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Abstract In this paper, we propose a path-following interior-point method (IPM) for solving linear optimization (LO)
problems based on a new kernel function (KF). The latter differs from other KFs in having an exponential-hyperbolic barrier
term that belongs to the hyperbolic type, recently developed by I. Touil and W. Chikouche [22, 23]. The complexity analysis
for large-update primal-dual IPMs based on this KF yields an O

(√
n log2 n log n

ϵ

)
iteration bound which improves the

classical iteration bound. For small-update methods, the proposed algorithm enjoys the favorable iteration bound, namely,
O
(√

n log n
ϵ

)
. We back up these results with some preliminary numerical tests which show that our algorithm outperformed

other algorithms with better theoretical convergence complexity.
To our knowledge, this is the first feasible primal-dual interior-point algorithm based on an exponential-hyperbolic KF.
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1. Introduction

Linear programming, also called LO, is a simple way to perform optimization. LO can be applied to different
practical fields such as economics, engineering and operations research. The most efficient methods to solve LO
problems are the IPMs. These methods begun to gain popularity since the landmark paper of Karmarker [13] in
1984. After that, Peng et al. [19] introduced the concept of kernel based IPMs. They used a direction determined by
a so-called self-regular barrier function. Later, Bai et al. [4] introduced the class of eligible KFs. Since then, KFs
became the object of attention of so many researchers as they not only serve to define a measure of the distance
between the iterate and the central path, but also play a crucial role in improving the computational complexity of
an interior-point algorithm. This led to a rich literature diversified mainly by the type of the barrier term in the KF.
See [9, 24, 6, 10, 12, 16, 11, 26] for more informations on interior point algorithms based on KFs. It’s worth noting
that the latest type is the hyperbolic one which was recently introduced by Touil and Chikouche [22, 23].

Another way to determine search directions was proposed by Darvay [7]. He presented a new method using the
technique of algebraically equivalent transformation. See [17, 8, 15] for some recent works based on this technique.

In this paper, our main contribution is a primal-dual IPM based on the following new KF.

ψ (t) =
t2 − 1

2
+ sinh2(1)

(
ecoth(t)−coth(1) − 1

)
, ∀t > 0. (1)
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We structure our paper as follows. In Section 2, we briefly recall the basics of IPMs for LO. Then, we present
some properties of the new KF in Section 3. The estimate of the step size and the decrease behavior of the
new barrier function are discussed in Section 4, where we derive the iteration bound of our algorithm for large-
and small-update methods. In Section 5, we present numerical tests on five different examples to illustrate the
effectiveness of the proposed algorithm and compare the results with other available KFs. In the final section we
conclude with some remarks.

Let us finish this introduction with some notations used in the whole paper : ∥ · ∥ denotes the Euclidean norm of
a vector. Rn

+ and Rn
++ denote the nonnegative and the positive orthants respectively. For given vectors x, s ∈ Rn,

X = diag(x) denotes the n× n diagonal matrix whose diagonal entries are the components of x, and the vector
xs indicate the component-wise product of x and s. Finally, if f(x), g(x) ≥ 0 are two real valued functions of a
real nonnegative variable, the notation f(x) = O(g(x)) means that f(x) ≤ Cg(x) for some positive constant C and
f(x) = Θ(g(x)) means that C1g(x) ≤ f(x) ≤ C2g(x) for two positive constants C1 and C2.

2. Preliminaries

In this section, we briefly describe the basics of IPMs for LO. We start by considering the standard LO problem

(P )

 min cTx
Ax = b,
x ≥ 0,

and it’s dual problem

(D)

 max bT y
AT y + s = c,
s ≥ 0,

where A ∈ Rm×n with rank(A) = m ≤ n, c ∈ Rn and b ∈ Rm are given. We assume that both (P ) and (D) satisfy
the interior-point condition (IPC); that is, there exists (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

It is well known that, under the above assumption, the optimal solution of the primal-dual pair can be obtained by
solving the following system of equations  Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = 0.

(2)

The idea underlying primal-dual IPMs is to replace the complementarity condition xs = 0 in (2) by the nonlinear
equation xs = µe, with parameter µ > 0 which leads to the following system Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = µe, µ > 0.

(3)

Since the IPC is satisfied and the rank of matrix A is full, the perturbed system (3) has a unique solution for each
µ > 0. The set of unique solutions {(xµ, yµ, sµ) : µ > 0} forms a well-behaved curve, called central path which
plays an important role in convergence analysis of the IPMs. If µ→ 0, then the limit of the central path exists and
yields optimal solutions for (P ) and (D).

Applying the damped Newton method to the perturbed system (3) produces the following system for the
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search direction (∆x,∆y,∆s)  A∆x = 0,
AT∆y +∆s = 0,
s∆x+ x∆s = µe− xs.

(4)

By taking a step size α along the search direction, the new iterate is constructed according to

x+ : = x+ α∆x

y+ : = y + α∆y

s+ : = s+ α∆s,

for some 0 < α ≤ 1 satisfying (x+, s+) > 0.
Let the scaled vector v and the scaled search directions dx and ds be defined as follows

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (5)

System (4) is then rewritten in the following form
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = v−1 − v,

(6)

where A = 1
µAV

−1X, V = diag(v), X = diag(x).

Observe that the right-hand side in the last equation of (6) is equal to minus gradient of the proximity function

Ψ(v) =

n∑
i=1

ψc(vi),

where

ψc(t) =
t2 − 1

2
− log t,

is the so-called KF of the barrier function Ψ. The main idea of kernel-based IPMs is to replace ψc by any strictly
convex function ψ : ]0,+∞[→ [0,+∞[ which is minimal at t = 1 with ψ(1) = 0. Thus, for a different function ψ,
one gets a different search direction. In this work, we replace ψc by the new KF previously defined in (1).

Coming back to system (6), we can convert it to
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = −∇Ψ(v).

(7)

Since A has full row rank, system (7) has a unique solution. Furthermore, the vectors dx and ds are orthogonal and
thus

dx = ds = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e⇔ Ψ(v) = 0 ⇔ x = xµ and s = sµ.

We also define a proximity measure to the central path as follows:

σ(v) =
1

2
∥dx + ds∥ =

1

2
∥∇Ψ(v)∥ . (8)

The generic primal-dual IPM is summarized in the following algorithm.
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Algorithm : Generic Interior-Point Algorithm for LO

Input
a threshold parameter τ ≥ 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ ∈]0, 1[; (x0, y0, s0) satisfy the IPC and µ0 = 1 such that
Φ
(
x0, s0;µ0

)
:= Ψ(v0) ≤ τ.

begin
x : = x0; s : = s0;µ : = µ0;
while nµ ≥ ϵ do

begin (outer iteration)
µ : = (1− θ)µ;
while Φ(x, s;µ) := Ψ(v) > τ do

begin (inner iteration)
Solve system (7) and use (5) to obtain (∆x,∆y,∆s);
Choose a suitable step size α;
x := x+ α∆x; y := y + α∆y; s := s+ α∆s; v :=

√
xs
µ ;

end while (inner iteration)
end while (outer iteration)

3. The new kernel function and its properties

In this section, we provide some easily obtained properties of the new KF which are used in the complexity analysis.
Recall that our KF ψ is defined as follows:

ψ (t) =
t2 − 1

2
+ sinh2(1)

(
ecoth(t)−coth(1) − 1

)
, ∀t > 0.

For conveniency, we give the first three derivatives of ψ

ψ′(t) = t− sinh2(1)

sinh2(t)
ecoth(t)−coth(1), (9)

ψ′′(t) =1 + sinh2(1)ecoth(t)−coth(1)

(
2
coth(t)

sinh2(t)
+

1

sinh4(t)

)
, (10)

and

ψ′′′(t) = − sinh2(1)ecoth(t)−coth(1)

(
4
coth2(t)

sinh2(t)
+

6 coth(t) + 2

sinh4(t)
+

1

sinh6(t)

)
. (11)

From (10), we see that ψ′′(t) ≥ 1, ∀t > 0, thus we have the following lemma.

Lemma 3.1 (Lemma 2.1 in [3])
Let ψ(t) be defined as in (1). Then

1

2
(t− 1)

2 ≤ ψ (t) ≤ 1

2
(ψ′(t))2, ∀t > 0.

Corollary 3.2 (Corollary 2.2 in [3])
Let σ(v) be defined as in (8). Then, for any v > 0, we have

σ(v) ≥
√

Ψ(v)

2
.
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Remark 3.3
Through the paper we assume that τ ≥ 2. Using Corollary 3.2 and the assumption that Ψ(v) ≥ τ , we have

σ(v) ≥ 1.

The following lemma provide an important feature of the hyperbolic cotangent function that enable us to prove
the e-convexity of the new KF.

Lemma 3.4 (Lemma 3.2 in [23])
Let ψ be the function defined in (1). Then, we have

2t coth(t)− 1 > 0, ∀t > 0. (12)

Let ϱ : [0,+∞[ −→ [1,+∞[ be the inverse function of ψ (t) for t ≥ 1, and ρ : [0,+∞[ −→ ]0, 1] the inverse

function of −1

2
ψ′ (t) for 0 < t ≤ 1. Then we have the following lemma.

Lemma 3.5
One has

•
√
1 + 2s ≤ ϱ (s) ≤ 1 +

√
2s, ∀s ∈ [0,+∞).

• coth(t) ≤ log
(
ecoth(1)(2z + 1)

)
, For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1

2ψ
′ (t) .

Proof. The first item can be easily obtained using (10), Lemma 3.1 and the fact that

ψ(t) =

∫ t

1

∫ x

1

ψ′′(y)dydx.

As for the second item, let z ≥ 0 and t ∈ ]0, 1] such that z = − 1
2ψ

′ (t) , then ρ (z) = t.
Using (9), we have

2z = −ψ′(t)

= −t+ sinh2(1)

sinh2(t)
ecoth(t)−coth(1).

Since sinh is a monotonically increasing function, we obtain

ecoth(t)−coth(1) ≤ (2z + 1),

which implies that
coth(t) ≤ log(ecoth(1)(2z + 1)).

This proves the lemma.
The next lemma reveals some key properties of the new KF.

Lemma 3.6
Let ψ be as defined in (1). Then,

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0, i.e. ψ(t) is exponentially convex on ]0,+∞[.

(iii) ψ′′ is monotonically decreasing on ]0,+∞[.

Proof. For the first and second item, using (9) and (10), we have

tψ′′(t)− ψ′(t) =
sinh2(1)

sinh2(t)
ecoth(t)−coth(1)

(
2t coth(t) + 1 +

t

sinh2(t)

)
> 0,
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and

tψ′′(t) + ψ′(t) = 2t+
sinh2(1)

sinh2(t)
ecoth(t)−coth(1)

(
2t coth(t)− 1 +

t

sinh2(t)

)
> 0,

by taking into acount (12) of Lemma 3.4.
For the third item, using (11), we have ψ′′′(t) < 0 for all t > 0, then ψ′′ decreases monotonically. This completes
the proof.

4. Analysis of the algorithm

4.1. Growth behavior of the barrier function

We proceed by studying the effect of updating the barrier parameter µ on the value of the function Ψ(v).

Theorem 4.1 (Theorem 3.2 in [4])
For any positive vector v and β ≥ 1, we have

Ψ(βv) ≤ nψ

(
βϱ

(
Ψ(v)

n

))
.

Lemma 4.2
Let 0 ≤ θ < 1 and v+ =

v√
1− θ

. If Ψ(v) ≤ τ, then we have

Ψ(v+) ≤
ψ′′(1)

2

(
θ
√
n+

√
2τ

)2
1− θ

.

Proof. The result is obtained using the same arguments as in Lemma 6.3 in [4].

As a direct consequence, we have the following corollary.

Corollary 4.3
Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ(v+) ≤
3 coth(1) + 1

(1− θ)

(
θ
√
n+

√
2τ

)2

:= Ψ0.

Ψ0 is an upper bound for Ψ(v+) during the process of the algorithm.

4.2. Decrease of the proximity during a (damped) Newton step

The purpose of this subsection is to compute a default step size α such that (x+, y+, s+) defined in the algorithm
are feasible and the proximity function decreases sufficiently. First, we consider the decrease in Ψ as a function of
α noted f and defined by

f(α) = Ψ (v+)−Ψ(v) ,

and we assume that the step size α satisfies

v + αdx > 0 and v + αds > 0.

Due to the e−convexity of ψ, we have

Ψ(v+) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)) .

For simplicity, we put σ := σ(v). Following the same procedure as in [4], we have the following theorem.
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Theorem 4.4
Let us set ᾱ =

1

ψ′′ (ρ (2σ))
, as the default step size. Then

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
. (13)

We can obtain the upper bound for the decreasing value of the proximity function in an inner iteration by the
next theorem.

Theorem 4.5
If ᾱ is the default step size and σ ≥ 1, we have

f (ᾱ) ≤ −
√

Ψ(v)

80 log2
(
ecoth(1)(

√
Ψ(v) + 1)

) . (14)

Proof. From (10) we have

ψ′′(t) =1 + (t− ψ′(t))

(
2 coth(t) +

1

sinh2(t)

)
≤ 1 + 3 (1− ψ′(t)) coth2(t).

Putting t = ρ (2σ) , we get

ψ′′ (ρ (2σ)) ≤ 1 + 3 (1 + 4σ) coth2 (ρ (2σ)) .

Thus, Lemma 3.5 implies that

ψ′′ (ρ (2σ)) ≤ 1 + 3 (1 + 4σ) log2
(
ecoth(1)(4σ + 1)

)
≤ 4(1 + 4σ) log2

(
ecoth(1)(4σ + 1)

)
≤ 4(σ + 4σ) log2

(
ecoth(1)(4σ + 1)

)
= 20σ log2

(
ecoth(1)(4σ + 1)

)
,

where the last inequality is obtained using Remark 3.3. Hence, from (13) it follows that

f (ᾱ) ≤ − σ

20 log2
(
ecoth(1)(4σ + 1)

) .
We can easily verify that the function g(t) := − t

20 log2
(
ecoth(1)(4t+ 1)

) is monotonically decreasing for t ≥ 1.

Using Corollary 3.2, we get σ ≥
√

Ψ(v)

4
, which gives

f (ᾱ) ≤ −
√

Ψ(v)

80 log2
(
ecoth(1)(

√
Ψ(v) + 1)

) ,

which completes the proof.
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4.3. Iteration complexity

Now, we compute how many inner iterations are required to return to the situation where Ψ(v) ≤ τ after µ−update.
Let us define the value of Ψ(v) after µ−update as Ψ0, and the subsequent values in the same outer iteration as
Ψi, i = 1, . . . ,K, where K stands for the total number of inner iterations in the outer iteration. The decrease on
each inner iteration is given by (14) , that is,

Ψi+1 ≤ Ψi − κΨi
1−γ , i = 0, 1 . . . ,K − 1,

with
κ =

1

80 log2
(
ecoth(1)(

√
Ψ0 + 1)

) ,
and

γ =
1

2
.

Lemma 4.6 (Proposition 2.2 in [18])
Let t0, t1, ..., tk be a sequence of positive numbers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, ...,K − 1,

where β > 0 and 0 < γ ≤ 1. Then

K ≤
[
tγ0
βγ

]
.

As a consequence, by taking tk = Ψk, β = 1

80 log2(ecoth(1)(
√
Ψ0+1))

and γ =
1

2
, we get the following lemma.

Lemma 4.7
One has

K ≤ O
(
log2(Ψ0)Ψ

1
2
0

)
.

We arrive at the final result of this section which summarizes the complexity bound.

Theorem 4.8
Let Ψ0 be an upper bound for Ψ(v+) and τ ≥ 2. Then, the total number of iterations to obtain an approximation
solution with nµ ≤ ϵ is bounded by

O
(
log2(Ψ0)Ψ

1
2
0

log n
ϵ

θ

)
.

Proof. Recall that an upper bound for the total number of iterations is obtained by multiplying the upper bound
K by the number of barrier parameter updates, which is bounded above by 1

θ (log
n
ϵ ) (see Lemma II.17 in [21]).

Thus, we obtain the result due to the above lemma.

For small-update methods with τ = O (1) and θ = Θ
(

1√
n

)
, Corollary 4.3 implies that Ψ0 = O (1) . Hence,

the complexity of the primal-dual interior point algorithm for linear programming problem based the new KF is
O
(√

n log n
ϵ

)
iterations complexity.

As for large-update methods i.e., τ = O (n) and θ = Θ(1) , Corollary 4.3 implies that Ψ0 = O (n) . Thus, we
obtain O

(√
n log2 n log n

ϵ

)
iterations complexity.
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5. Numerical tests

In this section, we carried out thorough numerical experiments to show the computational performance of the
proposed algorithm comparing it with other algorithms based on the KFs provided in Table 1. Our experiments are
implemented in MATLAB R2012b using a Supermicro dual-2.80 GHz Intel Core i5 server with 4.00 Go RAM. We
have taken ϵ = 10−8, τ = n, and θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.

Table 1. Considered kernel functions.

Kernel functions Complexity Reference
ψc(t) =

t2−1
2 − log t O

(
n log n

ϵ

)
[21]

ψ1(t) =
t2−1
2 + ep(

1
t
−1)−1
p , p = 2 O

(√
n log2 n log n

ϵ

)
[1]

ψ2(t) =
t2−1
2 −

∫ t

1
ep(

1
x−1)dx, p = log(1 + n) O

(√
n log n log n

ϵ

)
[5]

ψ3(t) =
t2−1
2 − log t+ 1

8 tan
2(π 1−t

4t+2 ) O
(
n

2
3 log n

ϵ

)
[20]

ψ4(t) =
1+2 coth(1)
2 sinh2(1)

(t2 − 1) + coth2(t)− coth2(1)− log t O
(
n

2
3 log n

ϵ

)
[22]

ψnew(t) =
t2−1
2 + sinh2(1)

(
ecoth(t)−coth(1) − 1

)
O
(√

n log2 n log n
ϵ

)
New

To analyze the computational performance fairly, we choose a practical step size α as in [14] i.e., α = min(αx, αs),
with

αx = min
i=1,...,n

{
− xi
∆xi

if ∆xi < 0,

1 elsewhere,

and

αs = min
i=1,...,n

{
− si
∆si

if ∆si < 0,

1 elsewhere.

This choice of α garantees the strict positivity of the new point. Moreover, we increase the step size by a fixed
factor 0 < β < 1 (in our case we choose β = 0.9). We conducted comparative numerical tests between the KFs
provided in Table 1 on the following test problems.

Example 5.1 ([2])

A =

(
1 1 1 1
1 1 0 −3

)
, b = (1, 0.5)

t
, c = (1, 2, 3, 4)

t
,

where the initial feasible solutions are defined as follows

x0 = (0.5, 0.27, 0.14, 0.09)
t
, y0 = (0, 0)

t and s0 = (1, 2, 3, 4)
t
.

The optimal solution is given by

x∗ = (0.87500, 0, 0, 0.12500)t, y∗ = (1.75000,−0.75000)t, and s∗ = (0.00000, 1.00000, 1.25000, 0.00000)t.

Example 5.2 ([2])

A =

 2 1 1 0 0
1 2 0 1 0
0 1 0 0 1

 , b = (8, 7, 3)
t
, c = (−4,−5, 0, 0, 0)

t
,

where the initial feasible solutions are defined as follows

x0 = (2.85, 1.9, 0.4, 0.35, 1.1)
t
, y0 = (−1.2,−1.8,−0.5)

t and s0 = (0.2, 0.3, 1.2, 1.8, 0.5)
t
.
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Example 5.3 ([2])

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b = (0, 0, 1)
t
, c = (3,−1, 1, 0, 0, 0)

t
,

where the initial feasible solutions are defined as follows
x0 = (0.06757, 0.13258, 0.13302, 0.26774, 0.13302, 0.2664)

t
, y0 = (−2,−2,−3)

t

and s0 = (10, 4, 6, 1, 5, 1)
t
.

Example 5.4 ([2])

A =


0 1 2 −1 1 1 0 0 0
1 2 3 4 −1 0 1 0 0
−1 0 −2 1 2 0 0 1 0
1 2 0 −1 −2 0 0 0 1
1 3 4 2 1 0 0 0 0

 , b = (1, 2, 3, 2, 1)
t
, c = (1, 0,−2, 1, 1, 0, 0, 00)

t
,

where the initial feasible solutions are defined as follows
x0 = (0.1819, 0.0699, 0.063, 0.1105, 0.2012, 0.6732, 1.1885, 2.835, 2.1912)

t
,

y0 = (−1.3843,−0.8751,−0.4241,−0.4463,−3.0424)
t

and s0 = (4.9398, 13.1544, 14.7156, 9.1788, 4.5072, 1.3843, 0.8751, 0.4241, 0.4463)
t
.

The summary of results is given in the following table.

Table 2. Number of inner iterations for fixed size examples.

Ex θ ψc ψ1 ψ2 ψ3 ψ4 ψnew

E
xa

m
pl

e
1 0.1

0.3
0.5
0.7
0.9

188
56
29
17
11

188
56
29
17
13

188
56
29
17
11

188
56
29
17
11

200
70
44
23
14

188
56
29
17
11

E
xa

m
pl

e
2 0.1

0.3
0.5
0.7
0.9

191
57
29
17
11

191
57
29
17
9

191
57
29
17
10

191
57
29
17
11

215
75
39
21
9

191
57
29
17
9

E
xa

m
pl

e
3 0.1

0.3
0.5
0.7
0.9

192
57
30
17
33

192
60
33
20
21

192
57
30
20
19

192
57
30
17
39

204
66
33
20
25

192
57
30
18
19

E
xa

m
pl

e
4 0.1

0.3
0.5
0.7
0.9

196
58
31
28
24

196
58
30
24
16

196
58
30
24
17

196
58
31
22
23

212
78
42
24
20

196
58
30
24
23

From Table 2, it becomes clear that smaller values of the parameter θ influence the iteration count negatively. Thus,
for the following variable size problem, we only choose θ ∈ {0.9, 0.99} for seven different sizes n = 2m where
m ∈ {5, 25, 50, 100, 200, 400, 1000}.
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Example 5.5 ([25])
The matrix A is defined as

A (i, j) =

{
1 if i = j or j = i+m,
0 otherwise,

c = −e and b (i) = 2, i = 1, ...,m.
We start by an initial point (x0, y0, s0) such that
x0(i) = 1.5, x0(i+m) = 0.5, y0 (i) = −2, for i = 1, ...,m, and s0 = e.

Table 3. Number of inner iterations for Example 5

θ m ψc ψ1 ψ2 ψ3 ψ4 ψnew

θ
=

0.
9

5
25
50
100
200
400

1000

11
12
12
13
13
13
15

9
10
10
11
11
11
12

10
10
10
11
11
11
12

11
12
12
13
13
13
15

9
10
10
11
11
11
12

9
10
10
11
11
11
12

θ
=

0.
99

5
25
50
100
200
400

1000

11
11
13
13
13
13
13

10
10
12
12
12
12
12

11
10
12
12
12
12
12

11
11
13
13
13
13
13

10
10
12
12
12
12
12

10
10
12
12
12
12
12

Recall that the numerical results were obtained by performing our algorithm with the KFs defined in Table 1 on
five test problems. For each example, we used bold font to highlight the best, i.e., the smallest, iteration number.

Although, most of the considered KFs in Table 1 have better theoretical convergence complexity, numerical
results show that by using our new KF, with exponential-hyperbolic barrier term, the best iteration complexity was
achieved in 91% of the realized experiments.

6. Conclusions and remarks

This paper proposes a new KF for solving linear programming problems that differs from the existing KFs, since
its barrier term is of exponential-hyperbolic type. Using some mild properties, a simple analysis for the primal-dual
IPMs based on the proximity function induced by the new KF shows that our algorithm has O

(√
n log2 n log n

ϵ

)
and O

(√
n log n

ϵ

)
iteration complexities for large- and small-update methods respectively. Finally, the numerical

results show that the new proposed KF is well promising and outperforms some existing KFs in the literature.
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