
and is available on SAS, R, and other software.

Some authors have recently placed their attention on the kernel estimator for evaluating interesting
parameters using the RSS scheme. [8] used the kernel function to estimate the log OR for sparse data.
A rank-based kernel estimator for the area under the ROC curve was proposed by [38]. [11] presented
a kernel-based estimator for odds using the RSS method, and they show that the estimator has better
performance than the empirical counterpart.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented. The kernel
estimator of the OR based on the SRS in the hth stratum is investigated in Section 3. In Section 4, the
OR’s kernel estimator using the RSS scheme in the hth stratum is considered. The OR estimations on the
basis of SRSS and SRSS are studied in Section 5. In Section 6, simulation and numerical computations
studies are stated, while illustrations using real data of our proposed estimators are presented in Section
7. In Section 8, some discussions and conclusions are stated.

2. Preliminaries

In this paper, we will focus on continuous biomarkers to simplify the interpretation of the results. Let
X and Y denote biomarker results of subjects from the healthy and diseased populations, respectively.
Let x0 be the cut-off point. Suppose FX(x0) = P (X ≤ x0) and FY (x0) = P (Y ≤ x0) are the underlying
CDFs of two absolutely continuous random variables X and Y , respectively. Let the positive test result
to be D = {y : Y > x0} for the diseased and H = {x : X > x0} for the healthy, respectively. The odds of
the positive test in the disease population is given by

OY (x0) =
P (D)

1− P (D)
=

1− FY (x0)

FY (x0)
=

π1

1− π1
,

and the odds of the positive test in the health population is given by

OX(x0) =
P (H)

1− P (H)
=

1− FX(x0)

FX(x0)
=

π2

1− π2
.

Therefore, the odds ratio is given by

θ(x0) =
π1/(1− π1)

π2/(1− π2)
=

OY (x0)

OX(x0)
.

Note that OY (x0) ≥ 0 and OX(x0) > 0. Throughout the paper, we will assume that 0 < FY (x0) < 1 and
0 < FX(x0) < 1 so that OY (x0) and OX(x0) are both finite.

In the healthy and the diseased population naturally stratified by some covariates, such as age groups
and gender, the biomarker results are homogeneous within each stratum (sub-group) and heterogeneous
between strata (subgroups). Let the positive test result within stratum to be Dh = {yh : Yh > x0} for
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the diseased and Hh = {xh : Xh > x0} for the healthy, respectively, where h = 1, 2, · · · , L. The odds of a
positive test in the disease population within the hth stratum is given by

OYh
(x0) =

P (Dh)

1− P (Dh)
=

1− FYh
(x0)

FYh
(x0)

=
πh1

1− πh1
, (2)

and the odds of a positive test in health population within the hth stratum is given by

OXh
(x0) =

P (Hh)

1− P (Hh)
=

1− FXh
(x0)

FXh
(x0)

=
πh2

1− πh2
. (3)

Therefore, the common odds ratio is given by

θ(x0) =

L∑
h=1

Whθh(x0),

where Wh = Nh/N and Nh is the hth stratum size and

θh(x0) =
OYh

(x0)

OXh
(x0)

.

The other way of looking at the common odds ratio is the Cochran Mantel-Haenszel approach as follows:

θ(x0) =

∑L
h=1 γh θh(x0)∑L

h=1 γh
, (4)

where γh = NhFYh
(x0)(1− FXh

(x0)).
The OR of the underlying population, θ(x0), is an unknown parameter, and to estimate OR, we need

to estimate the CDFs in both groups. In the next two sections, we introduce the kernel estimator of OR,
based on two sampling methods, SRS and RSS.

3. Kernel estimation of OR based on SRS in the hth stratum

Kernel estimation was first introduced by [27] for estimating density function. It has been widely applied
as a smoothing method to estimate other quantities such as CDF in the last three decades. The first
contributions based on SRS were presented by [24], [4] and [3]. [4] illustrated that the kernel estimator
of CDF with bounded support is more efficient than the unbounded backing or empirical distribution
function. This result has been confirmed again in the literature by other authors. In the present paper,
we consider the kernel function with bounded support.

Let Yh1, · · · , YhnYh
and Xh1, · · · , XhnXh

be simple random samples of sizes nYh
and nXh

for the hth
stratum in both groups with CDFs FYh

(·) and FXh
(·), respectively. Accordingly, the kernel estimators of

FYh
(·) and FXh

(·) are as follows:

F̂SRS
Yh

(x0) =
1

nYh

nYh∑
i=1

KYh

(
x0 − Yhi

dYh

)
, F̂SRS

Xh
(x0) =

1

nXh

nXh∑
i=1

KXh

(
x0 −Xhi

dXh

)
, (5)

where dYh
and dXh

are the bandwidths and

Ks(u) =


0, u ≤ −a,∫ u

−a
ks(t)dt, |u| < a,

1, u ≥ a,
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ks(t) is the kernel function with bounded support, that is, ks(t) = 0, if |t| > 0, for some positive a and
s = Yh, Xh. We consider the following assumptions throughout the paper:
(A1) The underlying population has the CDFs as FYh

(·) and FXh
(·), which are Hölder continuous with a

square-integrable second derivative for any h = 1, · · · , L.
(A2) Ks(·) is an absolutely continuous function, such that limx→−a Ks(x) = 0 and limx→a Ks(x) = 1.
(A3) The kernel function ks(x) satisfies the following conditions for any x

ks(x) = ks(−x),

∫ a

−a

ks(x)dx = 1,

∫ a

−a

x2ks(x)dt ̸= 0.

Since dss are smoothing parameters in the kernel estimation problem, the choice of optimal bandwidths
is more important for the convergence of F̂SRS

s s to FYh
s. The most common method used in the literature

to find the optimal bandwidth is based on the mean integrated squared error (MISE) criterion that is
defined as follows:

MISE(F̂SRS
s ) =

∫
MSE(F̂SRS

s (x))dx

=

∫
E
[
F̂SRS
s (x)− Fs(x)

]2
dx = E

∫ [
F̂SRS
s (x)− Fs(x)

]2
dx, (6)

where MSE is mean squared error and for s = Yh, Xh. There are several asymptotic technics to find
the optimal bandwidth. The most popular technics are plug-in and cross-validation. [3] showed that the
estimator obtained based on the plug-in method has better performance than using cross-validation to
estimate the CDF. A multistage plug-in method to find the optimal bandwidth was proposed by [25]
using an iterative algorithm. The MSE and MISE of the kernel-based estimator of CDF obtained by [4],
[16] and [3] are confirmed by [25]. As in [16], by assuming large subpopulations, ds → 0 and nsds → ∞ as
ns → ∞ and under the assumptions (A1)-(A3), the bias and variance of F̂SRS

s (x) can be obtained as

Bias(F̂SRS
s (x)) =

d2s
2
f ′
s(x)

∫ a

−a

u2ks(u)du+ os(d
4
s), (7)

Var(F̂SRS
s (x)) =

1

ns
Fs(x)F̄s(x)−

dsfs(x)

ns

{
a−

∫ a

−a

K2
s (u)du

}
+ os(d

4
s), (8)

where F̄s(·) = 1− Fs(·) is the survival function.
Therefore, the MSE of F̂SRS

s (x) as given by (4)

MSE
{
F̂SRS
s (x)

}
=

1

ns
Fs(x)F̄s(x)−

dsfs(x)

ns

{
a−

∫ a

−a

K2
s (u)du

}
+

d4s
4

{
f ′
s(x)

∫ a

−a

u2ks(u)du

}2

+ os(d
4
s). (9)

Moreover, using (9), the MISE of F̂SRS
s is given by

MISE(F̂SRS
s ) =

∫
E
[
F̂SRS
s (x)− Fs(x)

]2
dx =

∫ {[
Bias(F̂SRS

s (x))
]2

+Var(F̂SRS
s (x))

}
dx.

As mentioned in [16] and [25], by assuming ds → 0 and nsds → ∞ as ns → ∞ and under the assumptions
(A1)-(A3), the asymptotic optimal bandwidth is as

dSRS
s =

 a−
∫ a

−a
K2

s (u)du{∫ a

−a
u2ks(u)du

}2

R(f ′
s)


1/3

n
− 1

3
s , (10)
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where R(f) :=
∫∞
−∞ (f(x))

2
dx.

Using (2) and (3) the SRS kernel-based estimators for the odds of positive tests in disease and health
populations within the hth stratum are given by

ÔSRS
Yh

(x0) =
1− F̂SRS

Yh
(x0)

F̂SRS
Yh

(x0)
, ÔSRS

Xh
(x0) =

1− F̂SRS
Xh

(x0)

F̂SRS
Xh

(x0)
=

1

F̂SRS
Xh

(x0)
− 1. (11)

Then, the E
[
ÔSRS

s (x0)
]

can be obtained by Taylor expansion of 1/F̂SRS
s (x0) as given by ([22, p.181])

E
[
ÔSRS

s (x0)
]
= E

[
1

F̂SRS
s (x0)

]
− 1 ≈ 1

E
[
F̂SRS
s (x0)

] +
Var

(
F̂SRS
s (x0)

)
(
E
[
F̂SRS
s (x0)

])3 − 1

=
1− Fs(x0)− d2

s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

Fs(x0) +
d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

+

1
ns
Fs(x)F̄s(x)− dsfs(x)

ns

{
a−

∫ a

−a
K2

s (u)du
}

(
Fs(x0) +

d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

)3

+ os(d
4
s). (12)

With the same argument it can be shown that

Var
[
ÔSRS

s (x0)
]
= Var

[
1

F̂SRS
s (x0)

]
≈

Var
(
F̂SRS
s (x0)

)
(
E
[
F̂SRS
s (x0)

])4

=

1
ns
Fs(x)F̄s(x)− dsfs(x)

ns

{
a−

∫ a

−a
K2

s (u)du
}

(
Fs(x0) +

d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

)4 + os(d
4
s). (13)

Hence, the MSE of ÔSRS
s (x0) obtained using (12) and (13). From (11) the SRS kernel-based estimator for

the OR of the positive tests in disease to the positive tests in health populations within the hth stratum
is given by

θ̂SRS
h (x0) =

ÔSRS
Yh

(x0)

ÔSRS
Xh

(x0)
. (14)

Now, using the presented approximations in [22, p.181] for the expectation and variance of the ratio of
two random variables we get

E
[
θ̂SRS
h (x0)

]
≈

E
[
ÔSRS

Yh
(x0)

]
E
[
ÔSRS

Xh
(x0)

] +
E
[
ÔSRS

Yh
(x0)

]
(
E
[
ÔSRS

Xh
(x0)

])3Var
(
ÔSRS

Xh
(x0)

)
, (15)

Var
[
θ̂SRS
h (x0)

]
≈

E
[
ÔSRS

Yh
(x0)

]
E
[
ÔSRS

Xh
(x0)

]
2


Var

(
ÔSRS

Yh
(x0)

)
(
E
[
ÔSRS

Yh
(x0)

])2 +
Var

(
ÔSRS

Xh
(x0)

)
(
E
[
ÔSRS

Xh
(x0)

])2

 , (16)

where E
[
ÔSRS

s (x0)
]

and Var
(
ÔSRS

s (x0)
)

are as in (12) and (13), for s = Yh, Xh. Therefore, the MSE of
θ̂SRS
h (x0) can be derived by using (15) and (16).
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4. Kernel estimation of OR using RSS scheme for the hth stratum

The first attempt to find an estimate of CDF using the RSS scheme returns to [34]. They introduced
the RSS empirical distribution function and investigated some properties of this estimator. Using the
RSS scheme, most authors such as [7], [5] and [17] have been focused on kernel estimation of PDF. [11]
introduced the RSS kernel-based of CDF and compared some properties of this estimator with SRS and
empirical estimator.

Let (Yh1[1]i, Yh2[2]i, · · · , YhrYh
[rYh

]i ; i = 1, 2, · · · ,mYh
) and (Xh1[1]i, Xh2[2]i, · · · , XhrXh

[rXh
]i ; i = 1, 2,

· · · ,mXh
) be ranked set samples of sizes nYh

= mYh
rYh

and nXh
= mXh

rXh
from the hth stratum with

CDFs FYh
(·) and FXh

(·), respectively. The kernel-based estimators of the CDFs for the hth stratum can
be defined as follows

F̂RSS
Yh

(x0) =
1

mYh
rYh

mYh∑
i=1

rYh∑
j=1

KYh

(
x0 − Yhj[j]i

dYh

)
,

F̂RSS
Xh

(x0) =
1

mXh
rXh

mXh∑
i=1

rXh∑
j=1

KXh

(
x0 −Xhj[j]i

dXh

)
. (17)

Consider (A1)-(A3) and assume that ds → 0 and nsds → ∞ as ns → ∞. Under these assumptions, as in
[11], the bias and variance of the F̂RSS

s (x0) within stratum h is as

Bias(F̂RSS
s (x0)) =

d2s
2
f ′
s(x0)

∫ a

−a

u2ks(u)du+ os(d
4
s),

Var(F̂RSS
s (x0)) =

1

msr2s

rs∑
j=1

F[j]s(x0)F̄[j]s(x0)−
dsfs(x0)

ns

{
a−

∫ a

−a

K2
s (u)du

}
+ os(d

4
s).

Therefore, it can be concluded that

MSE
{
F̂RSS
s (x)

}
=

1

msr2s

rs∑
j=1

F[j]s(x)F̄[j]s(x)−
dsfs(x)

ns

{
a−

∫ a

−a

K2
s (u)du

}

+
d4s
4

{
f ′
s(x)

∫ a

−a

u2ks(u)du

}2

+ os(d
4
s). (18)

By comparing (9) with (18), we observed that the MSE’s are the same except in the first terms of
the right-hand side of equalities. As in [11], under the above assumptions and for fixed ns = msrs,
MSE(F̂RSS

s (x0)) ≤ MSE(F̂SRS
s (x0)). As in [11], the optimal bandwidth based on RSS scheme for the

hth stratum is the same as in (10) and MISE(F̂RSS
h (x)) ≤ MISE(F̂SRS

h (x)).
According to (17), the RSS kernel estimations of the odds of positive tests in disease and health

populations within the hth stratum are obtained by

ÔRSS
Yh

(x0) =
1− F̂RSS

Yh
(x0)

F̂RSS
Yh

(x0)
, ÔRSS

Xh
(x0) =

1− F̂RSS
Xh

(x0)

F̂RSS
Xh

(x0)
. (19)

Using the Taylor expansion, we get

E
[
ÔRSS

s (x0)
]
≈

1− Fs(x0)− d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

Fs(x0) +
d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

+

1
msr2s

∑rs
j=1 F[j]s(x0)F̄[j]s(x0)− dsfs(x0)

ns

{
a−

∫ a

−a
K2

s (u)du
}

(
Fs(x0) +

d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

)3 + os(d
4
s), (20)
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and

Var
[
ÔRSS

s (x0)
]
≈

1
msr2s

∑rs
j=1 F[j]s(x0)F̄[j]s(x0)− dsfs(x0)

ns

{
a−

∫ a

−a
K2

s (u)du
}

(
Fs(x0) +

d2
s

2 f ′
s(x)

∫ a

−a
u2ks(u)du

)4 + os(d
4
s). (21)

Also, the MSE of ÔRSS
s (x0) can be derived by equations (20) and (21).

Corollary 1
By comparing equations (12) and (13) with (20) and (21), we have

MSE
[
ÔRSS

s (x0)
]
≤ MSE

[
ÔSRS

s (x0)
]
.

Proof
From 1

msr2s

∑rs
j=1 F[j]s(x0)F̄[j]s(x0) ≤ 1

ns
Fs(x0)F̄s(x0) (see, [11]), it may be concluded that

MSE
[
ÔRSS

s (x0)
]
≤ MSE

[
ÔSRS

s (x0)
]
. 2

Now, based on equation (19), the RSS kernel-based estimator of OR within stratum h is defined as

θ̂RSS
h (x0) =

ÔRSS
Yh

(x0)

ÔRSS
Xh

(x0)
, (22)

with expectation and variance

E
[
θ̂RSS
h (x0)

]
≈

E
[
ÔRSS

Yh
(x0)

]
E
[
ÔRSS

Xh
(x0)

] +
E
[
ÔRSS

Yh
(x0)

]
(
E
[
ÔRSS

Xh
(x0)

])3Var
(
ÔRSS

Xh
(x0)

)
, (23)

Var
[
θ̂RSS
h (x0)

]
≈

E
[
ÔRSS

Yh
(x0)

]
E
[
ÔRSS

Xh
(x0)

]
2


Var

(
ÔRSS

Yh
(x0)

)
(
E
[
ÔRSS

Yh
(x0)

])2 +
Var

(
ÔRSS

Xh
(x0)

)
(
E
[
ÔRSS

Xh
(x0)

])2

 , (24)

where E
[
ÔRSS

s (x0)
]

and Var
(
ÔRSS

s (x0)
)

are given in Equations (20) and (21) for s = Yh, Xh. Hence, the
MSE of θ̂RSS

h (x0) derives easily using (23) and (24).

5. The OR estimation using stratified sampling

5.1. The OR estimation using SSRS
In order to get the estimator of OR, we need to investigate the convergence property of F̂SRS

s (x) and
F̂RSS
s (x) to Fs(x). In this section, we present the common OR estimator and investigate some asymptotic

properties. Note that we assume large subpopulations, so the finite correction fraction is negligible. First,
consider F̂SRS

s (x) and that Fs : R → [0, 1] is continuous at x. [24] verified under assumptions (A1)-
(A3) that MSE(F̂SRS

s (x)) → 0 as ns → ∞. So, the F̂SRS
s (x) is a consistent estimator and it implies

F̂SRS
s (x)

P−→ Fs(x). On the other hand, g(x) = 1−x
x is a continuous function for any x ̸= 0. Therefore,

ÔSRS
s (x)

P−→ Os(x). Consequently, by assuming ÔSRS
Xh

(x) ̸= 0 and OXh
(x) ̸= 0, and using properties of

convergence in probability, we have θ̂SRS
h (x)

P−→ θh(x).
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Finally, the kernel-based Cochran Mantel-Haenszel estimator for the underlying population common
OR based on the SSRS is given by

θ̂SSRS(x0) =

∑L
h=1 γ̂

SRS
h θ̂SRS

h (x0)∑L
h=1 γ̂

SRS
h

, (25)

where γ̂SRS
h = nhF̂

SRS
Yh

(x0)
(
1− F̂SRS

Xh
(x0)

)
, and θ̂SRS

h (x0) as defined in equation (14), is the estimated
OR for the hth stratum. By rewriting (25) we get

θ̂SSRS(x0) =

∑L
h=1 nhF̂

SRS
Xh

(x0)
(
1− F̂SRS

Yh
(x0)

)
∑L

h=1 nhF̂SRS
Yh

(x0)
(
1− F̂SRS

Xh
(x0)

) . (26)

Under assumptions (A1)-(A3) and assume that ds → 0 and nsds → ∞ as ns → ∞ and by considering large
population size, using the approximations for the expectation and variance of the ratio of two random
variables, it can be shown by using similar argument as in [22, p.181] that

E
[
θ̂SSRS(x0)

]
≈

∑L
h=1 nhE

[
F̂SRS
Xh

(x0)
]
E
[
1− F̂SRS

Yh
(x0)

]
∑L

h=1 nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

]
− 1(∑L

h=1 nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

])2

[ L∑
h=1

n2
h

{
Var

(
F̂SRS
Xh

(x0)
)(

E2
[
F̂SRS
Yh

(x0)
]

− E
[
F̂SRS
Yh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)(

E2
[
F̂SRS
Xh

(x0)
]
− E

[
F̂SRS
Xh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)}]

+

∑L
h=1 nhE

[
F̂SRS
Xh

(x0)
]
E
[
1− F̂SRS

Yh
(x0)

]
(∑L

h=1 nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

])3

×
L∑

h=1

n2
h

{
Var

(
F̂SRS
Xh

(x0)
)
E2

[
F̂SRS
Yh

(x0)
]
+Var

(
F̂SRS
Yh

(x0)
)
E2

[
1− F̂SRS

Xh
(x0)

]
+Var

(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)}

, (27)
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and

Var
(
θ̂SSRS(x0)

)
≈


∑L

h=1 nhE
[
F̂SRS
Xh

(x0)
]
E
[
1− F̂SRS

Yh
(x0)

]
∑L

h=1 nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

]


2

×

{
1(∑L

h=1 nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

])2

L∑
h=1

n2
h

[
Var

(
F̂SRS
Xh

(x0)
)
E2

[
F̂SRS
Yh

(x0)
]

+Var
(
F̂SRS
Yh

(x0)
)
E2

[
1− F̂SRS

Xh
(x0)

]
+Var

(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)]

+
1(∑L

h=1 nhE
[
F̂SRS
Xh

(x0)
]
E
[
1− F̂SRS

Yh
(x0)

])2

L∑
h=1

n2
h

[
Var

(
F̂SRS
Yh

(x0)
)
E2

[
F̂SRS
Xh

(x0)
]

+Var
(
F̂SRS
Xh

(x0)
)
E2

[
1− F̂SRS

Yh
(x0)

]
+Var

(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)]

− 2

{( L∑
h=1

nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

])( L∑
h=1

nhE
[
F̂SRS
Xh

(x0)
]

× E
[
1− F̂SRS

Yh
(x0)

])}−1[ L∑
h=1

n2
h

{
Var

(
F̂SRS
Xh

(x0)
)(

E2
[
F̂SRS
Yh

(x0)
]

− E
[
F̂SRS
Yh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)(

E2
[
F̂SRS
Xh

(x0)
]
− E

[
F̂SRS
Xh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)}]}

. (28)

For more details see Appendix.
The MSE of θ̂SSRS(x0) can be easily derived using equations (27) and (28).

5.2. The OR estimation using SRSS
In this section, we obtain the Cochran Mantel-Haenszel estimator based on the SRSS kernel-based. For
this purpose, we first evaluate the convergency in probability of F̂RSS

s (x) to Fs(x).

Remark 1
[24] showed for any kernel function ks(·) and under assumptions (A1)-(A3) that MSE(F̂SRS

s (x)) → 0 as
ns → ∞. [4] verified the MSE of F̂SRS

s (x) with a kernel function with bounded support as [−a, a] is less
than that of with unbounded support. So, in this case, we have F̂SRS

s (x)
P−→ Fs(x), as well.

Using Remark 1, we can present the following theorem.

Theorem 1
Let F̂RSS

s (x) be the RSS kernel-based estimator of Fs(x) as defined in equation (17) and suppose that
ds → 0 and nsds → ∞ as ns → ∞. Then F̂RSS

s (x)
P−→ Fs(x).

Proof
It is enough to show that MSE(F̂RSS

s (x)) → 0. To do this, note that [11] illustrated that MSE(F̂RSS
s (x)) ≤

MSE(F̂SRS
s (x)). Therefore, using Remark 1 we can conclude that MSE(F̂RSS

s (x)) → 0. 2

Since F̂RSS
s (x)

P−→ Fs(x), it implies that ÔRSS
s (x)

P−→ Os(x) for F̂RSS
s (x) ̸= 0 and Fs(x) ̸= 0. Hence, by

assuming ÔRSS
Xh

(x) ̸= 0 and OXh
(x) ̸= 0 it deduces that θ̂RSS

s (x)
P−→ θs(x).
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Now, the kernel-based Cochran Mantel-Haenszel estimator of OR based on the SRSS scheme is as

θ̂SRSS(x0) =

∑L
h=1 γ̂

RSS
h θ̂RSS

h (x0)∑L
h=1 γ̂

RSS
h

, (29)

where γ̂RSS
h = nhF̂

RSS
Yh

(x0)
(
1− F̂RSS

Xh
(x0)

)
, and θ̂RSS

h (x0) is the estimated OR for the hth stratum as in
(22). Equation (29) can be written as

θ̂SRSS(x0) =

∑L
h=1 nhF̂

RSS
Xh

(x0)
(
1− F̂RSS

Yh
(x0)

)
∑L

h=1 nhF̂RSS
Yh

(x0)
(
1− F̂RSS

Xh
(x0)

) . (30)

Under assumptions (A1)-(A3) and assume that ds → 0 and nsds → ∞ as ns → ∞ and by using similar
approximations, as above, the expectation and variance of θ̂SRSS(x0) are given by

E
[
θ̂SRSS(x0)

]
≈

∑L
h=1 nhE

[
F̂RSS
Xh

(x0)
]
E
[
1− F̂RSS

Yh
(x0)

]
∑L

h=1 nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

]
− 1(∑L

h=1 nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

])2

[ L∑
h=1

n2
h

{
Var

(
F̂RSS
Xh

(x0)
)(

E2
[
F̂RSS
Yh

(x0)
]

− E
[
F̂RSS
Yh

(x0)
])

+Var
(
F̂RSS
Yh

(x0)
)(

E2
[
F̂RSS
Xh

(x0)
]
− E

[
F̂RSS
Xh

(x0)
])

+Var
(
F̂RSS
Yh

(x0)
)
Var

(
F̂RSS
Xh

(x0)
)}]

+

∑L
h=1 nhE

[
F̂RSS
Xh

(x0)
]
E
[
1− F̂RSS

Yh
(x0)

]
(∑L

h=1 nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

])3

×
L∑

h=1

n2
h

{
Var

(
F̂RSS
Xh

(x0)
)
E2

[
F̂RSS
Yh

(x0)
]
+Var

(
F̂RSS
Yh

(x0)
)
E2

[
1− F̂RSS

Xh
(x0)

]
+Var

(
F̂RSS
Yh

(x0)
)
Var

(
F̂RSS
Xh

(x0)
)}

, (31)
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and

Var
(
θ̂SRSS(x0)

)
≈


∑L

h=1 nhE
[
F̂RSS
Xh

(x0)
]
E
[
1− F̂RSS

Yh
(x0)

]
∑L

h=1 nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

]


2

×

{
1(∑L

h=1 nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

])2

L∑
h=1

n2
h

[
Var

(
F̂RSS
Xh

(x0)
)
E2

[
F̂RSS
Yh

(x0)
]

+Var
(
F̂RSS
Yh

(x0)
)
E2

[
1− F̂RSS

Xh
(x0)

]
+Var

(
F̂RSS
Yh

(x0)
)
Var

(
F̂RSS
Xh

(x0)
)]

+
1(∑L

h=1 nhE
[
F̂RSS
Xh

(x0)
]
E
[
1− F̂RSS

Yh
(x0)

])2

L∑
h=1

n2
h

[
Var

(
F̂RSS
Yh

(x0)
)
E2

[
F̂RSS
Xh

(x0)
]

+Var
(
F̂RSS
Xh

(x0)
)
E2

[
1− F̂RSS

Yh
(x0)

]
+Var

(
F̂RSS
Yh

(x0)
)
Var

(
F̂RSS
Xh

(x0)
)]

− 2

{( L∑
h=1

nhE
[
F̂RSS
Yh

(x0)
]
E
[
1− F̂RSS

Xh
(x0)

])( L∑
h=1

nhE
[
F̂RSS
Xh

(x0)
]

× E
[
1− F̂RSS

Yh
(x0)

])}−1[ L∑
h=1

n2
h

{
Var

(
F̂RSS
Xh

(x0)
)(

E2
[
F̂RSS
Yh

(x0)
]

− E
[
F̂RSS
Yh

(x0)
])

+Var
(
F̂RSS
Yh

(x0)
)(

E2
[
F̂RSS
Xh

(x0)
]
− E

[
F̂RSS
Xh

(x0)
])

+Var
(
F̂RSS
Yh

(x0)
)
Var

(
F̂RSS
Xh

(x0)
)}]}

. (32)

Also, the MSE of θ̂SRSS(x0) is given by

MSE
(
θ̂SRSS(x0)

)
= E

{
θ̂SRSS(x0)− θ(x0)

}2

= Var
(
θ̂SRSS(x0)

)
+Bias

(
θ̂SRSS(x0)

)2

. (33)

Remark 2
Since ÔSRS

s (x)
P−→ Os(x), so we can estimate O(x0) =

∑L
h=1 WhOh(x0) by ÔSSRS(x0) =∑L

h=1 WhÔ
SRS
h (x0). In addition, according to ÔRSS

s (x)
P−→ Os(x), we can define that ÔSRSS(x0) =∑L

h=1 WhÔ
RSS
h (x0) as another estimator of O(x0). Consequently, using Corollary 1 it can be seen that

MSE
[
ÔSRSS(x0)

]
≤ MSE

[
ÔSSRS(x0)

]
, where

MSE
[
ÔSSRS(x0)

]
=

L∑
h=1

W 2
h MSE

[
ÔSRS

h (x0)
]
, and MSE

[
ÔSRSS(x0)

]
=

L∑
h=1

W 2
h MSE

[
ÔRSS

h (x0)
]
.

6. Simulation study

A simulation study is presented to compare the OR estimator’s performance based on SRSS with the
estimator using SSRS. Since the SRSS estimator may be based on imperfect rankings, we can use one
of the models of the imperfect rankings suggested by [6], [14] and [36]. Some of the models, such as
fractions of the random rankings model, concomitant model, and fraction inverse rankings, are widely
used in literature. In the present paper, we have used the fraction of random rankings model. Based on
this model, one can consider the CDF of the jth judgment order statistic as a convex combination of the
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CDF of the real jth order statistic with probability λ and the CDF of the underlying population with
probability 1− λ, that is,

F[j](x) = λF(j)(x) + (1− λ)F (x), λ ∈ [0, 1], (34)

where F(j)(·) is the cdf of the true jth order statistic for any j = 1, 2, ..., r. It should be highlighted that
when λ = 1, the fraction of the random rankings model is transformed into perfect rankings.

Using (34), we are generated needed data based on the Normal and Gamma distributions as underlying
distribution F (·). According to equation (4), we obtained the OR for L = 3 strata. For the hth
stratum, we should have chosen FYh

(·) and FXh
(·), for h = 1, 2, 3. Based on the Normal distribution,

we have considered N(0.25, 3), N(0, 1) as FX1(·), FY1(·), N(0.75, 2), N(0.5, 2.25) for FX2(·), FY2(·) and
N(0.35, 1.5), N(1.5, 3.5) as FX3

(·), FY3
(·), respectively. Moreover, based on the Gamma distribution,

we have selected G(3.8, 1.7), G(2.5, 1.1) as FX1
(·), FY1

(·), G(4, 1.5), G(1.9, 0.7) for FX2
(·), FY2

(·) and
G(2, 0.9), G(3.5, 1.45) as FX3(·), FY3(·), respectively.

To compare MSE
(
θ̂SRSS(x0)

)
with MSE

(
θ̂SSRS(x0)

)
, a simulation with 5000 replications has been run

using R software. The Epanechnikov’s kernel is applied as kernel function (4). The results are presented
in Table 1 for the Normal distribution and Table 2 for the Gamma distribution for different mh and rh.
Furthermore, x0 is taken based on some values near to the first, second and third quartiles of Xh and Yh’s
underlying distributions. Also, the behavior of imperfect rankings by considering different probabilities
of true rankings, (i.e. different values of λ = 0.5, 0.7, 0.9, 1) is studied and compered with SSRS.
From Tables 1 and 2, the following outcomes can be deduced:

• For fixed values of mh, rh and λ, all results deduced based on the Normal distribution have the same
behavior in comparing Gamma distribution. This illustrates that symmetry of baseline distribution
does not affect the behavior of θ̂SRSS(x0).

• For a given rh, the MSEs of both SRSS and SSRS estimators decrease when mh increases.
• For fixed mh, the MSEs of both θ̂SRSS(x0) and θ̂SSRS(x0) estimators decrease in rh.
• For given values of mh and rh, the MSEs of OR SRSS estimator decrease when λ increases. In other

words, when by decreasing the error of rankings, the MSEs of θ̂SRSS(x0) decrease and the minimum
value of MSE happens when λ = 1, i.e. in perfect rankings case.

• For fixed strata, the MSEs of both θ̂SRSS(x0) and θ̂SSRS(x0) estimators are decreasing by increasing
sample size (see Figure 2).

• For fixed values of mh, rh, x0 and λ, the kernel-based estimator of OR based on SRSS scheme is
more efficient than that of the estimator based on the SSRS.

Tables 1 and 2 exhibit we can survey the behavior of the MSEs in the presence of λ parameter. For this
purpose, Figures 1 and 2 are used to present the results obtained graphically. Figure 1 depicts the MSE
plots of θ̂SRSS(x0) versus θ̂SSRS(x0). From Figure 1, it deduces that SRSS estimators are more efficient
than SSRS estimator. Furthermore, Figure 2 exhibits the behavior of the MSEs with respect to variations
of sample size. The Figure shows that the MSEs decrease when the sample size increases.

In order to achieve more accurate results, a comparative study of the proposed method with its
counterpart based on empirical distribution function as the traditional method of estimation is performed.
Moreover, the small sample scenario is considered for each stratum and in overall case. The results of the
MSE’s are exhibited in Table 3 for the Normal and Gamma distributions by considering different values
of mh, rh and x0. From Table 3, it can be seen that all the above-mentioned outcomes are also valid for
the small samples. Furthermore, the kernel-based estimator is more efficient than the empirical estimator
based on both the sampling methods SSRS and SRSS.
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Figure 1. Plots of comparison SSRS with perfect and imperfect SRSS based on MSE for Normal and Gamma
distributions.
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Figure 2. Plots of the behaviour of the MSEs for different values of sample size.

Stat., Optim. Inf. Comput. Vol. 11, March 2023



382 ON KERNEL-BASED ESTIMATOR OF ODDS RATIO

Ta
bl

e
1.

T
he

M
SE

s
an

d
bi

as
es

tim
at

ed
(in

pa
re

nt
he

se
s)

fo
r

di
ffe

re
nt

va
lu

es
of

r h
,m

h
,x

0
an

d
λ

,b
as

ed
on

N
or

m
al

di
st

rib
ut

io
n.

M
S
E
( θ̂

S
R
S
S
(x

0
))

M
S
E
( θ̂

S
S
R
S
(x

0
))

D
ist

rib
ut

io
n

m
h

r h
x
0

λ
=

0
.5

λ
=

0
.7

λ
=

0
.9

λ
=

1
N

or
m

al
2,

3,
4

3,
3,

3
-0

.5
9

0.
25

97
2

(-
0.

05
74

0)
0.

22
05

0
(-

0.
05

43
3)

0.
17

72
2

(-
0.

03
33

9)
0.

16
07

6
(-

0.
01

76
9)

0.
29

38
0

(-
0.

13
84

6)
-0

.3
0

0.
25

35
7

(-
0.

07
48

8)
0.

20
61

1
(-

0.
06

96
1)

0.
15

22
8

(-
0.

04
32

5)
0.

13
23

9
(-

0.
03

29
7)

0.
30

08
0

(-
0.

09
80

6)
0.

00
0.

23
19

0
(-

0.
03

27
4)

0.
18

57
2

(-
0.

03
45

5)
0.

15
58

0
(-

0.
02

47
7)

0.
11

85
1

(-
0.

00
47

1)
0.

29
22

5
(-

0.
07

23
3)

0.
25

0.
23

89
9

(
0.

00
77

7)
0.

19
57

2
(

0.
00

48
2)

0.
13

81
2

(
0.

02
26

5)
0.

12
09

2
(

0.
03

88
1)

0.
26

31
3

(-
0.

02
41

3)
1.

36
0.

54
08

4
(

0.
44

63
7)

0.
47

69
8

(
0.

45
94

3)
0.

43
64

0
(

0.
47

40
8)

0.
41

37
7

(
0.

48
36

0)
0.

56
75

9
(

0.
41

63
3)

2,
3,

4
3,

4,
5

-0
.5

9
0.

15
75

3
(

0.
01

31
3)

0.
12

38
3

(
0.

01
31

3)
0.

09
50

4
(

0.
02

75
1)

0.
07

15
7

(
0.

03
29

6)
0.

22
24

7
(-

0.
21

81
9)

-0
.3

0
0.

14
97

9
(-

0.
04

58
4)

0.
12

32
8

(-
0.

04
58

4)
0.

08
95

4
(-

0.
03

15
7)

0.
06

99
8

(-
0.

01
89

8)
0.

19
93

9
(-

0.
06

09
4)

0.
00

0.
15

64
4

(-
0.

05
60

4)
0.

13
19

8
(-

0.
05

60
4)

0.
08

79
1

(-
0.

03
23

9)
0.

06
70

7
(-

0.
02

61
9)

0.
20

64
0

(-
0.

08
20

7)
0.

25
0.

16
79

8
(-

0.
04

74
4)

0.
13

12
3

(-
0.

04
74

4)
0.

09
19

9
(-

0.
01

28
6)

0.
07

28
1

(-
0.

00
86

9)
0.

20
35

7
(-

0.
06

09
8)

1.
36

0.
52

93
2

(
0.

26
03

5)
0.

47
51

4
(

0.
26

03
5)

0.
43

05
7

(
0.

29
19

1)
0.

41
02

3
(

0.
30

13
5)

0.
54

90
0

(
0.

47
01

1)

4,
4,

4
3,

4,
5

-0
.5

9
0.

12
49

0
(-

0.
02

98
7)

0.
10

83
8

(-
0.

01
53

7)
0.

07
80

4
(-

0.
00

70
4)

0.
06

33
8

(-
0.

00
51

9)
0.

16
18

5
(-

0.
03

77
9)

-0
.3

0
0.

12
11

8
(-

0.
03

47
6)

0.
09

72
0

(-
0.

02
63

7)
0.

06
91

0
(-

0.
01

53
2)

0.
05

23
2

(-
0.

01
11

0)
0.

13
68

2
(-

0.
04

36
8)

0.
00

0.
10

64
2

(
0.

00
77

4)
0.

08
88

2
(

0.
02

08
0)

0.
06

36
3

(
0.

02
28

2)
0.

04
79

9
(

0.
03

30
6)

0.
13

13
8

(
0.

00
58

3)
0.

25
0.

10
17

1
(

0.
06

11
6)

0.
08

62
4

(
0.

07
46

8)
0.

06
15

2
(

0.
08

07
5)

0.
05

01
9

(
0.

08
54

4)
0.

13
07

5
(

0.
04

60
5)

1.
36

0.
36

30
3

(
0.

56
32

2)
0.

35
10

4
(

0.
57

76
5)

0.
33

04
4

(
0.

58
49

5)
0.

32
15

4
(

0.
59

33
8)

0.
38

31
9

(
0.

54
78

5)

4,
4,

4
6,

5,
4

-0
.5

9
0.

11
19

0
(-

0.
10

53
7)

0.
08

63
6

(-
0.

09
37

3)
0.

06
65

3
(-

0.
08

35
0)

0.
05

01
9

(-
0.

07
42

9)
0.

13
58

9
(-

0.
11

14
7)

-0
.3

0
0.

09
04

9
(-

0.
02

21
8)

0.
07

06
0

(-
0.

02
32

5)
0.

05
00

6
(-

0.
01

12
8)

0.
03

56
6

(-
0.

01
42

5)
0.

10
59

9
(-

0.
04

34
9)

0.
00

0.
07

13
0

(
0.

07
56

9)
0.

05
83

3
(

0.
08

63
9)

0.
03

79
1

(
0.

08
83

6)
0.

02
83

8
(

0.
09

65
9)

0.
08

76
4

(
0.

07
19

5)
0.

25
0.

06
26

6
(

0.
19

37
0)

0.
05

09
2

(
0.

19
35

0)
0.

03
45

0
(

0.
20

35
9)

0.
02

62
3

(
0.

20
82

5)
0.

07
65

7
(

0.
18

38
1)

1.
36

0.
19

17
0

(
0.

91
39

7)
0.

18
94

7
(

0.
91

20
0)

0.
18

21
0

(
0.

92
69

1)
0.

17
48

0
(

0.
93

13
8)

0.
19

89
1

(
0.

90
77

0)

7,
6,

5
6,

5,
4

-0
.5

9
0.

07
91

7
(-

0.
12

83
5)

0.
06

62
8

(-
0.

12
25

2)
0.

04
95

9
(-

0.
11

17
7)

0.
03

89
9

(-
0.

11
18

6)
0.

09
07

9
(-

0.
13

91
0)

-0
.3

0
0.

05
76

9
(-

0.
02

41
4)

0.
04

64
4

(-
0.

02
00

8)
0.

03
34

9
(-

0.
01

60
6)

0.
02

42
9

(-
0.

01
02

8)
0.

07
25

5
(-

0.
03

26
3)

0.
00

0.
04

53
5

(
0.

11
02

9)
0.

03
57

5
(

0.
11

04
4)

0.
02

46
6

(
0.

11
75

5)
0.

01
78

6
(

0.
12

19
6)

0.
05

60
0

(
0.

10
79

3)
0.

25
0.

03
78

9
(

0.
23

92
0)

0.
03

09
4

(
0.

23
69

0)
0.

02
24

7
(

0.
24

80
2)

0.
01

67
0

(
0.

24
78

8)
0.

04
72

3
(

0.
23

64
6)

1.
36

0.
13

75
4

(
1.

01
95

5)
0.

13
25

5
(

1.
02

78
4)

0.
13

18
5

(
1.

02
92

2)
0.

12
92

5
(

1.
03

08
6)

0.
13

86
3

(
1.

01
76

7)

Stat., Optim. Inf. Comput. Vol. 11, March 2023



A. EFTEKHARIAN, H. SAMAWI AND H. ROCHANI 383

Ta
bl

e
2.

T
he

M
SE

s
an

d
bi

as
es

tim
at

ed
(in

pa
re

nt
he

se
s)

fo
r

di
ffe

re
nt

va
lu

es
of

r h
,m

h
,x

0
an

d
λ

,b
as

ed
on

G
am

m
a

di
st

rib
ut

io
n.

M
S
E
( θ̂

S
R
S
S
(x

0
))

M
S
E
( θ̂

S
S
R
S
(x

0
))

D
ist

rib
ut

io
n

m
h

r h
x
0

λ
=

0
.5

λ
=

0
.7

λ
=

0
.9

λ
=

1
G

am
m

a
2,

3,
4

3,
3,

3
1.

26
0.

24
43

1
(-

0.
13

36
5)

0.
21

08
3

(-
0.

12
08

5)
0.

16
69

4
(-

0.
10

45
9)

0.
14

41
9

(-
0.

11
12

9)
0.

26
90

4
(-

0.
13

55
2)

1.
69

0.
21

11
4

(-
0.

14
77

7)
0.

17
55

9
(-

0.
13

11
8)

0.
12

97
8

(-
0.

12
64

1)
0.

11
55

3
(-

0.
11

40
7)

0.
29

21
0

(-
0.

14
88

9)
2.

04
0.

24
15

8
(-

0.
14

67
4)

0.
20

02
5

(-
0.

13
36

9)
0.

15
75

0
(-

0.
11

69
3)

0.
13

64
0

(-
0.

10
79

8)
0.

28
84

4
(-

0.
15

22
1)

2.
44

0.
30

84
7

(-
0.

15
41

6)
0.

26
22

5
(-

0.
14

69
3)

0.
20

33
8

(-
0.

11
92

8)
0.

16
23

8
(-

0.
09

43
6)

0.
35

53
4

(-
0.

16
98

6)
3.

00
0.

49
22

5
(-

0.
13

81
7)

0.
39

64
1

(-
0.

11
94

5)
0.

32
96

8
(-

0.
08

79
4)

0.
27

46
6

(-
0.

07
43

0)
0.

56
84

5
(-

0.
16

55
6)

2,
3,

4
3,

4,
5

1.
26

0.
19

07
6

(-
0.

18
71

5)
0.

17
09

8
(-

0.
19

47
5)

0.
13

32
4

(-
0.

16
51

0)
0.

11
61

3
(-

0.
16

36
0)

0.
23

04
0

(-
0.

18
30

2)
1.

69
0.

15
32

5
(-

0.
18

90
7)

0.
12

79
6

(-
0.

17
57

5)
0.

09
44

8
(-

0.
16

09
2)

0.
07

13
3

(-
0.

14
97

1)
0.

19
63

4
(-

0.
19

15
4)

2.
04

0.
16

42
6

(-
0.

17
21

4)
0.

14
26

4
(-

0.
15

60
1)

0.
09

15
2

(-
0.

13
82

5)
0.

07
22

0
(-

0.
13

63
9)

0.
20

26
2

(-
0.

19
16

6)
2.

44
0.

20
55

0
(-

0.
13

57
8)

0.
15

51
1

(-
0.

12
97

5)
0.

11
01

9
(-

0.
10

61
2)

0.
09

05
2

(-
0.

09
79

7)
0.

25
04

9
(-

0.
14

89
4)

3.
00

0.
29

91
5

(-
0.

09
21

6)
0.

23
79

3
(-

0.
07

43
0)

0.
16

95
5

(-
0.

05
20

4)
0.

13
16

1
(-

0.
03

94
6)

0.
33

16
4

(-
0.

10
29

3)

4,
4,

4
3,

4,
5

1.
26

0.
11

74
9

(-
0.

18
30

2)
0.

10
42

8
(-

0.
06

32
2)

0.
08

68
3

(-
0.

05
09

7)
0.

07
80

8
(-

0.
05

51
2)

0.
13

88
2

(-
0.

08
25

6)
1.

69
0.

10
02

5
(-

0.
19

15
4)

0.
08

23
6

(-
0.

08
90

3)
0.

06
24

3
(-

0.
08

05
7)

0.
05

07
9

(-
0.

07
55

0)
0.

12
51

8
(-

0.
10

15
4)

2.
04

0.
11

63
9

(-
0.

19
16

6)
0.

09
04

5
(-

0.
09

36
1)

0.
06

72
2

(-
0.

08
12

9)
0.

05
21

0
(-

0.
07

85
3)

0.
13

95
8

(-
0.

09
70

7)
2.

44
0.

15
28

3
(-

0.
14

89
4)

0.
11

83
5

(-
0.

07
82

6)
0.

08
28

2
(-

0.
05

86
5)

0.
06

60
8

(-
0.

06
00

0)
0.

17
21

0
(-

0.
09

12
0)

3.
00

0.
21

10
7

(-
0.

10
29

3)
0.

16
97

6
(-

0.
05

47
6)

0.
12

91
4

(-
0.

03
41

5)
0.

10
93

6
(-

0.
02

63
9)

0.
24

92
2

(-
0.

07
65

8)

4,
4,

4
6,

5,
4

1.
26

0.
06

62
8

(
0.

06
94

6)
0.

05
97

9
(

0.
07

41
9)

0.
04

23
6

(
0.

07
97

3)
0.

03
59

7
(

0.
08

06
7)

0.
07

71
6

(
0.

07
18

6)
1.

69
0.

06
46

5
(

0.
01

41
8)

0.
05

23
5

(
0.

01
49

4)
0.

03
66

5
(

0.
02

19
8)

0.
02

72
7

(
0.

02
90

0)
0.

08
16

5
(-

0.
00

20
1)

2.
04

0.
07

87
2

(-
0.

01
11

7)
0.

06
16

7
(-

0.
00

32
0)

0.
04

27
8

(-
0.

00
03

7)
0.

03
08

2
(

0.
00

73
4)

0.
09

54
7

(-
0.

01
24

5)
2.

44
0.

10
37

9
(-

0.
03

44
5)

0.
07

88
3

(-
0.

02
23

7)
0.

05
45

8
(-

0.
01

09
3)

0.
04

14
8

(-
0.

00
68

6)
0.

12
25

0
(-

0.
03

93
4)

3.
00

0.
16

22
7

(-
0.

04
43

6)
0.

13
17

2
(-

0.
04

24
5)

0.
09

56
3

(-
0.

02
44

5)
0.

06
84

9
(-

0.
01

25
1)

0.
19

46
2

(-
0.

05
87

6)

7,
6,

5
6,

5,
4

1.
26

0.
04

12
5

(
0.

12
15

8)
0.

03
46

9
(

0.
12

27
1)

0.
02

70
4

(
0.

12
91

0)
0.

02
32

8
(

0.
12

91
0)

0.
04

97
0

(
0.

11
72

6)
1.

69
0.

04
22

2
(

0.
05

44
4)

0.
03

56
2

(
0.

06
08

2)
0.

02
26

3
(

0.
06

43
9)

0.
01

82
5

(
0.

06
43

9)
0.

05
01

4
(

0.
05

37
5)

2.
04

0.
04

91
4

(
0.

02
74

2)
0.

04
10

6
(

0.
02

68
0)

0.
02

75
9

(
0.

03
50

3)
0.

02
04

6
(

0.
03

50
3)

0.
05

99
9

(
0.

02
19

8)
2.

44
0.

06
41

3
(-

0.
00

73
1)

0.
05

08
9

(
0.

00
68

4)
0.

03
69

0
(

0.
01

26
2)

0.
02

73
0

(
0.

01
26

2)
0.

07
75

3
(-

0.
01

27
0)

3.
00

0.
10

19
0

(-
0.

03
20

7)
0.

08
42

7
(-

0.
02

01
1)

0.
06

00
8

(-
0.

01
06

3)
0.

04
71

3
(-

0.
01

06
3)

0.
12

59
0

(-
0.

03
70

9)

Stat., Optim. Inf. Comput. Vol. 11, March 2023



384 ON KERNEL-BASED ESTIMATOR OF ODDS RATIO

Table 3. The MSEs of the empirical and kernel-based estimators of odds ratio based on SSRS and SRSS.

Empirical estimator Kernel-based estimator
SRSS SRSS

Distribution mh rh x0 SSRS λ = 0.5 λ = 0.7 λ = 0.9 λ = 1 SSRS λ = 0.5 λ = 0.7 λ = 0.9 λ = 1
Normal 1,2,1 4,3,5 -0.59 3.5695 2.9823 2.0300 1.6701 1.2972 1.0431 0.6749 0.5450 0.3524 0.2505

-0.30 2.9268 2.4868 2.1185 1.1266 0.8694 0.7495 0.6500 0.4365 0.3145 0.2311
0.00 2.6961 2.0986 1.5387 0.9312 0.6636 0.7765 0.6148 0.4020 0.2538 0.1996
0.25 2.4695 1.9304 1.1308 0.7029 0.4920 0.7607 0.5238 0.3745 0.2426 0.1711
1.36 4.1775 2.7385 1.8426 1.5060 1.0934 1.6797 0.9004 0.6534 0.4040 0.3723

2,3,4 3,3,3 -0.59 1.0030 0.8398 0.8341 0.5009 0.4770 0.2938 0.2443 0.2108 0.1669 0.1441
-0.30 0.6834 0.5939 0.5546 0.4980 0.3642 0.3008 0.2111 0.1755 0.1297 0.1155
0.00 0.7512 0.5756 0.4717 0.3773 0.3184 0.2922 0.2415 0.2002 0.1575 0.1364
0.25 0.6702 0.5147 0.4694 0.3297 0.2852 0.2701 0.2684 0.2622 0.2033 0.1623
1.36 1.1456 0.9720 0.9680 0.6699 0.5981 0.5675 0.4922 0.3964 0.3296 0.2746

4,4,4 3,4,5 -0.59 0.3484 0.2948 0.2188 0.1795 0.1532 0.1618 0.1249 0.1083 0.0780 0.0633
-0.30 0.2995 0.2536 0.1959 0.1581 0.1363 0.1368 0.1211 0.0972 0.0691 0.0523
0.00 0.2533 0.2189 0.1770 0.1451 0.1167 0.1313 0.1064 0.0888 0.0636 0.0479
0.25 0.2435 0.2104 0.1766 0.1352 0.1091 0.1307 0.1017 0.0862 0.0615 0.0501
1.36 0.4809 0.4517 0.4114 0.3697 0.3530 0.3831 0.3630 0.3510 0.3304 0.3215

7,6,5 6,5,4 -0.59 0.1624 0.1413 0.1233 0.0977 0.0807 0.0907 0.0791 0.0662 0.0495 0.0389
-0.30 0.1205 0.1016 0.0875 0.0682 0.0563 0.0725 0.0576 0.0464 0.0334 0.0242
0.00 0.0867 0.0792 0.0647 0.0504 0.0419 0.0560 0.0453 0.0357 0.0246 0.0178
0.25 0.0753 0.0644 0.0559 0.0414 0.0358 0.0472 0.0378 0.0309 0.0224 0.0167
1.36 0.1592 0.1546 0.1483 0.1440 0.1397 0.1386 0.1375 0.1325 0.1318 0.1292

Gamma 1,2,1 4,3,5 1.26 2.8514 2.6510 2.6789 1.4205 1.3250 0.6340 0.6171 0.3838 0.2312 0.2133
1.69 3.5393 2.2837 1.8959 1.1779 0.8976 0.6845 0.4862 0.3488 0.2276 0.1589
2.04 3.1128 2.5447 1.4779 0.8229 0.5836 0.7205 0.5987 0.4047 0.2579 0.1863
2.44 2.9367 2.3339 1.8812 1.0518 0.6994 0.9599 0.7769 0.5559 0.3563 0.2564
3.00 5.5146 3.7958 3.0157 2.2418 2.3222 2.3996 1.7379 1.4236 0.7596 0.5181

2,3,4 3,3,3 1.26 1.3265 1.4999 1.0352 0.8149 0.8460 0.2690 0.2443 0.2108 0.1669 0.1441
1.69 0.7757 0.6075 0.5514 0.3865 0.3239 0.2921 0.2111 0.1755 0.1297 0.1155
2.04 0.7262 0.5409 0.4270 0.3620 0.3041 0.2884 0.2415 0.2002 0.1575 0.1364
2.44 1.0361 0.6176 0.4855 0.3764 0.3547 0.3553 0.3084 0.2622 0.2033 0.1623
3.00 1.4659 1.1192 0.8709 0.7516 0.5806 0.5684 0.4922 0.3964 0.3296 0.2746

4,4,4 3,4,5 1.26 0.4121 0.3835 0.2966 0.2357 0.2019 0.1388 0.1174 0.1042 0.0868 0.0780
1.69 0.2414 0.2202 0.1875 0.1508 0.1291 0.1251 0.1002 0.0823 0.0624 0.0507
2.04 0.2430 0.2106 0.1667 0.1285 0.1127 0.1395 0.1163 0.0904 0.0672 0.0521
2.44 0.2763 0.2348 0.2194 0.1500 0.1306 0.1721 0.1528 0.1183 0.0828 0.0660
3.00 0.4304 0.3905 0.2969 0.2260 0.2105 0.2492 0.2110 0.1697 0.1291 0.1093

7,6,5 6,5,4 1.26 0.0980 0.0902 0.0791 0.0643 0.0550 0.0497 0.0412 0.0346 0.0270 0.0232
1.69 0.0841 0.0721 0.0616 0.0489 0.0414 0.0501 0.0422 0.0356 0.0226 0.0182
2.04 0.0892 0.0777 0.0651 0.0482 0.0414 0.0599 0.0491 0.0410 0.0275 0.0204
2.44 0.1041 0.0993 0.0816 0.0604 0.0509 0.0775 0.0641 0.0508 0.0369 0.0273
3.00 0.1834 0.1537 0.1250 0.1038 0.0854 0.1259 0.1019 0.0842 0.0600 0.0471

7. Illustration using base deficit data

This section’s main purpose is to investigate the sampling routine on non-simulated population from
the base deficit (BD) data. The base deficit in human physiology means a deficit in the total serum
concentration of bicarbonate. It can be indicative of metabolic acidosis or compensatory respiratory
alkalosis. The use of base deficit as a guide to volume resuscitation in trauma patients, was first established
in 1988 by [10]. Since then, the base deficit has been correlated to many variables in the trauma population,
such as mechanism of injury, the presence of intra-abdominal injury, transfusion requirements, mortality,
the risk of complications, and the number of days spent in the intensive care unit (see, [35] and [9]). It
should be highlighted that [32] obtained ordinary OR of the overall BD data using moving extreme RSS
and compared it with SRS based on the empirical distribution function. Here, we obtain the Cochran
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Mantel-Haenszel OR of the same data using different stratified sampling schemes based on the CDF’s
kernel-based estimation.

In this illustration, the SSRS and the SRSS samples are drawn from the data collected based on a
retrospective study of the trauma registry at Memorial Health University Medical Center in Savannah,
Georgia. All trauma patients were assessed by the trauma team between January, 1998 and May, 2000.
The BD data contains different attributes such as BD, age, gender and hospital disposition type (alive or
dead) from 4579 patients. After removing missing data, we have 4374 samples included 3125 males and
1222 females. Since females and males have different physiological features, we can consider the entire
data set as two strata. The stratified samples from female and male strata are selected with sizes 60
(r1 = 5,m1 = 12) and 50 (r1 = 5,m1 = 10), respectively, and computed the Cochran Mantel-Haenszel OR
estimate for the 20th to the 90th of quantiles overall BD. By repeating the process for 500 bootstraps
resamples with replacement, we compute the OR estimates and corresponding MSE’s of the selected
values.

Equation (34) is used to select the samples from interested variable based on the imperfect ranking
scenario. The results are reported in Table 4. Table 4 includes the following columns: different values of
BD (x0), OR of population θ(x0), estimated values of OR (Estimate), mean squared error (MSE) and
relative efficiency (RE) which defined as

RE =
MSE

(
θ̂SSRS(x0)

)
MSE

(
θ̂SRSS(x0)

) .
For different values of λ, the RE’s values have been presented in Table 4. It observes that by increasing
λ, the RE’s increase, and the obtained results based on the real data coincide with the presented results
in the simulation study.

8. Conclusion

In this paper, the kernel-based estimators for the Cochran Mantel-Haenszel odds ratio of the underlying
population were suggested based on the SSRS and SRSS. The kernel function with optimal bandwidth
considered in the present paper. Moreover, the closed form for the expectation, variance and MSE of the
odds and odds ratio estimators obtained for both SSRS and SRSS. Further, we showed analytically that
the SRSS kernel-based estimator of the odds has better performance than that of the SSRS counterpart.
A simulation study performed to compare these estimators based on the bias and MSE criterions using
different sample sizes of strata and in overall. The effect of imperfect rankings on the performance
of the proposed estimators discussed. Moreover, the proposed estimator compered with its traditional
counterpart, the empirical estimator. We found that our proposed estimators using SRSS still more
efficient than using SSRS in all cases. Finally, the performance of the estimators illustrated by using the
base deficit data set. According to the obtained results, we recommended that to use SRSS kernel-based
estimator, whenever possible, to get more accurate estimates of the odds and odds ratio of biomarkers.
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Appendix

To obtain the expectation and variance of θ̂SSRS(x0), let U =
∑L

h=1 nhF̂
SRS
Xh

(x0)
(
1− F̂SRS

Yh
(x0)

)
and

V =
∑L

h=1 nhF̂
SRS
Yh

(x0)
(
1− F̂SRS

Xh
(x0)

)
. In addition, the expectation and variance for ratio of two random

variables U and V are given by ([22, p.181])

E

[
U

V

]
≈ E(U)

E(V )
− Cov(U, V )

E2(V )
+

E(U)

E3(V )
Var(V ), (35)

and

Var

[
U

V

]
≈

[
E(U)

E(V )

]2 {
Var(U)

E2(U)
+

Var(V )

E2(V )
− 2Cov(U, V )

E(U)E(V )

}
. (36)

On the other hand, we have

E(U) =

L∑
h=1

nhE
[
F̂SRS
Xh

(x0)
]
E
[
1− F̂SRS

Yh
(x0)

]
,

E(V ) =

L∑
h=1

nhE
[
F̂SRS
Yh

(x0)
]
E
[
1− F̂SRS

Xh
(x0)

]
, (37)

Var(U) =

L∑
h=1

n2
h

[
Var

(
F̂SRS
Yh

(x0)
)
E2

[
F̂SRS
Xh

(x0)
]
+Var

(
F̂SRS
Xh

(x0)
)
E2

[
1− F̂SRS

Yh
(x0)

]
+Var

(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)]

,

Var(V ) =

L∑
h=1

n2
h

[
Var

(
F̂SRS
Xh

(x0)
)
E2

[
F̂SRS
Yh

(x0)
]
+Var

(
F̂SRS
Yh

(x0)
)
E2

[
1− F̂SRS

Xh
(x0)

]
+Var

(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)]

, (38)

and

Cov(U, V ) =

L∑
h=1

n2
h

{
Var

(
F̂SRS
Xh

(x0)
)(

E2
[
F̂SRS
Yh

(x0)
]
− E

[
F̂SRS
Yh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)(

E2
[
F̂SRS
Xh

(x0)
]
− E

[
F̂SRS
Xh

(x0)
])

+Var
(
F̂SRS
Yh

(x0)
)
Var

(
F̂SRS
Xh

(x0)
)}

. (39)

Finally, by substituting (37)-(39) in (35) and (36) the results are obtained.
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