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Abstract Getting a perfectly centered initial point for feasible path-following interior-point algorithms is a hard
practical task. Therefore, it is worth to analyze other cases when the starting point is not necessarily centered.
In this paper, we propose a short-step weighted-path following interior-point algorithm (IPA) for solving convex
quadratic optimization (CQO). The latter is based on a modified search direction which is obtained by using
the technique of algebraically equivalent transformation (AET) introduced by a new univariate function to the
Newton system which defines the weighted-path. At each iteration, the algorithm uses only full-Newton steps
and the strategy of the central-path for tracing approximately the weighted-path. We show that the algorithm is
well-defined and converges locally quadratically to an optimal solution of CQO. Moreover, we obtain the currently
best known iteration bound, namely, O

(√
n log

n

ϵ

)
which is as good as the bound for linear optimization analogue.

Some numerical results are given to evaluate the efficiency of the algorithm.
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1. Introduction

Consider the quadratic optimization (CQO) problem in its primal standard format:

(P) min
x

{
1

2
xTQx+ cTx : Ax = b, x ≥ 0

}
,

and its dual problem

(D) max
(x,y, z)

{bT y − 1

2
xTQx : AT y + z −Qx = c, z ≥ 0},

where Q ∈ Rn×n, A ∈ Rm×n with rank (A) = m, c ∈ Rn, b ∈ Rm, x ∈ Rn, z ∈ Rn and y ∈ Rm. Here
x, z ≥ 0 says that x and z are nonnegative vectors in Rn.

The CQO problems are an interesting class of nonlinear convex programming which have been proven
to be useful in many domains of applied mathematics and engineering. Also the CQO includes the
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standard linear optimization (LO) [5]. Further, it can be seen as a special case of general symmetric
conic optimization problems (see e.g.,[13, 14]). There are many solution methods for solving CQOs.
Among them, feasible path-following interior-point methods (IPMs) gained much more attention then
other methods due to their numerical efficiency and their polynomial complexity (see e.g.,[18, 21, 22]).
These methods used the central-path as a guideline to follow the central-path for reaching an optimal
solution of CQO. However, their derived algorithms require that the starting point must be strictly feasible
and on the central-path. Still, it is uneasy task to find a perfectly centered initial point. Therefore, it
is worth to analyze other cases when starting points are not centered. It is well-known that with every
algorithm which follows the central-path, we can associate a target sequence on the central-path. This
idea leads to the concept of target-following methods introduced earlier by Jansen et al [15]. Weighted-
path following IPMs can be viewed as a special case of them and which are used as an alternative to
remedy this drawback [2, 4, 7, 11, 18]. In [10], Darvay proposed a weighted-path following IPMs for
solving LO. The modified Newton search direction is obtained by using the technique of algebraically
equivalent transformation (AET) based on the univariate function

√
t to the Newton’s system which

defines the weighted-path. The corresponding short-step interior-point algorithm (IPA) deserves the best
known iteration bound, namely, O

(√
n log n

ϵ

)
. Later, Achache [3], Mansouri et al. [16] and Wang et al.

[17, 18] extended successfully Darvay’s algorithm for solving monotone LCP, P∗(κ)−LCP over symmetric
cones, monotone mixed and horizontal LCP, respectively. The relevance of the technique of AETs for the
central-path equation has been treated in [9, 17] and subsequently in references [1, 8]. We also mentioned
that some new type of search directions are obtained from the application of so-called kernel functions
(see e.g.,[13, 24]).

In this paper, our main purpose is to investigate a new weighted-path following IPA for solving the
CQOs based on a new type of Newton search direction. The latter is obtained via the AET technique
induced by the new univariate function t 3

2 applied to the Newton system which defines the weighted-path.
At each iteration, only full-Newton steps and the strategy of the central-path are used for getting an ϵ-
approximated optimal solution for CQO. For its analysis, specific choices of defaults of the threshold τ
which defines the size of the neighborhood of the weighted-path and of the parameter θ which determines
the rate of decrease of the barrier parameter are offered. Under these two defaults, the short-step IPA is
well-defined and converges locally quadratically to an optimal solution of CQO. Moreover, the currently
best known iteration bound is obtained, namely, O(

√
n log n

ϵ ). This iteration bound is as good as the bound
for LO analogue. Finally, some numerical results are reported to evaluate the efficiency of our algorithm.
Moreover, in order to improve our numerical results, some changes are imported on the original version
of our algorithm where the obtained results are totally ameliorated.

The notation used in the paper is as follows. Rn denotes the space of real n-dimensional vectors and Rn
++

stand for all positive vectors of Rn. Given x, z ∈ Rn, xT z =
∑n

i=1 xizi denotes their usual inner product.
Meanwhile, xz denotes the component-wise product of these vectors, i.e. xz = (x1z1, · · · , xnzn)T . Let

x, z ∈ Rn
++,

√
x = (

√
x1, · · · ,

√
xn)

T , x−1 = (x−1
1 , · · · , x−1

n )T and x

z
=

(
x1
z1
, · · · , xn

zn

)T

, z ̸= 0. Let x ∈ Rn,

∥x∥ =
√
xTx and ∥x∥∞ = maxi |xi| denote its Euclidean and maximum norm, respectively. Furthermore,

diag(x) denotes the diagonal matrix obtained via the components of the vector x. Let g(x) and f(x)
be two positive real valued functions, then g(x) = O(f(x)) if g(x) ≤ kf(x) for some positive constant k.
Finally, e denotes the vector of ones in Rn.

The paper is organized as follows. In Section 2, the weighted-path, the modified Newton search direction
and the proximity measure are stated. The generic IPA for CQO is also described. In Section 3, detailed
proofs of the convergence of the algorithm are given. The iteration bound with short-step method is
derived. In Section 4, some numerical results are reported. A conclusion and future remarks end the
paper in Section 5.
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2. A weighted-path following IPA for CQO

In this section, we study first the existence and the uniqueness of the weighted-path of CQO and the new
modified search directions. Finally, we state the generic weighted-path following full-Newton step IPA for
CQO.

2.1. The weighted-path of CQO
Throughout the paper, we assume that both problems (P) and (D) satisfy the following conditions.

• Interior-Point-Condition (IPC). There exists a triplet of vectors (x0, y0, z0) such that:

Ax0 = b, x0 > 0, AT y0 + z0 −Qx0 = c, z0 > 0.

• Symmetric and positive semi-definiteness. The matrix Q is symmetric positive semidefinite, i.e.
Q = QT and vTQv ≥ 0, for all v ∈ Rn.

Getting an optimal solution for both problems (P) and (D) is equivalent to solving the following system
of optimality conditions:  Ax = b, x ≥ 0,

AT y + z −Qx = c, z ≥ 0,
xz = 0.

(1)

Similar to the standard central-path methods, the basic idea behind weighted-path following IPMs is
to replace the third equation (complementarity condition) in (1) by the parametrized equation xz = ω2;
where ω ∈ Rn

++. Thus we consider the following parametrized system: Ax = b, x ≥ 0,
AT y + z −Qx = c, z ≥ 0,
xz = ω2.

(2)

Under our assumptions, system (2) has a unique solution denoted by (x(ω), y(ω), z(ω)) for all fixed
ω ∈ Rn

++. The set
{(x(ω), y(ω), z(ω)) : ω > 0}

is called the weighted-path of both problems (P) and (D). If ω tends to zero then the limit of the weighted-
path exists and since the limit point satisfies the complementarity condition, the limit yields an optimal
solution for CQO. Similar to the monotone LCP [3], the existence and the uniqueness of the weighted-path
can be derived in the following way. Consider the following log-barrier problem

min
(x,y,z)

xT z −
n∑

i=1

ω2
i lnxizi s.t. Ax = b, AT y + z −Qx = c, x > 0, z > 0.

Therefore, the necessary and sufficient optimality conditions of the log-barrier problem are characterized
by the solutions of system (2). In other word, the existence and the uniqueness of the weighted-path is
equivalent to the existence of unique minimizers for the log-barrier problem for each weight ω > 0. It is
easy to verify by the IPC, that the objective function of the log-barrier problem is strictly convex for
each ω > 0. Now, by the application of Newton’s method for system (2), we get the classical Newton
search directions [16]. Note that if ω =

√
µe with µ is a positive scalar, then the weighted-path reduces to

the classical central-path. The relevance of the central-path has been discussed in the monographs, (see,
e.g.,[21, 22]).
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2.2. The new modified search direction
Following [3, 10], we turn now to describe the new modified Newton search direction for CQO. The AET
based directions for CQO is simply based in replacing the weighted equation xz = ω2 by the new equation

ψ(xz) = ψ(ω2)

where ψ(.) : (0,+∞) → R is continuously differentiable and invertible function. Then, system (2) is
converted to the following system  Ax = b, x ≥ 0,

AT y + z −Qx = c, z ≥ 0
ψ(xz) = ψ(ω2),

(3)

where ψ is applied coordinate-wisely. As system (2) has a unique solution so is the system (3). Applying
Newton’s method to system (3) for a given strictly feasible point (x, y, z), i.e. the IPC holds, we obtain
the following system: 

A∆x = 0,
AT∆y +∆z −Q∆x = 0,

z∆x+ x∆z =
ψ(ω2)− ψ(xz)

ψ′(xz)
,

(4)

where ψ′ denotes the derivative of ψ.
To simplify matters, we define the vectors

v :=
√
xz and d :=

√
xz−1.

The vector d is used to scale the vectors x and z to the same vector v as:

d−1x = dz = v. (5)

Due to (5), the scaling directions are given by

dx = d−1∆x and dz = d∆z. (6)

In addition, we have
x∆z + z∆x = v(dx + dz). (7)

Now, since Q is positive semidefinite matrix, it follows that

dTx dz = (∆x)T (∆z) = (∆x)TQ∆x ≥ 0. (8)

Hence, from (5), (7) and (8), system (4) can be written as
Ādx = 0,

ĀT∆y + dz − Q̄dx = 0,
dx + dz = pv

(9)

where
pv =

ψ(ω2)− ψ(v2)

vψ′(v2)
(10)

with Ā = AD, Q̄ = DQD and D :=diag(d).
Next, substituting ψ(t) = t

3
2 in (10) and in (4), yields

pv =
2

3
v−2(ω3 − v3) (11)
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and 
A∆x = 0,
AT∆y +∆z −Q∆x = 0,

z∆x+ x∆z = 2
3

(ω3−
√

(xz)3)√
xz

.

(12)

Therefore, the new unique modified search directions (∆x,∆y,∆z) are obtained by solving system (12).
Moreover, the new iterate is computed by taking a full-Newton step as follows:

x+ := x+∆x; y+ := y +∆y; z+ := z +∆z.

We end this subsection with this remark. By choosing function ψ(t) appropriately, the system (12) can
be used to define a class of new search directions. For example:
• ψ(t) = t yields pv = v−1(ω2 − v2), we recuperate the standard weighted search directions (see [4, 5, 18]).
• ψ(t) =

√
t yields pv = 2(ω − v), we get Darvay’s weighted search directions [10].

2.3. The proximity measure
For any positive vector v and according to (11), we define the norm-based proximity measure δ(v;ω) as
follows:

δ(v;ω) =
3∥pv∥
2ωi

=
∥v−2(ω3 − v3)∥

ωi
, ∀i = 1, · · · , n. (13)

It is clear that
δ(v;ω) = 0 ⇔ ω3 = v3 ⇔ xz = ω2.

So δ(v;ω) is to measure the distance of a point (x, y, z) to the weighted-path (x(ω), y(ω), z(ω)). Let us
define another measure σC(ω) as follows:

σC(ω) =
max(ω)

min(ω)
≥ 1. (14)

The quantity σC(ω) is to measure the closeness of ω to the central-path. Here,

min(ω) = min
i
(ωi)

and likewise
max(ω) = max

i
(ωi).

Note that in (14), σC(ω) = 1 if ω is on the central-path.

2.4. The generic weighted-path full-Newton step IPA for CQO
The weighted-path following IPA for CQO works as follows. First, we use a suitable threshold (default)
value τ > 0 with 0 < τ < 3 and we suppose that a strictly feasible initial point (x0 > 0, y0, z0 > 0) such
that δ(x0z0;ω0) ≤ τ for some known vector ω0. Using the obtained search directions from (12) and taking
a full Newton-step the algorithm produces a new iterate (x+∆x, y +∆y, z +∆z). Then, the vector ω is
reduced by the factor (1− θ) with 0 < θ < 1 and solves system (12), and so target a new iterate and so
on. This procedure is repeated until the stopping criterion nmax(ω2) ≤ ϵ is satisfied for a given accuracy

Stat., Optim. Inf. Comput. Vol. 10, June 2022



878 A WEIGHTED-PATH FOLLOWING INTERIOR-POINT ALGORITHM

parameter ϵ > 0. The generic IPA is stated in Algorithm 1 as follows.

Input:
A threshold parameter τ ≤ 3 (default τ = 1);
an accuracy parameter ϵ > 0;
a barrier update parameter θ, 0 < θ < 1 (default θ = 1

36
√
2nσc(ω0)

);
a starting point (x0, y0, z0) and ω0 s.t. δ(x0z0;ω0) ≤ 1;

begin
Set x := x0; y := y0; z := z0;ω := ω0;

while nmax(ω2) ≥ ϵ do
begin

• ω := (1− θ)ω;
• Solve system (12) to obtain the direction (∆x,∆y,∆z);
• Update x := x+∆x, y := y +∆y, z := z +∆z;
endwhile

end

Algorithm 1.

3. Convergence analysis

In this section, we will show across our new defaults that Algorithm 1 is well-defined and solves the CQO
in polynomial complexity.

We first quote the following technical results which will be used later in the analysis of Algorithm 1.
Lemma 3.1
Let (dx,∆y, dz) be a solution of (9) and ω > 0. If δ := δ(v;ω) > 0, then one has

0 ≤ dTx dz ≤ 2

9
δ2ω2

i , ∀i (15)

and
∥dxdz∥∞ ≤ δ2

9
ω2
i , ∥dxdz∥ ≤ 2δ2

9
ω2
i , ∀i. (16)

Proof
For the first claim, we have

0 ≤∥dx∥2 + 2dTx dz+∥dz∥2 =∥dx + dz∥2 =∥pv∥2.

But since dTx dz ≥ 0 by (8), it follows that

dTx dz ≤ 1

2
∥pv∥2 =

2

9
δ2ω2

i , ∀i.

For the second claim, as
dxdz =

1

4
((dx + dz)

2 − (dx − dz)
2)

then, we have
∥dxdz∥∞ =

1

4
(∥(dx + dz)

2 − (dx − dz)
2∥∞)

≤ 1

4
max(∥dx + dz∥2∞, ∥dx − dz∥2∞)

≤ 1

4
max(∥dx + dz∥2, ∥dx − dz∥2).
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Since dTx dz ≥ 0, we have ∥dx + dz∥2 ≥∥dx − dz∥2, then we obtain

∥dxdz∥∞ ≤ 1

4
∥dx + dz∥2 =

1

4
∥pv∥2 =

δ2

9
ω2
i , ∀i.

For the last claim, we have

∥dxdz∥2 = eT (dxdz)
2 =

1

16
eT ((dx + dz)

2 − (dx − dz)
2)2

=
1

16
(∥(dx + dz)

2 − (dx − dz)
2)∥2) ≤ 1

16
(∥dx + dz∥2+∥dx − dz∥2)2

≤ 1

8
(∥dx + dz∥4+∥dx − dz∥4) =

1

4
∥dx + dz∥4 =

1

4
∥pv∥4 =

4

81
δ4ω4

i .

Hence,
∥dxdz∥ ≤ 2

9
δ2ω2

i , ∀i.

This completes the proof.

The next lemma investigates the feasibility of a full-Newton step.
Lemma 3.2
Let (x, y, z) be a strictly feasible point and assume δ := δ(v;ω) < 3, then x+ = x+∆x > 0 and z+ =
z +∆z > 0, i.e., x+ and z+ are strictly feasible.
Proof. Let α ∈ [0, 1], we define x(α) = x+ α∆x and z(α) = z + α∆z. Then, we have

x(α)z(α) = xz + α(x∆z + z∆x) + α2∆x∆z.

Using (7) and (8), we get
x(α)z(α) = (1− α)v2 + α(v2 + vpv + αdxdz). (17)

Hence x(α)z(α) > 0 if v2 + vpv + αdxdz > 0. By Lemma 3.1 (16), and from (11) and let δ < 3, it follows
that

v2 + vpv + αdxdz ≥ v2 + vpv − α ∥dxdz∥∞ e

≥ v2 + vpv − α
δ2

9
ω2
i

>
1

3
v2 +

2

3
ω3
i v

−1 − ω2
i , ∀i

Clearly, x(α)z(α) > 0 if
1

3
v2 +

2

3
ω3
i v

−1 − ω2
i ≥ 0, ∀i.

Letting
g(t) =

1

3
t2 +

2ω3
i

3
t−1 − ω2

i , t > 0, ∀i.

g is a strictly convex function and has a minimum at t = ωi, and so g(t) ≥ g(ωi) = 0. Hence,

1

3
v2 +

2ω3
i

3
v−1 − ω2

i ≥ 0, ∀i.

Therefore, ∀α ∈ [0, 1], x(α)z(α) > 0. Since x and z are positive which implies that x(α) > 0 and z(α) > 0
for all α ∈ [0, 1]. So by continuity the vectors x(1) = x+ and z(1) = z+ > 0. This implies the lemma. 2

For the new iterates x+ and z+, we define the vector v+ =
√
x+z+.
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Lemma 3.3
Assume δ < 3, then

(v+)i ≥
ωi

3

√
9− δ2, ∀i.

Proof. In (17), setting α = 1, then from (11), we have

(v2+)i = v2 + vpv + dxdz =
1

3
v2 +

2

3
v−1ω3

i + dxdz, ∀i.

From the proof of Lemma 3.2, we have 1

3
v2 +

2

3
v−1ω3

i − ω2
i ≥ 0 if δ < 3, ∀i. From which we deduce that

1

3
v2 +

2

3
v−1ω3

i ≥ ω2
i , ∀i. Consequently,

(v2+)i ≥ ω2
i + dxdz, ∀i.

Now, due to (16), we deduce that

ω2
i + dxdz ≥

(
ω2
i − ∥dxdz∥∞e

)
≥ ω2

i

9
(9− δ2), ∀i.

Hence,
(v+)i ≥

ωi

3

√
9− δ2, ∀i.

This proves the lemma.

Next, we prove that the iterate across the proximity measure is locally quadratically convergent during
the Newton process.
Lemma 3.4
Assume δ < 3, then

δ+ := δ(v+) := δ(x+z+;ω) ≤
5

9

(
9

9− δ2
+

3

3 +
√
9− δ2

)
δ2.

In addition, if δ ≤ 1 then
δ+ ≤

(
5

8
+

5

9 + 6
√
2

)
δ2,

which means the local quadratic convergence of the full-Newton step.

Proof
We have

δ(v+;ω) =
1

ωi

∥∥v−2
+ (ω3 − v3+)

∥∥
=

1

ωi

∥∥∥∥ω3 − v3+
v2+

∥∥∥∥
=

1

ωi

∥∥∥∥ (ω − v+)(ω
2 + ωv+ + v2+)

v2+

∥∥∥∥
=

1

ωi

∥∥∥∥ (ω2 − v2+)(ω
2 + ωv+ + v2+)

v2+(ω + v+)

∥∥∥∥ .
For all fixed ω ∈ Rn

++, i.e. ωi > 0, ∀i, we define the function g by

g(t) =
ω2
i + ωit+ t2

t2(ωi + t)
=
ωi

t2
+

1

ωi + t
, ∀i.
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Using g, we deduce that

δ+ =
1

ωi
∥g(v+)(ω2 − v2+)∥ ≤ 1

ωi
∥g(v+)∥∞∥ω2 − v2+∥, ∀i,

where g(v+) = (g1(v+)1, · · · , gn(v+)n). The function g is continuous and monotonically decreasing and
positive on (0,+∞). Hence, by Lemma 3.3

0 < |gi((v+)i)| = gi((v+)i) ≤ g(v+) ≤ g
(ωi

3

√
9− δ2

)
, ∀i.

Then
∥g(v+)∥∞ ≤ 9ωi

9ω2
i − δ2ω2

i

+
3

ωi(3 +
√
9− δ2)

, ∀i.

This implies that
δ+ ≤ 1

ω2
i

(
9

9− δ2
+

3

3 +
√
9− δ2

)
∥ω2 − v2+∥, ∀i.

Next, in (17), setting α = 1 and from (11), we have

∥ω2 − v2+∥ =∥ω2 − (v2 + vpv + dxdz)∥

=∥ω2 − 1

3
v2 − 2

3
v−1ω3 − dxdz∥.

Then
∥ω2 − v2+∥ ≤∥ω2 − 1

3
v2 − 2

3
v−1ω3∥+∥dxdz∥.

Next, we may write ∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ =

∥∥∥∥ω2 − 1
3v

2 − 2
3v

−1ω3

v−4(ω3 − v3)2
.
9p2v
4

∥∥∥∥ .
And after elementary reductions, we get∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ =

∥∥∥∥φ(v).9p2v4
∥∥∥∥

where
φ(v) =

v3(v + 2ω)

3(v2 + vω + ω2)2
.

Let us consider for all i, the following function

φ(t) =
t3(t+ 2ωi)

3(t2 + ωit+ ω2
i )

2
.

φ(t) is continuous and monotonically increasing and positive for all t ∈ (0,+∞). Then we have

0 ≤ φ(t) <
1

3
= lim

t 7→∞
φ(t), ∀t > 0.

This yields
0 ≤ φ(vi) <

1

3
, ∀i.

Consequently,
0 <|φ(vi)| = φ(vi) ≤

1

3
, ∀i. (18)

Stat., Optim. Inf. Comput. Vol. 10, June 2022



882 A WEIGHTED-PATH FOLLOWING INTERIOR-POINT ALGORITHM

Then, as ∥pv∥2 =
4

9
ω2
i δ

2, ∥φ(v)∥∞ = maxi φ(vi) ≤
1

3
and ∥p2v∥ ≤∥pv∥2, these imply that∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ ≤∥φ(v)∥∞
9

4
∥pv∥2 =

1

3
ω2
i δ

2, ∀i.

Due to (16), it follows
∥ω2 − v2+∥ ≤ 5

9
δ2ω2

i , ∀i.

Next, for δ < 3, we have

δ+ ≤ 5

9

(
9

9− δ2
+

3

3 +
√
9− δ2

)
δ2.

Now, let δ ≤ 1, then 9

9− δ2
≤ 9

8
and 3

3 +
√
9− δ2

≤ 3

3 + 2
√
2

. Hence, after some simplifications, we obtain

δ+ ≤
(
5

8
+

5

9 + 6
√
2

)
δ2 < δ2.

This completes the proof.

The next lemma gives an upper bound for the duality gap after a full-Newton step.

Lemma 3.5
After a full-Newton step it holds

xT+z+ ≤ 2nmax(ω2).

Proof
As v2+ = x+z+, we have

(x+)
T z+ = eT v2+ = eT (v2 + vpv + dxdz)

= eT (ω2 + v2 + vpv − ω2) + dTx dz

= eTω2 + eT (v2 + vpv − ω2) + dTx dz

= eTω2 + dTx dz + eT (v2 +
2

3
v−1ω3 − 2

3
v2 − ω2)

= eTω2 + dTx dz + eT

 1

3
v2 +

2

3
v−1ω3 − ω2

v−4(ω3 − v3)2
9p2v
4

 .

Then after some reductions, we get

(x+)
T z+ = eTω2 + dxdz +

9

4
eTφ(v)p2v

where φ(v) = (φ(v1), φ(v2), · · · , φ(vn)) with

φ(vi) =
v3i (vi + 2ωi)

3(v2i + viωi + ω2
i )

2
, for i = 1, · · · , n.

Due to (18), we have
0 <|φ(vi)| = φ(vi) ≤

1

3
, ∀i.
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Therefore, by Lemma 3.1 and from (13), we have

eT v2+ ≤ eTω2 + dTx dz +
9

4
max

i
|φ(vi)|eT p2v

≤ eTω2 + dTx dz +
3

4
∥pv∥2

≤ nmax(ω2) +
2

9
δ2ω2

i +
1

3
δ2ω2

i , ∀i.

≤ nmax(ω2) +
2

9
δ2 max(ω2) +

1

3
δ2 max(ω2)

≤
(
n+

5

9
δ2
)
max(ω2) ≤ (n+ δ2)max(ω2).

Let δ ≤ 1, then eT v2+ ≤ (n+ 1)max(ω2), but since (n+ 1) ≤ 2n, ∀n ≥ 1, it follows that eT v2+ ≤ 2nmax(ω2).
This gives the required result.

Next lemma investigates the effect of a full Newton-step on the proximity measure followed by updating
the weighted vector ω by a factor (1− θ), where 0 < θ < 1.
Theorem 3.1
Let ω+ = (1− θ)ω and let x+ > 0, z+ > 0, then we have

δ(v+;ω+) ≤ δ+ +
3
√
2nθ

1− θ
σC(ω).

In addition, let δ ≤ 1, σC(ω) ≥ 1, and θ =
1

36
√
2nσC(ω)

, n ≥ 2, then δ(v+;ω+) ≤ 1.

Proof
Let δ(x+z+;ω+) and ω+ = (1− θ)ω where θ ∈ (0, 1). We have

δ(v+;ω+) =
1

(ω+)i
∥v−2

+ (ω3
+ − v3+)∥

=
1

(1− θ)ωi
∥
(
(1− θ)3ω3 − (v+)

3
)

v2+
∥

=
1

(1− θ)ωi
∥v−2

+

(
(1− θ)3ω3 + (1− θ)3v3+ − (1− θ)3v3+ − v3+

)
∥

≤ 1

(1− θ)ωi

(
∥(1− θ)3v−2

+ (ω3 − v3+)∥+∥v+((1− θ)3 − 1)∥
)

= (1− θ)2δ+ +
|(1− θ)3 − 1|

1− θ

∥v+∥
ωi

≤ δ+ +
|(1− θ)3 − 1|

1− θ

∥v+∥
ωi

≤ δ+ +
|θ(θ2 − 3θ + 3)|

1− θ

∥v+∥
min(ω)

.

As 0 < θ2 − 3θ + 3 < 3, ∀θ ∈ (0, 1), we obtain

δ(v+;ω+) ≤ δ+ +
3θ

1− θ

∥v+∥
min(ω)

.

By Lemma 3.5, we have
∥v+∥ ≤

√
2nmax(ω).
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Next, Lemma 3.4 implies that

δ+ ≤
(
5

8
+

5

9 + 6
√
2

)
δ2.

Now, let δ ≤ 1, then we get

δ(v+;ω+) ≤
(
5

8
+

5

9 + 6
√
2

)
+

3
√
2nσC(ω)θ

1− θ
.

Let θ = 1

36
√
2nσc(ω)

, n ≥ 2 and σc(ω) ≥ 1 so θ ∈
[
0, 1

72

]
from which we deduce that

δ(v+;ω+) ≤ ξ(θ)

where
ξ(θ) =

(
5

8
+

5

9 + 6
√
2

)
+

1

12(1− θ)
.

As ξ′(θ) = 1

12 (θ − 1)
2 > 0, then ξ(θ) is strictly increasing on the interval

[
0, 1

72

]
. Hence ξ(θ) ≤ ξ

(
1
72

)
=

0.9966 < 1. This proves the theorem.

Theorem 3.1, shows that Algorithm 1 is well-defined since the conditions x > 0, z > 0, and δ(xz;ω) ≤ 1
are maintained throughout the algorithm. Also observe that σC(ω) = σC(ω0) for all iterates produced by
Algorithm 1.

The next lemma derives an upper bound for the total number of iterations produced by Algorithm 1.

Lemma 3.6
Let xk and zk be the k-th iteration produced by Algorithm 1. Then

(xk)T zk ≤ ϵ

if
k ≥

⌈
1

θ
log

2nmax(ω0)
2

ϵ

⌉
.

Proof
After k iterations, we have ωk = (1− θ)kω0. By Lemma 3.6, we get that

(xk)T zk ≤ 2n(1− θ)2k max(ω0)
2.

Thus the inequality (xk)T zk ≤ ϵ holds if

2n(1− θ)2k max(ω0)
2 ≤ ϵ.

Taking logarithms, we find
2k log(1− θ) ≤ log ϵ− log 2nmax(ω0)

2.

Using the inequality − log(1− θ) ≥ θ where 0 < θ < 1, so the above inequality holds if

kθ ≥ 1

2
log

2nmax(ω0)
2

ϵ
.

This completes the proof.
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Theorem 3.2
Suppose that (x0, y0, z0) is a strictly feasible starting point, ω0 = x0z0

√
2max(x0z0)

and δ(x0z0;ω0) ≤ 1. Let
θ = 1

36
√
2nσc(ω0)

, then Algorithm 1, requires at most

O
(√

nσC(ω0) log
n

ϵ

)
iterations for getting an ϵ-approximate solution of CQO.

Proof
Let θ = 1

36
√
2nσC(ω0)

, Theorem 3.2 follows directly from Lemma 3.6.

Corollary 3.1
If we take ω0 = 1√

3
e, then Algorithm 1, requires at most O

(√
n log

n

ϵ

)
iterations which is the currently

best known iteration bound for short-update method.

Proof
The proof is an immediate consequence of Theorem 3.2.

4. Numerical results

In this section, we implement Algorithm 1 on some examples of CQO with different size by using
Matlab R2010a and run on a PC with CPU 2.00 GHz and 4.00 G RAM memory and double precision
format. Here our accuracy is set to ϵ = 10−4. The strictly feasible initial point (x0 > 0, y0, z0 > 0) is
taken such that δ(x0z0, ω0) ≤ 1. The optimal primal-dual solution is denoted by (x⋆, y⋆, z⋆). Here, we
display the following notations: the ”Iter” denotes the number of iterations produced by the algorithm
to obtain an approximated optimal solution. The ”CPU” denotes the time (in second) required to obtain
an approximate optimal solution for CQO. Also to improve our numerical results we have relaxed the
barrier vector ω0 = { 1√

2
e,
√
x0z0, x0z0

√
2max(x0z0)

}, with the update barrier θ = 1
36

√
2nσC(ω0)

, n ≥ 2. We also
display a table for the number of iterations and the elapsed time for each example.

Example 1. We consider the convex quadratic optimization, where

A =

(
−1 1 1 0
2 3 0 1

)
, Q =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 ,

c = (1.3333, 1.3333, 1.3333, 1.3333)T , b = (0.33, 2)T . The strictly feasible starting point x0 and z0 are chosen
according to each value of ω0 and such that δ(x0z0;ω0) ≤ 1. For this example, we take

x0 = (0.3333, 0.3333, 0.3333, 0.3333)T , y0 = (−2,−2)T , z0 = (2, 2, 2, 2)T .

ω0 →
1√
2
e

√
x0z0 x0z0

√
2max(x0z0)

Iter CPU Iter CPU Iter CPU
1862 0.53163 1876 0.137857 1862 0.139970

Table 1. Numerical results for Example 1.
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A primal-dual optimal solution of Example 1 is:

x⋆ = (0.2000, 0.5333, 0.0000, 0.0000)T ,

y⋆ = (−2.0800,−1.1733)T ,

z⋆ = (0.0000, 0.0000, 1.4133, 0.5067)T .

Example 2. The data of the following convex quadratic problem is given by

A =

 1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05
1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1
1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1



Q =



30 1 1 1 1 1 1 1 1 1
1 21 0 1 −1 1 0 1 0.5 1
1 0 15 −0.5 −2 1 0 1 1 1
1 1 −0.5 30 3 −1 1 −1 0.5 1
1 −1 −2 3 27 1 0.5 1 1 1
1 1 1 −1 1 16 −0.5 0.5 0 1
1 0 0 1 0.5 −0.5 8 1 1 1
1 1 1 −1 1 0.5 1 24 1 1
1 0.5 1 0.5 1 0 1 1 39 1
1 1 1 1 1 1 1 1 1 11


,

c = (2.1, 3.45, 4.25, 2.5, 2.75, 4, 4.7, 2.95, 1.4, 4)T , b = (0.7660, 1.1770, 1.21)T . The initial point is taken as:

x0 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T ,

y0 = (−1,−1,−1)T ,

z0 = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6)T .

ω0 →
1√
2
e

√
x0z0 x0z0

√
2max(x0z0)

Iter CPU Iter CPU Iter CPU
3022 0.293683 3037 0.293173 3022 0.294073

Table 2. Numerical results for Example 2.

A primal-dual optimal solution for this example is:

x⋆ = (0.0973, 0.0000, 0.0236, 0.1725, 0.0810, 0.2061, 0.0000, 0.1124, 0.0730, 0.0000)T ,

y⋆ = (−1.5354, 2.0035, 0.5461)T ,

z⋆ = (0.0000, 1.5550, 0.0000, 0.0000, 0.0000, 0.0000, 0.5015, 0.0000, 0.0000, 3.8707)T .

Example 3. We consider the CQO, where n = 2m and

A[i, j] =

{
0 if i ̸= j or (i+ 1) ̸= j
1 if j = i+m.

Q[i, j] =

 2j − 1 if i > j or i = j = n
2i− 1 if i < j
i(i+ 1) if i = j.

c =

{
0 if i = i+m
1 else if, , b[i] = 0.5.
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For this example, we take x0 = 0.5e, y0 = 0Rm and z0 = e as the strictly feasible initial point. The obtained
numerical results with θ = 1

36
√
2nσC(ω0)

are showed in Table 3.

ω0 →
Size
(m,n) ↓

1√
2
e

√
x0z0 x0z0

√
2max(x0z0)

Iter CPU Iter CPU Iter CPU
(10, 20) 4356 0.819771 4356 0.797447 4356 0.806954
(50, 100) 10162 98.984386 10163 134.182516 10163 148.585150
(100, 200) 14624 577.192434 14625 694.052203 14625 708.916735
(1000, 2000) 51120 1481.75235 51120 1482.24890 51120 1481.06895

Table 3. Numerical results for Example 3 with different sizes.

A primal-dual optimal solution of Example 3 is:

x⋆ = (0.0000, · · · , 0.0000, 0.4185)T ,
y⋆ = (0.0388, · · · , 0.0388)T ,
z⋆ = (0.3876, · · · , 0.3876, 0.0000)T .

Comment. Across the obtained numerical results, we see that Algorithm 1 computes a primal-dual optimal
solution for CQOs but in a large number of iterations and with a significant elapsed time. This means
that the algorithm converges slowly to an optimal solution while using θ stated in our analysis. The cause
is due to the fact that θ becomes very small for problems with a large size n. Consequently, the rate of
decrease (1− θ) in the sequence of barrier vectors {ωk} approaches to one.

4.1. A numerical amelioration of Algorithm 1
In this subsection, based on our comment and in order to improve our numerical results, we import some
changes on the original version of Algorithm 1, where instead of using the updating θ provided by our
analysis, we take it as a constant belongs to the set {0.1, ..., 0.9}. Moreover, to guarantee that the iterates
remain interior, we introduce a step-size αmax > 0 such that x+ ραmax∆x > 0 and z + ραmax∆z > 0 with
αmax = min{αP , αD} and ρ ∈ (0, 1) where αP and αD are given by

αP =

 mini

(
− xi
∆xi

)
if ∆xi < 0

1 if ∆xi ≥ 0,
αD =

 mini

(
− zi
∆zi

)
if ∆zi < 0

1 if ∆zi ≥ 0.

Based, on the imported changes our new obtained numerical results for the same examples are stated in
tables below.

ω0 →
θ ↓ 1√

2
e

√
x0z0 x0z0

√
2max(x0z0)

Iter CPU Iter CPU Iter CPU
0.1 175 0.139169 176 0.193436 175 0.117749
0.2 84 0.083488 83 0.081854 83 0.062218
0.3 52 0.067883 52 0.068502 52 0.046201
0.4 36 0.063592 36 0.060969 36 0.039543
0.5 27 0.054806 27 0.051760 27 0.039456
0.6 20 0.054244 20 0.054322 20 0.032333
0.7 19 0.048853 19 0.055084 19 0.031448
0.8 19 0.051142 19 0.048136 19 0.036626
0.9 18 0.051417 18 0.047807 18 0.035654
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Table 1. Numerical results for Example 1.

ω0 →
θ ↓ 1√

2
e

√
x0z0 x0z0

√
2max(x0z0)

Iter CPU Iter CPU Iter CPU
0.1 179 0.187614 180 0.201249 179 0.190970
0.2 85 0.146417 86 0.115407 85 0.262326
0.3 53 0.092770 53 0.081417 53 0.069546
0.4 37 0.077989 37 0.067789 37 0.052182
0.5 27 0.066829 27 0.064044 27 0.045523
0.6 21 0.057692 21 0.057452 21 0.042347
0.7 21 0.057708 21 0.054687 21 0.042074
0.8 21 0.063730 21 0.058077 21 0.039714
0.9 21 0.059037 21 0.059576 21 0.036237

Table 2. Numerical results for Example 2.
θ →

ω0 ↓ Size (m,n) ↓ 0.1 0.3 0.5 0.9
Iter CPU Iter CPU Iter CPU Iter CPU

(10, 20) 182 0.428436 53 0.087912 28 0.060326 18 0.047816
1√
2
e (50, 100) 190 2.366860 55 0.648054 29 0.340302 18 0.224515

(100, 200) 193 8.695862 57 2.523648 29 1.421619 18 0.817562
(1000, 2000) 205 5240.8705 59 2237.279743 31 835.91287 19 502.69953
(10, 20) 182 0.255420 53 0.090728 28 0.061706 18 0.045603√

x0z0 (50, 100) 190 2.404953 55 0.694129 29 0.400725 18 0.464692
(100, 200) 193 8.743116 57 2.542191 29 1.338784 18 0.806318
(1000, 2000) 204 5239.9845 59 2236.4251 31 803.36214 19 472.19425
(10, 20) 182 0.274023 53 0.086902 28 0.059837 18 0.048521

x0z0√
2max(x0z0)

(50, 100) 190 2.003090 55 0.640520 29 0.365868 18 0.223728
(100, 200) 193 8.822089 57 2.344394 29 1.343666 18 0.973272
(1000, 2000) 204 5239.5095 59 2237.26837 31 784.092613 19 486.44412

Table 3. Numerical results for Example 3.

5. Conclusion

In this paper, we presented a new weighted full-Newton step path-following interior-point method for CQO based on a
new modified Newton search direction obtained by the application of the AET technique introduced by the new univariate
function ψ(t) = t

3
2 for the Newton system which defines the weighted-path. New appropriate choices of the defaults of τ and θ

are proposed where the favorable iteration bound of the algorithm with short-step method is achieved, namely, O(
√
n log n

ϵ
).

This iteration bound is as good as for LO analogue. Meanwhile, for the obtained numerical results by Algorithm 1 for its
first version are not good for CQO problems with a large size. But, with the imported changes on Algorithm 1, the obtained
numerical results are significantly improved. Finally, the extension of this method for other class of optimization problems
deserves a good topic of research in the future.
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