
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, June 2023, pp 580–594.
Published online in International Academic Press (www.IAPress.org)

Reliability Analysis of Exponentiated Exponential Distribution for Neoteric
and Ranked Sampling Designs with Applications

Amal S. Hassan , Rasha S. Elshaarawy *, Heba F. Nagy

Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt

Abstract The neoteric ranked set sampling (NRSS) scheme is an effective design compared to the usually ranked set
sampling (RSS) scheme. Herein, we regard reliability estimation of the stress-strength (SS) model using the maximum
likelihood procedure via NRSS and RSS designs. Assume that stress Y and strength X are exponentiated exponential random
variables with the same scale parameter. Various sample strategies are used to evaluate the reliability estimator. We acquire
an estimate of R when the samples of stress and strength random variables are chosen from the same sampling methods,
such as RSS or NRSS. Furthermore, we derive R estimator when X and Y are chosen from RSS and NRSS, respectively, and
vice versa. A simulation investigation is formed to assay and compare the accuracy of estimates for all proposed schemes.
We conclude based on study outcomes that the reliability estimates of the stress-strength model via NRSS are more efficient
than the others via RSS. Analysis of real data is displayed to investigate the usefulness of the proposed estimators.
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Efficiency
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1. Introduction

[26] proposed the RSS technique for finding a more informative sample to estimate the population mean than the
commonly used simple random sample (SRS). In this case, visual examination of the study variable or the use
of auxiliary variables can be used to rank a small group of elected units. RSS is employed when precise sample
measurements, such as for environmental management, ecology, sociology, and agriculture, for a given unit is
either problematic or expensive and time-consuming. The following is the technique for enrolling a sample under
RSS:

Allocate n2 randomly selected units from the population into n sets, each of size n. Without yet knowing any
values for the variable of study, we sort the units within each set according to the interesting variable based on
personal professional experience or on a concomitant variable associated with the variable of interest. Determine a
sample for actual quantification by including the smallest ordered unit in the first set, the second smallest ordered
unit in set two, and continue the operation in this path until the biggest ordered unit is chosen from the ultimate set.
Repeating this process h times to acquire a sample of size N = nh for the actual measurement.

The NRSS scheme was prepared in [36] and it differs from the original RSS scheme. This design presents
more efficient estimators for the population mean and variance than SRS and RSS schemes. The NRSS method is
characterized as follows: Allocate n2 randomly selected units from the desired population and ranked the sample
items based on the pre-determined sorting procedure.
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For odd n, choose the [((n+ 1) /2) + (ς − 1)n]th ranked value for ς = 1, . . . , n. For n is even select the[J +
(ς − 1)n]th ranked unit, whereJ = (n/2) if ς is an even and J = ((n+ 2) /2) if ς is an odd for ς = 1, . . . , n.
Repeating this process h times to gain a sample with size N = nh. For more detailed information about RSS; [34]
mentioned that the mean of the RSS is an unbiased estimator of the population mean as well as it is more efficient
than SRS. [6] discussed maximum likelihood (ML) and a modified ML estimator of exponential distribution using
moving extremes RSS. [17] provided tests for exponentiated Pareto distribution using an extreme RSS scheme. [18]
discussed ML and Bayesian estimators for exponentiated exponential distribution (EED) using the RSS method.
L ranked set sampling was discussed as a method for estimating the distribution function in [3]. [36] presented a
generalization of the RSS for estimating the population mean and variance. [16] presented an unbiased sampling
approach called paired double RSS for estimating the population mean. Some entropy estimators of a continuous
random variable using different sampling schemes were proposed in [4]. [31] used the NRSS scheme to estimate
the inverse Weibull distribution parameters. [9] handled the data with Zubair Lomax parameter estimators under
RSS. [10] introduced and discussed parameter estimators of half logistic inverted Topp-Leone distribution from
RSS scheme. [12] examined the ML estimator for the scale family of distributions viz some RSS schemes.

The SS model, in its straightforward form, assigns the reliability of a unit as the probability that the strength
of the unit (X) is greater than the stress (Y) forced on it. The SS model is represented as R = P (Y < X), where
R is the reliability parameter that has many applications in physics, civil, mechanical, and aerospace engineering.
The SS model was first proposed in [11]. Many authors have worked on estimating the SS reliability (SSR) model
when both X and Y follow certain distributions based on SRS. The reader can refer to [8, 25, 30, 23]. An excellent
review of the SS model can be found in [24].

Recently, the inference of the SS model has been evaluated by several researchers based on RSS and its
modifications. [27] discussed the estimation of the SSR when strength X and stress Y are two independent
exponential distributions under RSS. [22] argued for the estimation of the SSR from generalized inverted
exponential distributions under RSS. [20, 21] provided an SSR estimator for independent Burr XII distributions
under several RSS schemes. [1] gave the SSR estimator for independent Weibull distributions under RSS. The SSR
estimator for independent Lindley populations was developed in [2]. [33] obtained the SSR when Y and X are
independent exponential distributions under RSS. [5] discussed the SSR when X and Y are exponentiated Pareto
distributions. [13] considered the SSR when both X and Y are generalized exponential distributions under RSS.
[19] discussed the SSR when X and Y are generalized inverted exponential distributions. [7] investigated the SSR
when both X and Y are Topp-Leone distributions under RSS and MRSS. [32] investigated SSR for proportional
reversed hazard rate model via lower record RSS.

[14] presented a generalization of the exponential distribution with an extra parameter, named as the EED. The
EED is popularly used in analyzing lifetime or survival data. The cumulative distribution function (cdf) and the
probability density function (pdf) of the EED with scale parameter θ and shape parameter ω are given, respectively,
by

G(x;ω, θ) = (1− e−θx)ω; x, ω, θ > 0, (1)

and,
g(x;ω, θ) = θωe−θx(1− e−θx)ω−1; x, ω, θ > 0. (2)

Many researchers have looked into the properties and applications of the EED, including [29, 15, 28].
Let X have the EED with parameters (ω, θ) and Y be another EED with parameters(δ, θ), where X and Y are
independent. The SSR is discussed under the claim that both X and Y have common scale parameter and dissimilar
shape parameters,i.e.; X ∼ EED(ω, θ) and Y ∼ EED(δ, θ). Hence, the SSR is given by

R = P [Y < X] =
∫∞
0

Gy(x)g(x)dx =
∫∞
x=0

∫ x

y=0
δωθ2e−θ(y+x)

(
1− e−θx

)ω−1 (
1− e−θy

)δ−1
dydx

=
∫ x

0
ωθe−θx

(
1− e−θx

)ω+δ−1
dx = ω

δ+ω .
(3)

There have been no previous studies that used the NRSS design to estimate SSR. The key contribution here
is investigated reliability estimator of R = P [Y < X], where the strength X ∼ EED(ω, θ) and the stress Y ∼
EED(δ, θ) are independent variables via RSS and NRSS. As a consequence, we examine the reliability estimator
using four sampling designs:R = P [YRSS < XRSS ],R = P [YNRSS < XNRSS ],R = P [YRSS < XNRSS ] and
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R = P [YNRSS < XRSS ]. To examine the efficiency of the SSR and to analyze how these estimates behave for
various sample sizes, statistical analysis via simulation research is undertaken comparing these schemes. The
accuracy of these estimates is assessed in this context using some measures of accuracy.
The remainder of this essay will be presented in the following manner. The estimator of SSR is supplied using
RSS in Section 2, and the subsequent sections are planned as follows. The SSR estimator is derived in Section
3 when the needed samples of X are in the form of RSS and the samples of Y are drawn from NRSS, and vice
versa. Section 4 contains an NRSS-based SSR estimator. Sections 5, and 6 deal with the simulation technique and
real-data analysis, respectively. Section 7 brings the paper to a close.

2. Estimator of R Using RSS

Herein, the SSR estimator of the system is obtained using the ML method. The SSR estimator is argued assuming
that the selected samples of stress and strength based on the same RSS design.
Suppose that X = {xς(ς)t, ς = 1, 2, . . . n, t = 1, 2, . . . hx} be a chosen RSS from EED(ω, θ)with sample size N
=nhx, n is the set size and hxis the number of cycles. Let Y = {yτ(τ)a, τ = 1, 2, . . .m, a = 1, 2, . . . hy} be a chosen
RSS from EED(δ, θ), with sample size M=mhy, such that m is the set size and hyis the number of cycles. The
likelihood function of stress and strength under RSS is

L1 = C1C2

hx∏
t=1

n∏
ς=1

g(xς(ς)t)
[
G(xς(ς)t)

]ς−1 [
1−G(xς(ς)t)

]n−ς

hy∏
a=1

m∏
τ=1

g(yτ(τ)a)
[
Gyτ(τ)a)

]τ−1 [
1−G(yτ(τ)a)

]m−τ
,

where, C1 =
∏hx

t=1

∏n
ς=1

n!
(ς−1)!(n−ς) , and C2 =

∏hy

a=1

∏m
τ=1

m!
(τ−1)!(m−τ) .

Then, the log-likelihood function

lnL1 =N lnC1 +M lnC2 + (N +M) ln θ +N lnω +M ln δ +

hx∑
t=1

n∑
ς=1

(ως − 1) ln(1− e−θxς(ς)t)

+

hy∑
a=1

m∑
τ=1

(δτ − 1) ln(1− e−θyτ(τ)a) +

hx∑
t=1

n∑
ς=1

(n− ς) ln(1− (1− e−θxς(ς)t)ω)

−
hx∑
t=1

n∑
ς=1

θxς(ς)t −
hy∑
a=1

m∑
τ=1

θyτ(τ)a +

hy∑
a=1

m∑
τ=1

(m− τ) ln(1− (1− e−θyτ(τ)a)δ).

The first derivative of L1 with respect to θ, ω and δare given by:

∂ lnL1

∂θ
=

N +M

θ
+

hx∑
t=1

n∑
ς=1

(ως − 1)xς(ς)t

eθxς(ς)t − 1
+

hy∑
a=1

m∑
τ=1

(δτ − 1)yτ(τ)a

eθyτ(τ)a − 1
−

hx∑
t=1

n∑
ς=1

xς(ς)t −
hy∑
a=1

m∑
τ=1

yτ(τ)a

−
hx∑
t=1

n∑
ς=1

ω(n− ς)e−θxς(ς)txς(ς)t(1− e−θxς(ς)t)ω−1

1− (1− e−θxς(ς)t)ω
−

hy∑
a=1

m∑
τ=1

δ(m− τ)e−θyτ(τ)ayτ(τ)a(1− e−θyτ(τ)a)δ−1

1− (1− e−θyτ(τ)a)δ
,

(4)

∂ lnL1

∂ω
=

N

ω
+

hx∑
t=1

n∑
ς=1

{
ς ln(1− e−θxς(ς)t)− (n− ς) ln(1− e−θxς(ς)t)

(1− e−θxς(ς)t)−ω − 1

}
, (5)
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and,

∂ lnL1

∂δ
=

M

δ
+

hy∑
a=1

m∑
τ=1

[
τ ln(1− e−θyτ(τ)a)− (m− τ) ln(1− e−θyτ(τ)a)

(1− e−θyτ(τ)a)−δ − 1

]
. (6)

We get the ML estimators of θ, ω and δ after setting Equations (4)-(6) with zero and solving numerically. Then
the ML estimator of R is obtained, based on invariance property of ML method, by inserting the ML of population
parameters in (3).

3. Estimator of R via NRSS with RSS

Here, the SSR estimator is obtained in two different cases. In the first state, the ML estimator of R is obtained
when X and Y observations are selected from NRSS and RSS respectively. In the second case, we derive the SSR
estimator when X and Y samples are chosen via RSS and NRSS respectively.

3.1. Likelihood Function of R = P (XNRSS < YRSS)

Let X = {xd(ς)t, ς = 1, ..., n; t = 1, ..., hx} is a NRSS selected from EED(ω, θ), with sample size N=nhx,where n
is the set size and hx is the number of cycles. The likelihood function of X based on NRSS (see [31]) is given by

L2 =

hx∏
t=1

C3

n∏
ς=1

g(xd(ς)t)

n+1∏
ς=1

[G(xd(ς)t)−G(xd(ς−1)t)]
d(ς)−d(ς−1)−1],

where, C3 = n!∏n+1
ς=1 (d(ς)−d(ς−1)−1)!

, d (0) = 0, d (n+ 1) = n+ 1, x(d(0)) = −∞ and x(d(ς+1)) = ∞.

Consider Y = {yτ(τ)a, τ = 1, 2, ...,m; a = 1, 2, ..., hy} is the RSS taken from EED(δ, θ), with sample size M =mhy,
such that m and hy are set size and number of cycles, respectively. The likelihood function of stress and strength is
given by

L2 =C2

hx∏
t=1

[
C3

n∏
ς=1

g(xd(ς)t)

n+1∏
ς=1

[G(xd(ς)t)−G(xd(ς−1)t)]
d(ς)−d(ς−1)−1]

]
hy∏
a=1

m∏
τ=1

g(yτ(τ)a)
[
G(yτ(τ)a

]τ−1 [
1−G(yτ(τ)a

]m−τ
.

Then, the log-likelihood function, say L2, of observed samples is given by

lnL2 = N (lnC3 + ln θ + lnω) +M (lnC2 + ln θ + ln δ) +

hx∑
t=1

n∑
ς=1

(ω − 1) ln(1− e−θxd(ς)t)

−
hx∑
t=1

[
n∑

ς=1

θxd(ς)t −
n+1∑
ς=1

[d(ς)− d(ς − 1)− 1] ln[(1− e−θxd(ς)t)ω − (1− e−θxd(ς−1)t)ω]

]

+

hy∑
a=1

m∑
τ=1

[
(δτ − 1) ln(1− e−θyτ(τ)a)− θyτ(τ)a + (m− τ) ln(1− (1− e−θyτ(τ)a)δ)

]
.

The partial derivative of L2 with respect to δ is derived in Equation (6). The partial derivatives with respect to θ
and ω are as follows:
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∂ lnL2

∂θ
=

N +M

θ
+

hx∑
t=1

n∑
ς=1

(ω − 1)xd(ς)t

eθxd(ς)t − 1
+

hy∑
a=1

m∑
τ=1

(δτ − 1)yτ(τ)a

eθyτ(τ)a − 1

+

hx∑
t=1

n+1∑
ς=1

ω[d(ς)− d(ς − 1)− 1]
[
(1− e−θxd(ς)t)ω−1xd(ς)te

−θxd(ς)t − (1− e−θxd(ς−1)t)ω−1xd(ς−1)te
−θxd(ς−1)t

]
(1− e−θxd(ς)t)ω − (1− e−θxd(ς−1)t)ω

−
hy∑
a=1

m∑
τ=1

δ(m− τ)yτ(τ)ae
−θyτ(τ)a(1− e−θyτ(τ)a)δ−1

1− (1− e−θyτ(τ)a)δ
−

hx∑
t=1

n∑
ς=1

xd(ς)t −
hy∑
a=1

m∑
τ=1

yτ(τ)a,

(7)

∂ lnL2

∂ω
=

N

ω
+

hx∑
t=1

n∑
ς=1

ln(1− e−θxd(ς)t)

+

hx∑
t=1

n+1∑
ς=1

[d(ς)− d(ς − 1)− 1]
[
(1− e−θxd(ς)t)ω ln(1− e−θxd(ς)t)− (1− e−θxd(ς−1)t)ω ln(1− e−θxd(ς−1)t)

]
(1− e−θxd(ς)t)ω − (1− e−θxd(ς−1)t)ω

.

(8)
The ML estimators of θ, ω and δ are obtained after putting (6), (7) and (8) equal zero and solving numerically via
iterative technique. Consequently, the SSR estimator is obtained using (3).

3.2. Likelihood Function of R=P(XRSS < YNRSS)

Suppose that X = {xς(ς)t, ς = 1, 2, ..., n; t = 1, 2, ..., hx}is the allowed RSS from EED(ω, θ)with sample size
N=nhx. Let Y = {yd(τ)a, τ = 1, 2, ...,m; a = 1, 2, ..., hy} is elected NRSS from EED(δ, θ) with sample size
M=mhy. . Therefore, the likelihood function of the observed samples is given by

L3 = C1

hx∏
t=1

n∏
ς=1

g(xς(ς)t)
[
G(xς(ς)t

]ς−1 [
1−G(xς(ς)t

]n−ς

hy∏
a=1

[
C4

m∏
τ=1

g(yd(τ)a)

m+1∏
τ=1

[G(yd(τ)a)−G(yd(τ−1)a)]
d(τ)−d(τ−1)−1

]
,

where,

C4 =
m!∏m+1

τ=1 (d(τ)− d(τ − 1)− 1)!
, d (0) = 0, d (m+ 1) = m+ 1, y(d(0)) = −∞ and y(d(τ+1)) = ∞.

The log-likelihood function based on RSS and NRSS is formed as

lnL3 = N(lnC1 + ln θ + lnω) +

hx∑
t=1

n∑
ς=1

[
(ω ς − 1) ln(1− e−θxς(ς) t)− θxς(ς) t

]
+M (lnC4 + ln θ + ln δ)

+

hx∑
t=1

n∑
ς=1

(n− ς) ln(1− (1− e−θxς(ς) t)ω) +

hy∑
a=1

m∑
τ=1

(δ − 1) ln(1− e−θyd(τ)a) −
hy∑
a=1

m∑
τ=1

θyd(τ)a

+

hy∑
a=1

m+1∑
τ=1

[d(τ)− d(τ − 1)− 1] ln[(1− e−θyd(τ)a)δ − (1− e−θyd(τ−1)a)δ].
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The partial derivative of ω is given in (5). The following equations provide partial derivatives of θ and δ as
follows:

∂ lnL3

∂θ
=

N +M

θ
+

hx∑
t=1

n∑
ς=1

[
xς(ς) t(ως − 1)

eθxς(ς) t − 1
−

ω(n− ς)e−θxς(ς) txς(ς) t(1− e−θxς(ς) t)ω−1

1− (1− e−θxς(ς) t)ω
− xς(ς) t

]

+

hy∑
a=1

m+1∑
τ=1

δ[d(τ)− d(τ − 1)− 1]
[
(1− e−θyd(τ)a)δ−1e−θyd(τ)ayd(τ)a − (1− e−θyd(τ−1)a)δ−1e−θyd(τ−1)ayd(τ−1)a

]
(1− e−θyd(τ)a)δ − (1− e−θyd(τ−1)a)δ

+

hy∑
a=1

m∑
τ=1

[
(δ − 1)yd(τ)a

eθyd(τ)a − 1
− yd(τ)a

]
,

(9)
and,

∂ lnL3

∂δ
=

M

δ
+

hy∑
a=1

m∑
τ=1

ln(1− e−θyd(τ)a)

+

hy∑
a=1

m+1∑
τ=1

[d(τ)− d(τ − 1)− 1]
[
(1− e−θyd(τ)a)δ ln(1− e−θyd(τ)a)− (1− e−θyd(τ−1)a)δ ln(1− e−θyd(τ−1)a)

]
(1− e−θyd(τ)a)δ − (1− e−θyd(τ−1)a)δ

.

(10)
Equations (5), (9) and (10) are very complicated to be solved, so we use numerical technique to gain the solution.
Consequently, the SSR estimator is obtained using (3).

4. Reliability Estimator Based on NRSS

Consider X = {xd(ς)t, ς = 1, 2, ..., n; t = 1, 2, ..., hx} is enrolled NRSS from EED (ω, θ)with sample size N =
nhx. Let Y = {yd(τ)a, τ = 1, 2, ...,m; a = 1, 2, ..., hy} is a chosen NRSS from EED (δ, θ) with sample size
M = mhy. The likelihood function of the observed samples will be as follows:

L4 =

hx∏
t=1

[
C3

n∏
ς=1

g(xd(ς)t)

n+1∏
ς=1

[G(xd(ς)t)−G(xd(ς−1)t)]
d(ς)−d(ς−1)−1

]
hy∏
a=1

[
C4

m∏
τ=1

g(yd(τ)a)

m+1∏
τ=1

[G(yd(τ)a)−G(yd(τ−1)a)]
d(τ)−d(τ−1)−1

]
.

The log likelihood function, based on NRSS, is given by

lnL4 =N (lnC3 + ln θ + lnω) +

hx∑
t=1

n∑
ς=1

[
(ω − 1) ln(1− e−θxd(ς)t)− θxd(ς)t

]
−

hy∑
a=1

m∑
τ=1

θyd(τ)a

+

hx∑
t=1

n+1∑
ς=1

[d(ς)− d(ς − 1)− 1] ln[(1− e−θxd(ς)t)ω − (1− e−θxd(ς−1)t)ω] +

hy∑
a=1

m∑
τ=1

(δ − 1) ln(1− e−θyd(τ)a)

+M (lnC4 + ln θ + ln δ) +

hy∑
a=1

m+1∑
τ=1

[d(τ)− d(τ − 1)− 1] ln[(1− e−θyd(τ)a)δ − (1− e−θyd(τ−1)a)δ].
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Obtaining the partial derivatives with respect to δ and ω in (10) and (8) while the partial derivative of θ is obtained
as follows:

∂ lnL4

∂θ
=

N +M

θ
+

hx∑
t=1

n∑
ς=1

[
(ω − 1)xd(ς)t

eθxd(ς)t − 1
− xd(ς)t

]
+

hy∑
a=1

m∑
τ=1

[
(δ − 1)yd(τ)a

eθyd(τ)a − 1
− yd(τ)a

]

+

hx∑
t=1

n+1∑
ς=1

ω[d(ς)− d(ς − 1)− 1]
[
(1− e−θxd(ς)t)ω−1e−θxd(ς)txd(ς)t − (1− e−θxd(ς−1)t)ω−1e−θxd(ς−1)txd(ς−1)t

]
(1− e−θxd(ς)t)ω − (1− e−θxd(ς−1)t)ω

+

hy∑
a=1

m+1∑
τ=1

δ[d(τ)− d(τ − 1)− 1]
[
(1− e−θyd(τ)a)δ−1e−θyd(τ)ayd(τ)a − (1− e−θyd(τ−1)a)δ−1e−θyd(τ−1)ayd(τ−1)a

]
(1− e−θyd(τ)a)δ − (1− e−θyd(τ−1)a)δ

(11)
Solving numerically Equations (8), (10) and (11) via iterative technique, we get the ML estimators of θ, ω and δ.

Consequently, the SSR estimator is obtained using (3).

5. Numerical Clarification

We come up with a simulation illustration to explore and compare the behavior of the SSR estimates from different
sampling schemes. Measures like, the absolute bias (AB), the mean squared error (MSE), and the relative efficiency
(RE) criteria are utilized to check the validity of estimates. The set sizes of X and Y are taken as (n, m)=(2, 2), (2, 3),
(3, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (6, 6), (7, 7) and number of cycles are chosen as hx = hy = 5. Consequently,
the sizes of the samples are (N = nhx, M = mhy)= (10, 10), (10, 15), (15, 10), (15, 15), (15, 20), (20, 15), (20,
20), (25, 25), (30, 30), (35, 35). The values of parameters are selected as (ω, δ)= (0.5, 0.4), (4, 0.5), (5, 0.4) and
θ=1, therefore, the exact value of R is equal to 0.5556, 0.8889 and 0.925. 1000 random samples from X∼EED
(ω, θ)and Y∼ EED (δ, θ) are generated. The RE of the RSS with respect to NRSS is defined as:

RE1 = MSE
(
R̂(XRSS < YRSS)

)/
MSE

(
R̂(XNRSS < YNRSS)

)
,

RE2 = MSE
(
R̂(XRSS < YRSS)

)/
MSE

(
R̂(XRSS < YNRSS)

)
and

RE3 = MSE
(
R̂(XRSS < YRSS)

)/
MSE

(
R̂(XNRSS < YRSS)

)
.

Values of ABs, MSEs, and REs of the SSR estimate are listed in Table 1 for specific values of (n, m) and
distribution parameters.
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Table 1. Some measures of SSR estimates based on RSS and NRSS

R = 0.5556
(n, m) XRSS < YRSS XNRSS < YNRSS RE1 XRSS < YNRSS RE3 XNRSS < YRSS RE3

AB MSE AB MSE AB MSE AB MSE
(2, 2) 0.1389 0.0193 0.0292 0.0096 2.01 0.0595 0.0117 1.65 0.0515 0.0123 1.57
(2, 3) 0.0687 0.0146 0.0423 0.0084 1.74 0.0525 0.0107 1.36 0.0514 0.0115 1.27
(3, 2) 0.3633 0.0146 0.0609 0.0078 1.87 0.0536 0.0091 1.6 0.066 0.0097 1.51
(3, 3) 0.0388 0.01 0.0509 0.0053 1.89 0.0624 0.0077 1.3 0.0627 0.008 1.25
(3, 4) 0.1205 0.0091 0.0536 0.0055 1.65 0.0431 0.0076 1.2 0.0686 0.0077 1.18
(4, 3) 0.071 0.0062 0.055 0.0048 1.29 0.0069 0.0051 1.22 0.0477 0.0052 1.19
(4, 4) 0.0158 0.0057 0.0471 0.0038 1.5 0.0006 0.0041 1.39 0.0462 0.0046 1.24
(5, 5) 0.0396 0.0051 0.05 0.0033 1.55 0.0025 0.0038 1.34 0.054 0.0042 1.21
(6, 6) 0.0061 0.0047 0.0485 0.003 1.57 0.0142 0.0032 1.47 0.0526 0.0037 1.27
(7, 7) 0.0072 0.0037 0.0487 0.0029 1.28 0.0514 0.0031 1.19 0.0505 0.0032 1.16

R = 0.8889
(n, m) XRSS < YRSS XNRSS < YNRSS RE1 XRSS < YNRSS RE3 XNRSS < YRSS RE3

AB MSE AB MSE AB MSE AB MSE
(2, 2) 0.062 0.0069 0.071 0.0054 1.28 0.0132 0.0062 1.11 0.0768 0.0063 1.1
(2, 3) 0.0679 0.0066 0.0718 0.0053 1.25 0.0761 0.0059 1.12 0.0764 0.0061 1.08
(3, 2) 0.0573 0.006 0.0669 0.0045 1.33 0.0715 0.0052 1.15 0.0744 0.0056 1.07
(3, 3) 0.057 0.0057 0.065 0.0043 1.33 0.0689 0.0048 1.19 0.0727 0.0053 1.08
(3, 4) 0.0525 0.0052 0.062 0.004 1.3 0.0641 0.0043 1.21 0.069 0.0048 1.08
(4, 3) 0.0453 0.0046 0.0603 0.0037 1.24 0.0633 0.0041 1.12 0.0667 0.0045 1.02
(4, 4) 0.0466 0.0043 0.0557 0.0032 1.34 0.0594 0.0036 1.19 0.0631 0.004 1.08
(5, 5) 0.0385 0.0042 0.0545 0.003 1.4 0.0577 0.0034 1.24 0.0618 0.0038 1.11
(6, 6) 0.0371 0.004 0.0516 0.0027 1.48 0.0546 0.0031 1.29 0.0597 0.0035 1.14
(7, 7) 0.0314 0.0033 0.0476 0.0023 1.43 0.0475 0.0026 1.27 0.0549 0.003 1.1

R = 0.925
(n, m) XRSS < YRSS XNRSS < YNRSS RE1 XRSS < YNRSS RE3 XNRSS < YRSS RE3

AB MSE AB MSE AB MSE AB MSE
(2, 2) 0.0516 0.0052 0.0005 0.0035 1.49 0.0007 0.0037 1.41 0.063 0.004 1.3
(2, 3) 0.0155 0.0042 0.0555 0.0031 1.35 0.0597 0.0035 1.2 0.0619 0.0038 1.11
(3, 2) 0.0542 0.0039 0.0554 0.003 1.3 0.0564 0.0032 1.22 0.0608 0.0037 1.05
(3, 3) 0.0464 0.0037 0.0523 0.0027 1.37 0.0546 0.003 1.23 0.0591 0.0035 1.06
(3, 4) 0.0523 0.0036 0.0479 0.0023 1.57 0.053 0.0028 1.29 0.0574 0.0033 1.09
(4, 3) 0.0479 0.0031 0.0445 0.002 1.55 0.0476 0.0023 1.35 0.051 0.0026 1.19
(4, 4) 0.037 0.0026 0.0405 0.0017 1.53 0.0463 0.0021 1.24 0.0476 0.0023 1.13
(5, 5) 0.0342 0.0024 0.0387 0.0015 1.6 0.0401 0.0017 1.41 0.0442 0.0019 1.26
(6, 6) 0.0333 0.0021 0.0336 0.0012 1.75 0.0365 0.0014 1.5 0.0412 0.0017 1.24
(7, 7) 0.0235 0.0017 0.0269 0.0009 1.89 0.0342 0.0012 1.42 0.0386 0.0015 1.13
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Figure 1. RE of SSR estimates at R=0.5556

Figure 2. RE of SSR estimates at R=0.8889

Figure 3. MSE of SSR estimate for R=0.5556
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Figure 4. MSE of SSR estimate in case of P( XNRSS<YNRSS) at (2,2)

Figure 5. MSE of SSR estimate at R=0.5556

Figure 6. MSE of SSR estimate at R=0.925
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Figure 7. The MSE of SSR estimates at R=0.5556 and (2, 2)

Figure 8. The ABs of XRSS < YRSSat (2, 2)

Figure 9. MSE of SSR estimate for XRSS < YNRSS and XNRSS < YRSS at R=0.925
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Figure 10. MSE of SSR estimate for XRSS < YNRSS and XNRSS < YRSS at R=0.556

Some conclusions, based on Table 1 and Figures 1 to 10, are summarized as follows:

• The SSR estimates when X and Y random variables are elected from NRSS are more efficient than the others
under different ranking schemes, that is (XRSS , YNRSS), (XNRSS , YRSS) and (XRSS , YRSS) for chosen
values of N, M and true value of R (see for example Figures 1 and 2 and Table 1).

• The MSE of SSR estimates under different schemes for all set sizes decreases as N and M increase for all
true values of R (see for example Figure 3 and Table 1).

• The MSE of SSR estimates decreases for different set sizes as the true value of R increases in all ranked
schemes (see for example Figure 4 and Table 1).

• We can see that the SSR have the lowest MSE in the approximately most of situations via NRSS for all true
values of R (see Figures 5, 6 and 7 and Table 1).

• The AB of SSR estimates decreases with increases value of R for different ranked schemes in almost of
situations (see Figure 8 and Table 1).

• The estimates get increasingly accurate as the sample size grows higher, suggesting that they are
asymptotically unbiased. Furthermore, in all cases, the MSE reduces as the sample size increases, illustrating
that the various estimates are consistent.

• The MSE of R̂ = P (XRSS < YNRSS) is smaller than the corresponding for R̂ = P (XNRSS < YRSS) at all
values of R (see Figures 9 and 10 and Table 1). In other words, we find that when the strength X is elected
from RSS and the stress Y is chosen from NRSS, the SSR estimates perform better than when the strength X
is selected from NRSS and the stress Y is chosen from RSS.

6. Data Analysis

We consider two data sets and depict all the details for illustrative purposes. The two data sets were originally
reported in [35], which represent the fiber diameter, tensile behavior and coefficient of variations of fiber diameter
(CVFD) of jute fibers at 5 mm, 10 mm, 15 mm, and 20 mm gauge lengths. We used the data sets about the breaking
strengths of jute fiber at gauge lengths of 10 and 20mm with sizes of the samples N = M=30. The data sets are
scheduled as:
Data set 1 (10 mm) MPa:
693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16 671.49 183.16 257.44 727.23 291.27
101.15 376.42 163.40 141.38 700.74 262.90 353.24 422.11 43.93 590.48 212.13 303.90 506.60 530.55 177.25.
Data set 2 (20 mm) MPa:
71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58 578.62 756.70 594.29 166.49 99.72
707.36 765.14 187.13 145.96 350.70 547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55.
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We’ll do some basic data analysis before going any further. We verify the effectiveness of the fitted model
using Kolmogorov-Smirnov (KS) goodness of fit test and its P-value (PV). The KS distance between the empirical
and the fitted distribution is 0.1012 with PV = 0.918 for the first dataset and 0.14978 with PV = 0.511 for the
second dataset, indicating satisfactory fits. The estimated densities, estimated cdf, PP plots and empirical survival
for the considered data are shown in Figures 11 and 12. Therefore, the EED can be used to examine the two sets
of data.

Figure 11. Plots of density, cdf and survival of the EED for data set 1

Figure 12. Plots of density, cdf and survival of the EED for data set 2
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Table 2. SSR estimate of the fiber diameter, tensile behavior and CVFD of jute fibers

(n, m) XRSS < YRSS XNRSS < YNRSS XRSS < YNRSS XNRSS < YRSS

(2,2) 0.5758 0.757 0.6907 0.614
(3,2) 0.6206 0.7798 0.7411 0.6879
(2,3) 0.6718 0.8147 0.8035 0.7675
(3,3) 0.7356 0.8613 0.8439 0.7872
(3,4) 0.7672 0.9081 0.8619 0.8241
(4,3) 0.7924 0.9226 0.8847 0.8394
(4,4) 0.8158 0.9561 0.9267 0.8516
(5,5) 0.8242 0.9817 0.9613 0.886

First, it is assumed that X ∼ EED (ω, θ1) and Y ∼ EED (δ, θ2). The ML estimates of ω, θ1, δ and θ2 are as
follows: ω̂ = 3.164, θ̂1 = 0.9914, δ̂ = 1.222, θ̂2 =15.968 and the log-likelihood value is lnL1 =−406.628. Second,
suppose that X ∼ EED (ω, θ) and Y ∼ EED (δ, θ), the ML estimates of ω, δ and θ are as follows: ω̂ =3.566,
δ̂ =1.392, θ̂ = 0.9918 and the associated log-likelihood value is lnL2 =−406.690. We perform the following
testing of hypothesis;
H0 : θ1 = θ2vs H1 : θ1 ̸= θ2
and in this case −2 (L2 − L1) =0.124, hence, the null hypothesis cannot be rejected. Therefore, in this case the
assumption of θ1 = θ2 is justified. Thus, both tests accept the null hypothesis that each data set is drawn from
EED. Based on the ML estimate of ω̂,δ̂, and θ̂, the ML estimate of R via NRSS and RSS are obtained. Table
2 displays the SSR estimates obtained from the EED assuming recommended sampling strategies for a variety
of n and m values over 5 repeated cycles. The MATHEMATICA program is used to generate NRSS and RSS
algorithms from both data sets 1 and 2. We can see from these results that for large set size, the estimated
value of R = P (XNRSS < YNRSS) is approximately 0.9. Furthermore, we observe that, the estimated values of
R = P (XRSS < YNRSS) are greater than the corresponding at R = P (XNRSS < YRSS), leading to the selection
of NRSS samples from the stress random variable. Thus, the obtained results in this section confirm the results of
the previous one.

7. Concluding Remarks

We address the estimation of the SSR, that is R = P [Y < X] , assuming the strength X and stress Y are independent
random variables. The SSR estimators are considered in four cases under RSS and NRSS schemes. Two cases of
them are considered when both the stress and the strength random variables have the same sample design, while
the other two issues are considered when X and Y distributions have dissimilar sampling designs. We implement
the simulation study to appreciate and compare different behavior estimates through some criteria. Outputs of the
study showed that the MSE of SSR estimates via NRSS get the smallest values than the others based on RSS data
in all issues. Generally speaking, the SSR estimates when data of both the stress and strength are drawn from NRSS
are more efficient than others when strength and stress data are selected from RSS. Furthermore, the SSR estimates
when X is RSS and Y is NRSS data are more efficient than the SSR estimates in the reversed case (when X is NRSS
and Y is RSS data). Real data application illustrates these results.
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2. F. G. Akgül, S. Acıtaş, and B. Şenoğlu, Inferences on stress-strength reliability based on ranked set sampling data in case of Lindley
distribution, Journal of Statistical Computation and Simulation, vol. 88, no. 15, pp. 3018–3032, 2018.

Stat., Optim. Inf. Comput. Vol. 11, June 2023



594 RELIABILITY ANALYSIS OF EXPONENTIATED EXPONENTIAL DISTRIBUTION

3. A. I. Al-Omari, The efficiency of L ranked set sampling in estimating the distribution function, Afrika Matematika, vol. 26, no. 7,
pp. 1457–1466, 2015.

4. A. I. Al-Omari and A. Haq, Novel entropy estimators of a continuous random variable, International Journal of Modeling,
Simulation, and Scientific Computing, vol. 10, no. 2, 2019.

5. A. I. Al-Omari, I. M. Almanjahie, A. S. Hassan, and H. F. Nagy, Estimation of the stress-strength reliability for exponentiated
Pareto distribution using median and ranked set sampling methods, Materials and Continua, vol. 64, no. 2, pp. 835–857, 2020.

6. M. F. Al-Saleh and S. A. Al-Hadhrami, Estimation of the mean of the exponential distribution using moving extremes ranked set
sampling, Statistical Papers, vol. 44, no. 3, pp. 367–382, 2003.

7. A. M. Almarashi, A. Algarni, A. S. Hassan, M. Elgarhy, F. Jamal, C. Chesneau, K. Alrashidi, W. K. Mashwani, and H. F. Nagy, A
new estimation study of the stress-strength reliability for the Topp-Leone distribution using advanced sampling methods, Scientific
Programming, 2021.

8. A. M. Awad and M. K. Gharraf, Estimation of P (Y < X) in the Burr case: A comparative study, Communications in Statistics-
Simulation and Computation, vol. 15, no. 2, pp. 389–403, 1986.

9. R. Bantan, A. S. Hassan, and M. Elsehetry, Zubair Lomax distribution: properties and estimation based on ranked set sampling,
Computers, Materials and Continua, vol. 65, pp. 2169–2187, 2020.

10. R. Bantan, M. Elsehetry, A. S. Hassan, M. Elgarhy, D. Sharma, C. Chesneau, and F. Jamal, A two-parameter model: properties and
estimation under ranked sampling, Mathematics, vol. 9, no. 11, pp. 1214–1214, 2021.

11. Z. W. Birnbaum, On a use of the Mann-Whitney statistic, in Proceedings of the Third Berkeley Symposium in Mathematics,
Statistics and Probability, volume 1, pp. 13–17, University of California Press, 1956.

12. A. Eftekharian, M. Razmkhah, and J. Ahmadi, A flexible ranked set sampling schemes: Statistical analysis on scale parameter,
Statistics, Optimization & Information Computing, vol. 9, no. 1, pp. 189–203, 2021.

13. M. Esemen, S. Gurler, and B. Sevinc, Estimation of stress-strength reliability based on ranked set sampling for generalized
exponential distribution, International Journal of Reliability, Quality and Safety Engineering, vol. 28, no. 2, pp. 1–24, 2021.

14. R. D. Gupta and D. Kundu, Generalized exponential distributions, Australian & New Zealand Journal of Statistics, vol. 41, no. 2,
pp. 173–188, 1999.

15. R. D. Gupta and D. Kundu, Generalized exponential distribution: Existing results and some recent developments, Journal of
Statistical Planning and Inference, vol. 137, no. 11, pp. 3537–3547, 2007.

16. A. Haq, J. Brown, E. Moltchanova, and A. I. Al-Omari, Paired double-ranked set sampling, Communications in Statistics-Theory
and Methods, vol. 45, no. 10, pp. 2873–2889, 2016.

17. A. S. Hassan, Modified goodness of fit tests for exponentiated Pareto distribution under selective ranked set sampling, Australian
Journal of Basic and Applied Sciences, vol. 6, no. 1, pp. 173–189, 2012.

18. A. S. Hassan, Maximum likelihood and Bayes estimators of the unknown parameters for exponentiated exponential distribution
using ranked set sampling, International Journal of Engineering Research and Applications, vol. 3, no. 1, pp. 720–725, 2013.

19. A. S. Hassan, A. Al-Omari, and H. F. Nagy, Stress-strength reliability for the generalized inverted exponential distribution using
MRSS, Iranian Journal of Science and Technology, vol. 45, no. 2, pp. 641–659, 2021.

20. A.S. Hassan, S. Assar, and M. Yahya, Estimation of R = P [Y < X] for Burr type XII distribution based on ranked set sampling,
International Journal of Basic and applied Sciences, vol. 3, no. 3, pp. 274–280, 2014.

21. A. S. Hassan, S. Assar, and M. Yahya, Estimation of P (Y < X) for Burr distribution under several modifications for ranked set
sampling, Australian Journal of Basic and Applied Sciences, vol. 9, no. 1, pp. 124–140, 2015.

22. M. A. Hussian, Estimation of stress-strength model for generalized inverted exponential distribution using ranked set sampling,
International Journal of Advances in Engineering & Technology, vol. 6, no. 6, pp. 2354–2362, 2014.

23. Iranmanesh, K. F. Vajargah, and M. Hasanzadeh, On the estimation of stress strength reliability parameter of inverted gamma
distribution, Mathematical Sciences, vol. 12, no. 1, pp. 71–77, 2018.

24. S. Kotz, and M. Pensky, The Stress-Strength Model and its Generalizations: Theory and Applications, World Scientific, 2003.
25. D. Kundu and R. D. Gupta, Estimation of P [Y < X] for generalized exponential distribution, Metrika, no. 3, pp. 291–308, 2005.
26. G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Australian Journal of Agricultural Research, vol. 3,

no. 4, pp. 385–390, 1952.
27. H. A. Muttlak, W. A. Abu-Dayyeh, M. F. Saleh, and E. Al-Sawi, Estimating P (Y < X) using ranked set sampling in case of the

exponential distribution, Communications in Statistics-Theory and Methods, vol. 39, no. 10, pp. 1855–1868, 2010.
28. S. Nadarajah, The Exponentiated Exponential Distribution: A Survey, Springer, 2011.
29. M. M. Raqab and M. Ahsanullah, Estimation of the location and scale parameters of generalized exponential distribution based on

order statistics, Journal of Statistical computation and Simulation, vol. 69, no. 2, pp. 109–123, 2001.
30. S. Rezaei, R. Tahmasbi, and M. Mahmoodi, Estimation of P [Y < X] for generalized Pareto distribution, Journal of Statistical

Planning and Inference, vol. 140, no. 2, pp. 480–494, 2010.
31. M. A. Sabry and M. Shaaban, Dependent ranked set sampling designs for parametric estimation with applications, Annals of Data

Science, vol. 7, no. 2, pp. 357–371, 2020.
32. A. Sadeghpour, A. Nezakati, and M. Salehi, Comparison of two sampling schemes in estimating the stress-strength reliability under

the proportional reversed hazard rate model, Statistics, Optimization & Information Computing, vol. 9, no. 1, pp. 82–98, 2021.
33. A. Safariyan, M. Arashi, and R. Belaghi, Improved point and interval estimation of the stress-strength reliability based on ranked

set sampling, Statistics, vol. 53, no. 1, pp. 101–125, 2019.
34. K. Takahasi and K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering,

Annals of the Institute of Statistical Mathematics, vol. 20, no. 1, pp. 1–31, 1968.
35. Z. Xia, J. Yu, L. Cheng, L. Liu, and W. Wang, Study on the breaking strength of jute fibres using modified Weibull distribution,

Composites Part A: Applied Science and Manufacturing, vol. 40, no. 1, pp. 54–59, 2009.
36. E. Zamanzade and A. I. Al-Omari, New ranked set sampling for estimating the population mean and variance, Hacettepe Journal

of Mathematics and Statistics, vol. 45, no. 6, pp. 1891–1905, 2016.

Stat., Optim. Inf. Comput. Vol. 11, June 2023


	1 Introduction
	2  Estimator of R Using RSS
	3 Estimator of R via NRSS with RSS
	3.1 Likelihood Function of R=P(XNRSS <YRSS ) 
	3.2 Likelihood Function of R=P(XRSS <YNRSS )

	4 Reliability Estimator Based on NRSS
	5 Numerical Clarification
	6 Data Analysis
	7 Concluding Remarks

