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Abstract In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution based
on the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost
induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is
derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on
the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose
Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided
by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.
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1. Introduction

In survival analysis, a sample of size n is subjected to a life test for the purpose of observing their failure times.
The data recorded is then used to model a time-to-failure distribution. This strategy may be impractical, costly, and
time consuming. The experimenter may also need to terminate the study before recording the failure times for all
the subjects under consideration due to time constraints and facility restrictions. In addition, some functioning test
subjects may need to be eliminated so they can be used in another test or to gather degradation related information
about failure time, which is generally the case when testing subjects is costly such as when clinical equipment is
needed. Moreover, in some cases, the failure is deliberate and expected, however it does not happen due to operator
flaws, equipment malfunction, test irregularity, etc. Samples that result from such situations are called censored
samples.

A censoring scheme, that can reach a balance between the total time spent for the experiment; the number of
subjects used in the experiment; and the efficiency of statistical inference primarily based on the outcomes of the
experiment is preferable.

The most common censoring schemes are Type-I and Type-II censoring schemes. In Type-I, the test is ceased
at a pre-specified time T, while in Type-II censoring, the experiment is terminated when a specific number, m, of
failures have been observed. Additional reduction in the experimental time and the cost were required, necessitating
the use of a hybrid censoring scheme, which can be deemed as a mixture of Type-I and Type-II censoring schemes.
In this scheme the experiment terminates at a pre-specified time. However, all these censoring schemes, do not
allow intermediate elimination of active units throughout the experiment other than at the final termination point.
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As a result of this inflexibility, several progressive censoring schemes have been proposed in the literature
to model removals of subjects during lifetime experiments. Various authors have discussed inference under
progressive censoring using different lifetime distributions. Among others we list, Balakrishnan and Asgharzadeh
(2005), Panahi et al. (2021), Helu and Samawi (2017) and recently, Helu et al. (2020). For a comprehensive review
of progressive censoring, we refer readers to Balakrishnan and Cramer (2014). In Progressive Type-II censoring, n
independent items are placed at the same time on a life testing experiment and onlym(< n) failures are completely
observed. The censoring occurs progressively in m stages as follows, when the first failure is observed, a random
sample of size R1 is immediately drawn and removed from the test. Then after the failure of the second item,
another sample of size R2 is randomly selected and removed from the remaining survival units. Continuing this
process until the mth failure, Xm:m:n, is observed and all remaining Rm = n−R− · · · −Rm−1 −m surviving
units are removed from the experiment, with X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n being the ordered failure times
resulting from the progressively Type-II censored experiment. For notation simplicity, we will write Xi for Xi:m:n.
One of the disadvantages of the Type-II progressive censoring scheme is that the duration of the experiment may be
very long if subjects are highly reliable. To resolve such situation Kundu and Joarder (2006) introduced the Type-II
Progressive hybrid (P-II hybrid) censoring scheme. The P-II hybrid scheme is a combination of the hybrid and the
progressive censoring schemes. It is more flexible according to Kundu and Joarder (2006), Panahi (2017), and Wang
(2018). In the P-II hybrid censoring scheme, the experiment terminates at a pre-specified time T ∗ = min(T,Xm),
where T > 0 and the integer m are pre-assigned. In this scheme, the total time required to terminate the experiment
does not exceed T. However, the main disadvantage of the P-II hybrid-censoring scheme is that the number of
observed failures is random. Accordingly, it can turn out to be a very small number (even zero), thus the traditional
statistical inference methods may not be valid or they may have low efficiency of the estimator(s) of the model
parameter(s). In order to deal with this disadvantage, Ng et al. (2009) proposed the Adaptive Type-II Progressive
Hybrid censoring scheme (Adaptive-IIPH) which is an adjustment of the P-II hybrid censoring scheme. This new
scheme, not only saves the total test time and the cost induced by the failure of the units, but also increases the
efficiency of the statistical analysis as well as ensuring that m items are obtained. In recent years, the Adaptive-
IIPH censoring scheme has been studied by a vast number of authors, among others is Cui et al. (2019) who
discussed the problem of estimating the Weibull distribution parameters in a constant-stress accelerated life test.
Ye et al. (2014) estimated the parameters of the extreme value distribution using the maximum likelihood technique
(MLE). Zheng and Shi (2013) estimated the parameters of the exponential distribution using EM algorithm
based on Adaptive-IIPH. Nassar et al. (2018) derived the maximum likelihood and the Bayes estimators for the
unknown parameters of the Weibull distribution. Chen and Gui (2020) discussed the problem of estimating the
parameters of the bathtub-shaped failure rate function. Panahi et al. (2021) derived the maximum likelihood and
Bayes estimates for the Bur Type III distribution. Kohansal and Shoaee (2019) studied the statistical inferences
for a multicomponent stress-strength reliability model. Yan and Wang (2020) derived the Bayes estimates and the
credible intervals of the alpha power generalized exponential distribution based on Adaptive-IIPH.

In this study we assume that the lifetimes have a Lomax distribution. This distribution has been introduced by
Lomax (1954) as a model for business failure data. It belongs to the class of decreasing failure rate distributions
(Chahkandi and Ganjali, 2009). Moreover, it provides a very good alternative to common lifetimes distribution
such as exponential, Weibull, or gamma distributions when the experimenter assumes that the population may be
a heavy-tailed distribution (see Bryson, 1974). The origin and other aspects of this distribution, as well as areas of
application, can be found in Arnold (1983).

Inferential issues for the Lomax distribution based on censored data have been addressed by Childs et al. (2001)
who considered the order statistics from the nonidentical right truncated Lomax distribution. Howlader and Hossain
(2002) considered Bayesian estimation of the survival function of the Lomax distribution. Elfattah et al. (2007)
derived the Bayesian and the non-Baysian estimators for the same sample size from the Lomax distribution based
on the progressively Type-I censoring. El-Sherpieny et al. (2020) used maximum product spacing to estimate the
parameters of the power Lomax distribution.

The contents of this article are organized as follows: In Section 2, we introduce the notation and describe
the Adaptive Type-II Progressive censoring scheme. In Section 3, when the underlying lifetime distribution is
Lomax, we derive the maximum likelihood estimator. In Section 4, Bayesian estimates are computed under four
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different loss functions using Lindley’s method. In Section 5, the efficiency of the estimators based on the proposed
censoring scheme is compared by means of extensive Monte Carlo simulations. A real-life data set is analyzed in
Section 6 to illustrate the proposed methods of estimation. Finally, the results and conclusion of the current study
are discussed in Section 7.

2. Adaptive Type-II Progressive Hybrid censoring scheme

Assume there are n units in a life-testing experiment, and the effective sample size m(< n) is determined in
advance, as well as the censoring scheme (R1, R2..., Rm), however, the values of some of the Ri may change as
the experiment progresses. Suppose the experimenter provides an ideal total test time T , however, we are allowed
to extend the experiment beyond T . If the mth failure occurs before time T (i.e. Xm < T ), the experiment is
carried out in the same way as Type-II Progressive censoring and stops at time Xm with the pre-fixed censoring
scheme (R1, R2, ..., Rm). Otherwise, if the experimental time has passed T , but the number of observed failures
has not yet reached m, we would leave as many surviving units as possible, hoping to see more failures in a short
period of time, allowing us to complete the experiment in the most effective way possible (see David and Nagaraja
(2003)), i.e. if Xj < T < Xj+1, j = 0, 1, . . . ,m− 1, we do not withdraw any items from the experiment by setting

Rj+1 = Rj+2 = · · · = Rm−1 = 0 and Rm = n−m−
j∑
i=1

Ri. This setting can be seen as a design that guarantees

m observed failure times while keeping the total test time not too far away from the ideal test time T (see Figure 1).
Note that if T = 0, then we have a conventional Type-II censoring scheme, while, if T →∞, then Adaptive-IIPH
reduces to a Progressive Type-II censoring scheme. If the failure times of the n subjects originally on the test are
from a continuous distribution with cdf F (x) and pdf f(x), then the likelihood function as given by Ng et al. (2009)
is:

f(x1, . . . , xm) = dj
m

Π
i=1
f(xi)

j

Π
i=1

[1− F (xi)]
Ri [1− F (xm)]

n−m−
j∑
i=1

Ri
,

(1)

where 0 < x1, x2, . . . , xm <∞, and dj =
m

Π
i=1

n−m−
min

 i− 1,
j

∑
k=1

Rk



3. Maximum Likelihood Estimation

3.1. Model description

The lifetime of a particular component has an exponential distribution with a failure rate λ; let λ follows a gamma
distribution with a shape parameter θ and a scale parameter β, then the failure time X of a component selected at
random from such a mixed population has a Lomax distribution with probability density function given by:

f(x; θ, β) =

∞∫
0

λe−λx
λθ−1eλ/β

βθΓ(θ)
dλ

=
βθ

(1 + βx)θ+1
, x > 0, β > 0, θ > 0, (2)
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Figure 1. Schematic representation of Adaptive Type-II Progressive censoring. Case 1: Experiment terminates before time
T, Case 2: Experiment terminates after time T.

with a cumulative distribution function (cdf) defined as:

F (x; θ, β) = 1− 1

(1 + βx)θ
, x > 0, β > 0, θ > 0. (3)

3.2. Maximum likelihood estimators

Suppose that n independent subjects are placed on a test and that the lifetime distribution of each unit is given by
(2). The ordered m failures are observed under the Adaptive-IIPH censoring scheme R = (R1, ..., Rm). Thus in
accordance with (2), (3) and (1), the log-likelihood function of θ and β based on Adaptive-IIPH censored data
becomes

lnL(x|θ, β) ∝ m ln(θβ)− (θ + 1)

m∑
i=1

ln(1 + βxi)− θ
j∑
i=1

Ri ln(1 + βxi)

−θ

(
n−m−

j∑
i=1

Ri

)
ln(1 + βxm). (4)
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The MLEs of the parameters θ and β can be obtained by deriving (4) with respect to θ and β and equating the
normal equations to 0 as follows:

∂ lnL(x|θ, β)

∂θ
=

m

θ
−

m∑
i=1

ln(1 + βxi)−
j∑
i=1

Ri ln(1 + βxi) +

(
n−m−

j∑
i=1

Ri

)
ln(1 + βxm)

= 0, (5)

∂ lnL(x|θ, β)

∂β
=

m

β
− (θ + 1)

m∑
i=1

xi
1 + βxi

− θ
j∑
i=1

Ri xi
1 + βxi

+

θ

(
n−m−

j∑
i=1

Ri

)
xm

1 + βxm

−
m∑
i=1

Ri(θxi)
−βe−(θxi)

−β
ln(θxi)

1− e−(θxi)−β
= 0. (6)

Notice that there is no explicit solution to Eqs.(5) & (6). Therefore, we implement Newton-Raphson method by
using SAS/IML language to obtain MLEs of θ and β. The maximum likelihood estimators of θ and βare exist and
unique (see Wingo (1993); Helu et al. (2015)).

4. Bayesian Estimation

In this section, we derive the Bayes estimate of the parameters of the Lomax distribution under various loss
functions. A commonly used loss function is the squared error loss function (SQR)

L(θ̂, θ) = (θ̂ − θ)2, (7)

The Bayes estimate under (7) is the posterior mean. Given by θ̂SQR = Eπθ. The SQR is widely employed in the
Bayesian inference due to its computational simplicity. It is a symmetric loss function that gives equal weight to
overestimation as well as underestimation. However, this is not a good criteria from a practical point of view. For
example, Feynman (1987) stated that in the disaster of the space shuttle, Challenger, the management might had
(Or may have) overestimated the average life or reliability of solid fuel rocket booster. In estimating reliability and
failure rate functions, an overestimation causes more damage than underestimation. To resolve such a situation,
asymmetrical loss functions are more appropriate. Varian (1975) introduced the Linear- Exponential loss function
(Linex) in response to the criticism of the SQR. The Linex loss function is defined as follows:

L(θ̂, θ) = exp(λ(θ̂ − θ))− λ(θ̂ − θ)− 1, λ 6= 0 (8)

The magnitude of λ reflects the degree of symmetry while the sign of λ reflects the direction of symmetry. Zellner
(1986) obtained the Bayesian estimator under (Linex) loss function by minimizing the posterior expected loss as
follows:

θ̂LIN = − 1

λ
lnEπ(e−λθ) (9)

provided that Eπ(e−λθ) exists and finite.

The Linex loss function is suitable for situations where overestimation may lead to serious consequences, and it
is known for its flexibility and popularity to estimate the location parameter. On the other hand, Basu and Ebrahimi
(1991) and Parsian and Farsipour (1993) found that the Linex loss function is unsuitable for estimating the scale
parameter and other quantities. Hence, Basu and Ebrahimi (1991) defined a modified Linex loss function instead.
Later on, Calabria and Pulcini (1996) proposed a suitable alternative to the modified Linex loss function that is the
General entropy (GE) loss function.

Stat., Optim. Inf. Comput. Vol. 9, December 2021



794 ADAPTIVE-IIPH FROM LOMAX

The General entropy loss function is defined as

L(θ̂, θ) =

(
θ̂

θ

)λ
− λ log

(
θ̂

θ

)
− 1, λ 6= 0. (10)

Where λ reflects the magnitude and degree of symmetry. Calabria and Pulcini (1996) obtained the Bayesian
estimator under (10) as follows:

θ̂GE =
(
Eπ(θ−λ)

)−1
λ , (11)

provided that Eπ(θ−λ) exists and finite, moreover, θ̂GE = θ̂SQR when λ = −1.

Norstrom (1996) introduced the Precautionary loss function as follows:

L(θ̂, θ) =
(θ − θ̂)2

θ̂
, (12)

and claimed that it is useful to derive conservative estimators since it approaches infinity near the origin and
prevents underestimation. This loss function is suitable for situations where underestimation may lead to serious
consequences.

The Bayesian estimator under (12) is given by

θ̂PRE =
√
Eπ(θ2), (13)

provided that Eπ(θ2) exists and finite, notice that θ̂PRE = θ̂GE when λ = −2.

A common feature of lifetime distributions with a shape parameter is that the Bayes estimators can not be
expressed in closed forms. We suggest using Lindley’s approximation to derive the Bayes estimators of the
unknown parameters of the Lomax distribution based on progressively Type-II censored sample.

4.1. Lindley’s approximation method

It is assumed that θ and β have independent gamma priors;

θ ∼ π1(θ) =
θa−1e−bθba

Γ(a)
; β ∼ π2(β) =

βc−1e−cβdc

Γ(d)
(14)

where a, b, c and d are assumed to be known and non-negative. The joint prior for θ and β is π(θ, β) ∝
θa−1e−bθβc−1e−dβ .Use the same set-ups as in Section 3. If x = (x1, x2, ..., xm) isAdaptive-IIPH censored sample
from Lomax(θ, β), then the joint posterior pdf of θ and β is given by

π(θ, β|x) =
L(x|θ, β)π(θ, β)

∞∫
0

∞∫
0

L(x|θ, β)π(θ, β)dθdβ

=

θa−1βc−1e−bθe−dβ
m∏
i=1

θβ

(1+βxi)
θ+1

j∏
i=1

[
(1 + βxi)

−θ]Ri (1 + βxm)
n−m−

j∑
i=1

Ri

∞∫
0

∞∫
0

θa−1βc−1e−bθe−dβ
m∏
i=1

θβ

(1+βxi)
θ+1

j∏
i=1

[(1 + βxi)−θ]
Ri (1 + βxm)

n−m−
j∑
i=1

Ri
dθdβ

(15)

Therefore, the Bayes estimators of any function of θ and β say u(θ, β) is the posterior expected value. Let u(θ, β)
be a function of θ and β, then the expected value of u(θ, β) is given by:

û = Eπ(u(θ, β)|x) =

∞∫
0

∞∫
0

u(θ, β)eρ(θ,β)+l(x|θ,β)dθdβ

∞∫
0

∞∫
0

eρ(θ,β)+l(x|θ,β)dθdβ

(16)
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where, ρ(θ, β) = lnπ(θ, β) and l(x|θ, β) = lnL(x|θ, β).
It can be noticed that û is in the form of a ratio of two integrals which can not be simplified to a closed form.

Hence Lindley’s approximation method is applied to obtain the Bayes estimators of θ and β, see Lindley (1980).
Then (16) is reduced to the following numerical expression.

û = u(θ̂, β̂) + 0.5[(ûθθ + 2ûθρ̂θ)σ̂θθ + (ûβθ + 2ûβ ρ̂θ)σ̂βθ + (ûθβ + 2ûθρ̂β)σ̂θβ +

(ûββ + 2ûβ ρ̂β)σ̂ββ ] + 0.5[(ûθσ̂θθ + ûβ σ̂θβ)(l̂θθθσ̂θθ + l̂θβθσ̂θβ + l̂βθθσ̂βθ + l̂ββθσ̂ββ) +

(ûθσ̂βθ + ûβ σ̂ββ)(l̂βθθσ̂θθ + l̂θββ σ̂θβ + l̂βθβ σ̂βθ + l̂βββσ̂ββ)].

where, θ̂ and β̂ are theMLE’s of θ and β respectively, ûθθ = ∂2u(θ,β)
∂θ∂θ |(θ̂,β̂), ρ̂θ = (a−1)

θ̂
− b, ρ̂β = (c−1)

β̂
− d.Other

expressions can be defined similarly (see the Appendix).

4.2. Bayes estimates under symmetric loss function

• Approximate Bayes estimate of θ under squared loss function.

If u(θ, β) = θ, uθ = 1, uβ = uββ = uθθ = uθβ = uβθ = 0, then,

θ̂SQR=θ̂+ρ̂θσ̂θθ+ρ̂β σ̂θβ+σ̂2
βθ l̂θββ+

[
σ̂2
θθ l̂θθθ + 3σ̂θθσ̂βθ l̂θβθ + σ̂ββ σ̂θθ l̂ββθ + σ̂βθσ̂ββ l̂βββ

]
2

.

• Approximate Bayes estimate of β under squared loss function.

If u(θ, β) = β, uβ = 1, uββ = uθβ = uβθ = uθ = uθθ = 0, then

β̂SQR=β̂+ρ̂θσ̂βθ+ρ̂β σ̂ββ+σ̂2
θβ l̂θβθ +

[
σ̂2
ββ l̂βββ + 3σ̂ββ σ̂θβ l̂θββ + σ̂ββ σ̂θθ l̂βθθ + σ̂θβ σ̂θθ l̂θθθ

]
2

.

4.3. Bayes estimates under asymmetric loss functions

(1) The Bayes estimates under Linex loss function

• Approximate Bayes estimate of θ under Linex loss function

If, u(θ, β) = e−λθ, uθ = −λe−λθ, uθθ = λ2e−λθ, uβ = uββ = uθβ = uβθ = 0.

Then,

Eπ(e−λθ|x) = e−λθ̂ +
ûθθσ̂θθ

2
+ûθ

[(
ρ̂θ+σ̂βθ l̂θβθ

)
σ̂θθ +

(
ρ̂β + σ̂βθ l̂θββ

)
σ̂θβ

]
+
ûθ

[
σ̂2
θθ l̂θθθ + σ̂θθσ̂ββ l̂ββθ + σ̂βθσ̂θθ l̂βθθ + σ̂βθσ̂ββ l̂βββ

]
2

,

hence, the Bayes estimate of θ is obtained by

θ̂LIN = − 1

λ
lnEπ(e−λθ|x).

• Approximate Bayes estimate of β under Linex loss function

If u(θ, β) = e−λβ , uβ = −λe−λβ , uββ = λ2e−λβ , uθ = uθθ = uθβ = uβθ = 0.
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Then,

Eπ(e−λβ |x) = e−λβ̂ +
ûβ σ̂ββ

(
σ̂ββ l̂βββ + 3σ̂θβ l̂ββθ + σ̂θθ l̂βθθ

)
2

+
(ûββ + 2ûβ ρ̂β) σ̂ββ + ûβ σ̂θβ σ̂θθ l̂θθθ

2
+ ûβ

(
ρ̂θ + σ̂θβ l̂θβθ

)
σ̂θβ ,

hence, the Bayes estimate of β is obtained by

β̂LIN = − 1

λ
lnEπ(e−λβ |x).

(2) The Bayes estimates under General entropy loss function
• Approximate Bayes estimate of θ under General entropy

If u(θ, β) = θ−λ, uθ = − λ
θλ+1 , uθθ = λ(λ+1)

θλ+2 , uβ = uββ = uθβ = uβθ = 0.

Eπ(θ−λ|x) = θ̂−λ +
(ûθθ + 2ûθρ̂θ)σ̂θθ

2
+ ûθ

(
ρ̂β σ̂θβ + σ̂θθσ̂βθ l̂θβθ + σ̂2

βθ l̂θββ

)
+
ûθ

[
σ̂2
θθ l̂θθθ + σ̂θθ

(
σ̂ββ l̂ββθ + σ̂βθ l̂βθθ

)
+ σ̂βθσ̂ββ l̂βββ

]
2

,

so, the Bayes estimate of θ is θ̂GE = [Eπ(θ−λ|x)]
−1
λ .

• Approximate Bayes estimator of β under the General entropy.

If u(θ, β) = β−λ, uβ = − λ
βλ+1 , uββ = λ(λ+1)

βλ+2 , uθ = uθθ = uθβ = uβθ = 0.

Then,

Eπ(β−λ|x) = β̂−λ + ûβ (ρ̂θσ̂βθ + ρ̂β σ̂ββ) +
ûββ σ̂ββ + ûβ σ̂θβ σ̂θθ l̂θθθ

2

+
ûβ

[(
σ̂ββ l̂βββ + σ̂θθ l̂βθθ

)
σ̂ββ +

(
2σ̂θβ l̂θβθ + 3σ̂ββ l̂ββθ

)
σ̂θβ

]
2

,

hence, β̂GE = [Eπ(β−λ|x)]
−1
λ .

(3) The Bayes estimates under Precautionary loss function.
• Approximate Bayes estimate of θ under the Precautionary loss function.

If u(θ, β) = θ2, uθ = 2θ, uθθ = 2, uβ = uββ = uθβ = uβθ = 0.

Then

Eπ(θ2|x) = θ̂2 + ûθρ̂β σ̂θβ +

[
(ûθθ + 2ûθρ̂θ)σ̂θθ + ûθ

(
σ̂2
θθ l̂θθθ + σ̂βθ l̂θβθ

)]
2

+
ûθ

[
σ̂θθ

(
σ̂ββ l̂ββθ + σ̂βθ l̂βθθ

)
+ σ̂βθ

(
2σ̂βθ l̂θββ + σ̂ββ l̂βββ

)]
2

,

therefore, θ̂PRE =
√
Eπ(θ2|x).
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• Approximate Bayes estimate of β under the Precautionary loss function.

If u(θ, β) = β2, uβ = 2β, uββ = 2 uθ = uθθ = uθβ = uβθ = 0.

Then, Eπ(β2|x) = β̂2 + ûβ ρ̂θσ̂βθ +

[
(ûββ + 2ûβ ρ̂β)σ̂ββ + ûβ σ̂θβ σ̂θθ l̂σ̂

2
ββ l̂βββ

]
2

+
ûβ

[
2σ̂2

θβ l̂θβθ + σ̂ββ σ̂θθ l̂βθθ + 3σ̂θβ σ̂ββ l̂ββθ

]
2

,

so, β̂PRE =
√
Eπ(β2|x).

5. Simulation Study

The purpose of the simulation study is to compare the performance of theMLE’s and the Bayesian estimates, based
on symmetric and asymmetric loss functions, using independent gamma priors for the shape and scale parameters.
Progressively censored samples (Balakrishnan and Aggarwala (2000)) are randomly generated from the Lomx
distribution as follows.

1. Generate m independent U(0, 1) random variables W1,W2, ...,Wm.

2. For given values of progressive censoring scheme R1, R2, ..., Rm, we set Ei = (i+
m∑

j=m−i+1

Rj), i =

1, ...,m. Vi = W
1/Ei
i , for i = 1, ...,m.

3. Consider Ui = 1− Vm × Vm−1 × ...× Vm−i+1, i = 1, ...,m, then U1, ..., Um is a Progressive Type-II
censored sample of size m from U(0, 1).

4. For given values of θ and β we set Xi = F−1(Ui) = (1−Ui)
−1
θ −1

β , i = 1, ...,m. Finally, x1, x2, ..., xm is the
required Progressive Type-II censored sample of size m from the Lomax(θ, β) distribution.

5. Determine the value of j, where Xj < T < Xj+1 and discard the sample Xj+2, . . . , Xm.

6. Generate the first m− j − 1 order statistics from a truncated distribution f(x)
1−F (xj+1n)

with sample size

n−
j∑
i=1

Ri−j−1 as Xj+2, . . . , Xm.

7. Obtain the maximum likelihood estimates of θ and β using iterative process.
8. Values of θ and β are generated from π1 and π2 as given in (14) with specified parameters ”a”, ”b”, ”c”, and

”d”. The resulted values of θ and β are considered to be the true values that will be used to generate the
Adaptive-IIPH censored sample.

9. We generate 5000 Adaptive-IIPH censored samples from the Lomax distribution (with a = 0.5, b = 0.2, c =
1, d = 1). Three different T values: T1 = Xbm2 c; T2 = Xb 4∗m5 c; T3 = (Xm + 2) and different combinations
of sample sizes and effective sample sizes (n,m) : (n,m) = (20, 6); (20, 14); (40, 30); (60, 40) are conducted
with three censoring schemes (R1, ..., Rm). Note that, when n = 20,m = 14, the censoring scheme R =
(2, 3, 0∗12) means that after the first failure, two items are removed at random from the remaining 19 items,
then after the second failure, three items are removed at random from the remaining 16 items. The next
twelve failure times are observed. For simplicity of notations, R = (0∗4) indicates R = (0, 0, 0, 0). The three
censoring schemes are shown below:

• Censoring scheme (Cs) I: R1 = n−m,Ri = 0, for i 6= 1.
• Censoring scheme (Cs) II: Rm = n−m,Ri = 0 for i 6= m.
• Censoring scheme (Cs) III: R1 = Rm = (n−m)/2, Ri = 0 for i 6= 1 & i 6= m.
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Due to the length of the article, we present only some of the simulation results, the other results are similar.
In this simulation, we computed the average values and the MSEs of the MLE and the Bayesian estimates
for θ and β. All values are reported in Tables 1-6.

• It is clearly obvious that the MSE values for all censoring schemes are consistently small. Moreover, as
the failure rate m

n increases, the MSE values decrease and approach zero.
• In terms of MSE values, the Bayesian estimates based on Linex and GE loss functions indicate that

the choice of λ = 2 is no different than the choice of λ = −1 except when m is small (= 6&14).
• For fixed n and m, there is no significant distinction in terms of the MSE values between the estimates

with different predetermined termination time T.
• Bayes estimates outperform the MLEs in terms of bias and MSE values.
• The Bayes estimate based on Linex loss function with λ = 2 outperforms all competing estimates

including the MLE, in terms of absolute bias and MSE values. Moreover, the Bayesian estimates
based on GE with λ = 2 is quite close to the MLE in terms of absolute bias and MSE values.

• For fixed n,m and T , estimates based on Scheme I perform better compared to Schemes II and III, in
terms of bias and MSE values.

6. Real life data

In this section, we consider a real life data to demonstrate the proposed method and verify how our estimates
work in practice. The data for this application was obtained from a meteorological study by Simpson (1972). The
data represents radar-evaluated rainfall from 52 south Florida cumulus clouds. The data were utilized by Helu et
al. (2015). The legitimacy of Lomax model is checked based on θ = 1.3055 and β = 0.00664 using Kolmogrov-
Smirnov (K-S) test, as well as Anderson-Darling (A-D) and chi-square tests. It is observed that K-S = 0.0952
with pvalue = 0.6979, A-D = 2.5018 and chi-square distance = 4.4278 with a corresponding pvalue = 0.48961.
This indicates that the Lomax model provides a good fit to the data. In addition, Figure 2 gives the histogram of
the data-set and the plots of the fitted density. The QQ plot in Figure 3 suggests that Lomax is very suitable for the
meteorological data.

0 4.1 4.9 4.9 7.7 11.5 17.3 17.5 21.7 24.4
26.1 26.3 28.6 29.0 31.4 32.7 36.6 40.6 41.1 47.3
68.5 81.2 87 92.4 95 115.3 118.3 119 129.6 147.8
163 198.6 200.7 242.5 244.3 255 274.7 274.7 302.8 321.2
334.1 345.5 372.4 430 489.1 703.4 830.1 978 1202.6 1656
1697.8 2745.6

From the given data we created three different artificial Adaptive-IIHP censored data. The three applied censoring
schemes are the same as those in Section 6 and they are as follows:

• Scheme I: n = 52, m = 30, R = {22, 0∗29}, T1 = X26.
• Scheme II: n = 52, m = 30, R = {0∗29, 22}, T2 = X42.
• Scheme III: n = 52, m = 30, R = {11, 0∗28, 11}, T3 = 2X30.

For producing the Bayes estimators, a non-informative prior is applied since we have no information about the
priors, thus we choose a = b = c = d = 0. The generated data can be found in Table 7.

Meanwhile, the influence of overestimation and underestimation is explicit, so it is decided to use λ = −1&2 for
the Linex and the general entropy loss functions. The estimates based on the censored data can be found in Table
8. In Table 8, the values of the proposed estimates for β are almost identical to the MLE and coincide with the
MLE of β based on complete data. In addition, for fixed scheme, the Bayes estimates of θ are close to each other
and comparable with the MLE, except for the general entropy when λ = −1.
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Figure 2. The histogram of the data set and its fitted density function to the
meteorological data.

Figure 3. Plot of the empirical quantile of Lomax distribution fitted to the
meteorological data.

It is of great importance to notice through this analysis that the Bayes estimates and the MLE based on Scheme
I, are very close to those of the complete data set. Moreover, we prefer the Linex and the GE when λ = 2 to
estimate the parameters of the Lomax distribution based on adaptive type II progressive hybrid censored data of
the radar-evaluated rainfall from 52 south Florida cumulus clouds.

7. Conclusions and recommendations

In this article, the authors considered the Adaptive Type-II Progressive Hybrid censoring data from Lomax
distribution. This type of censoring satisfies the experiment time limitation and can also be used to simulate
different practical situations.
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Table 7. The meteorological study data

scheme censored data
I 0, 4.1, 4.9, 4.9, 7.7, 11.5, 17.3, 17.5, 21.7, 26.3, 31.4, 32.7, 115.3,118.3, 119, 129.6,

147.8, 163,198.6, 200.7,242.5, 244.3, 255, 274.7, 274.7, 302.8, 321.2, 334.1, 345.5, 372.4
II 0, 4.1, 4.9, 4.9, 7.7, 11.5, 17.3, 17.5, 21.7, 24.4,26.1, 26.3, 28.6, 29.0, 31.4, 32.7,

36.6, 40.6, 41.1, 47.3, 68.5, 81.2, 87, 92.4, 95, 115.3, 118.3, 119, 129.6, 147.8
III 0, 28.6, 29.0, 31.4, 32.7, 36.6, 40.6, 41.1, 47.3, 68.5, 81.2, 87, 92.4, 95, 115.3, 118.3, 119,

129.6, 147.8, 163, 198.6, 200.7, 242.5, 244.3, 255, 274.7, 274.7, 302.8, 321.2, 334.1

Table 8. The meteorological study data

scheme I scheme II scheme III
Method θ β θ β θ β

MLE 1.32907 0.01 0.69270 0.01654 0.75799 0.01
SEL 1.39084 0.00980 0.73875 0.01601 0.79203 0.00979
PRE 1.42460 0.01041 0.75801 0.01732 0.81084 0.01038
LIN (λ = 2) 1.29326 0.00979 0.70803 0.01599 0.76073 0.00978
LIN (λ = −1) 1.43452 0.00980 0.75241 0.01602 0.80649 0.00979
GE (λ = 2) 1.32300 0.01 0.69396 0.01654 0.75825 0.01
GE (λ = −1) 1.74916 0.00980 0.81570 0.01601 0.86404 0.00979

Two types of inference procedures are considered; the MLE and the Bayesians (SQR, PRE, Linex, GE) to
estimate the unknown parameters of the Lomax distribution. The Bayes estimates of the unknown parameters are
computed based on symmetrical and asymmetrical loss functions. As the Bayes estimates are difficult to obtain by
direct calculations, Lindley’s approximation method is applied under the assumption of gamma priors.

It is clear from the simulation that Scheme I is superior to the other schemes as it provides the smallest MSE and
the smallest bias. It is also observed that the estimates under the Linex loss function outperform all other estimates.

On the whole, the Bayes estimates under the Linex loss function are recommended for estimating the shape and
scale parameters of the Lomax distribution based on Adaptive Type-II Progressive Hybrid censoring and based on
Scheme I.

1. Appendix

The entries for Lindley’s approximation are given by the following equations

σ̂ =

[
σ̂θθ σ̂θβ
σ̂βθ σ̂ββ

]
=

[
− ∂2l
∂θ2 |θ=θ̂,β=β̂ − ∂2l

∂θ∂β |θ=θ̂,β=β̂
− ∂2l
∂β∂θ |θ=θ̂,β=β̂ − ∂2l

∂β2 |θ=θ̂,β=β̂

]
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l̂θθ = mβ̂

θ̂2
−

m∑
i=1

[
(β̂+1)β̂xi

(θ̂xi)2+β̂
+ Ri(β̂+1)β̂e−(θ̂xi:)

−β̂
xi

(θ̂xi)2+β̂
(
1−e−(θ̂xi:)

−β̂
)− Riβ̂

2e−(θ̂xi)
−β̂

xi

(θ̂xi)2+2β̂
(
1−e−(θ̂xi:)

−β̂
)2

]
,

l̂θβ = −m
θ̂
−

m∑
i=1

[
xi(β̂ log(θ̂xi)−1)

(θ̂xi)1+β̂
− Rixie

−(θ̂xi)
−β̂

β̂ log(θ̂xi)

(θ̂xi)1+2β̂
(
1−e−(θ̂xi)

−β̂
)2 + Rixie

−(θ̂xi)
−β̂

(β̂ log(θ̂xi)−1)
(θ̂xi)1+β̂

(
1−e−(θ̂xi)

−β̂
)
]

l̂θθθ = −2mβ̂
θ̂3

+

m∑
i=1

[
(β̂+1)β̂(β̂+2)x3

i

(θ̂xi)3+β̂
− Riβ̂

2(β̂+1)e−(θ̂xi)
−β̂

xi

(θ̂xi)3+2β̂
(
1−e−(θ̂xi)

−β̂
)2

]

−
m∑
i=1

[
e−(θ̂xi)

−β̂Rix
3
i: β̂(β̂+1)(β̂+2)

(θ̂xi)3+β̂
(
1−e−(θ̂xi)

−β̂
) +

Riβ̂
3e−(θ̂xi:)

−β̂
x3
i (1−3e

−(θ̂xi:)
−β̂

)

(θ̂xi)3+3β̂
(
1−e−(θ̂xi)

−β̂
)3

]
.

l̂ββ = −m
β̂2
−

m∑
i=1

[
log(θ̂xi)

2

(θ̂xi)β̂
− Rie

−(θ̂xi)
−β̂

log(θ̂xi)
2(1−e−(θ̂xi)

−β̂
−(θ̂xi)−β̂)

(θ̂xi)β̂
(
1−e−(θ̂xi)

−β̂
)2

]

l̂θθβ = m

θ̂2
−

m∑
i=1

[
xi[1+2β̂−β̂(β̂+1) log(θ̂xi)]

(θ̂xi)2+β̂
+ Rixiβ̂

2e−(θ̂xi)
−β̂

(1−3e−(θ̂xi)
−β̂

) log(θ̂xi)

(θ̂xi)2+3β̂(1−e−(θ̂xi)
−β̂

)3

]

+

m∑
i=1

[
Rie

−(θ̂xi)
−β̂

xi(1+2β̂−β̂(β̂+1) log(θ̂xi))

(θ̂xi)2+β̂
(
1−e−(θ̂xi)

−β̂
) + Rixiβ̂e

−(θ̂xi)
−β̂

(2+(1−β̂) log(θ̂xi))
(θ̂xi)2+2β̂(1−e−(θ̂xi)

−β̂
)2

]
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