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Abstract In this paper, we introduce a new two-parameter lifetime distribution based on arctan function which is called
weighted Half-Logistic (WHL) distribution. Theoretical properties of this model including quantile function, extreme value,
linear combination for pdf and cdf, moments, conditional moments, moment generating function and mean deviation are
derived and studied in details. The maximum likelihood estimates of parameters are compared with various methods of
estimations by conducting a simulation study. Finally, two real data sets show that this model p[rovide better fit than other
competitive known models.
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1. Introduction

Modelling and analysing lifetimes are important in engineering, medicine, economics, etc. In many applied areas
such as lifetime analysis, finance and insurance, we need extended forms of distributions. So, several methods for
generating new families of distributions have been proposed in literature. Some attempts have been made to define
new families of probability distributions that extend well-known families of distributions and with great flexibility
in modeling data in practice. Among them, the generalized G-classes of distributions say G are used in which one
or more parameter(s) are added to a baseline distribution.

Many distribution defined based on trigonometry function. For example, new distribution using sine function
due to Kumar et al. (2015), Hyperbolic cosine-f family due to Kharazmi et al. (2016), new distribution using sine
function due to Kumar et al. (2015), new class of probability distributions via cosine and sine functions due to
Chesneau et al. (2019).

Balakrishnan (1985) proposed the standard half-logistic (SHL) distribution as a lifetime increasing hazard rate
function. The cumulative distribution function (cdf) of SHL is given by

Π(t) =
1− e−t

1 + e−t
, |t>0 (1)
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The probability density function (pdf) of SHL distribution is

π(t) =
2e−t

(1 + e−t)2
, |t>0. (2)

Many extensions of half-logistic distribution has been introduced by several authors. For example, type I half-
logistic family of distribution by Cordeiro et al (2016), type II half-logistic family by Soliman et al (2017), new
odd log-logistic by Alizadeh et al. (2019), new type I half-logistic by Alizadehg et al. (2020), New two-parameter
Modified Half-logistic Distribution by Shaheed (2021) and Complementary Poisson Generalized Half Logistic
Distribution by Muhammad and Liu (2021).

In this paper we introduce a new two-parameter lifetime distribution. The cdf of new distribution is given by

F (t) =
1

arctan(α)
× arctan(

αΠ(t)β

1 + Pi(t)β
), |t>0,α>0,β>0 (3)

The corresponding pdf and hazard rate function (hrf) are given by

f(t) =
αβ π(t)Π(t)β−1

[
1 + Π̄(t)β−1

]
arctan(α)

[
(1 + Π̄(t)β)2 + α2 Π(t)2β

] (4)

and

ψ(t) =
αβ g(t)G(t)β−1

[
1 + Ḡ(t)β−1

][
arctan(α)− arctan( αG(t)β

1+Ḡ(t)β

] [
(1 + Ḡ(t)β)2 + α2G(t)2β

] (5)

The plots of pdf and hrf for some selected value of parameters are given in figures 1 and 2. These graphs show
that the pdf of WHL(α, β) is unimodal, right skew, left skew or almost symmetric. The hrf of WHL(α, β) can be
decreasing, increasing, upside-down and bathtub shape. These properties provide strong motivation for defining
the WHL(α, β) distribution. Also, results of application, show that the WHL(α, β) provide the better fit than other
competitive models.

The rest of this paper is organized as follows: In the above, new family of distributions was proposed. Various
properties of the proposed distribution are explored in Section 2. These properties include quantile function,
extreme value, linear combination for cdf and pdf, moments, conditional moments, moment generating function
and mean deviation. The maximum likelihood estimation of parameters are compared with various methods of
estimations by conducting simulation study in section 3. Real data sets are analysed to show the performance of
the new family in Section 4. In Section 5, some concluding remarks are considered.

2. Basic properties

2.1. Quantile function

If U ∼ U(0, 1), the solution of equation u = 1
arctan(α) × arctan( αG(t)β

1+Ḡ(t)β
have cdf (3).
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Figure 1. Plots of pdf of WHL(α, β) for some selected value of parameters.

2.2. Linear Combination for cdf and pdf

First note that we can write arctan(z) =
∑∞

i=0
(−1)i

2 i+1 z
2 i+1 Then

F (t) =
1

arctan(α)
× arctan(

αΠ(t)β

1 + Π̄(t)β
=

∞∑
j1=0

(−1)j1
(2 j1 + 1) arctan(α)

Π(t)β(2 j1+1)[
1 + Π̄(t)β

]2 j1+1

=

∞∑
j1,j2=0

(−1)j1

(
−2 j1 − 1

j2

)
(2 j1 + 1) arctan(α)

G(t)β(2 j1+1)Π̄(t)β j2

=

∞∑
j1,j2,j3=0

(−1)j1+j3

(
−2 j1 − 1

j2

)(
β j2
j3

)
(2 j1 + 1) arctan(α)

Π(t)β(2 j1+1)+j3 =

∞∑
j1,j3=0

aj1,j3Π(t)β(2 j1+1)+j3 (6)

where

aj1,j3 =

∞∑
j2=0

(−1)j1+j3

(
−2 j1 − 1

j2

)(
β j2
j3

)
(2 j1 + 1) arctan(α)

and Π(t)β(2 j1+1)+j3 denote the cdf of Exponentiated standard Half-Logistic with power parameter β(2 j1 + 1) +
j3. The pdf of T follows by differentiating (6) as
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Figure 2. Plots of hrf of WHL(α, β) for some selected value of parameters.

f(t) =

∞∑
j1,j3=0

aj1,j3(β(2 j1 + 1) + j3)π(x)Π(t)β(2 j1+1)+j3−1 (7)

Equation (7) show that the WHL density function is a linear combination of Exponentiated Half-Logistic (EHL)
densities. Thus, some structural properties of the new family such as the ordinary and incomplete moments and
generating function can be immediately obtained from well-established properties of the EHL distributions.

2.3. Moments

.Some of the most important features and characteristics of a distribution can be studied through moments (e.g.,
tendency, dispersion, skewness and kurtosis). Here, we give lemma, which will be used later.

Lemma 1
For α1, α2, α4 > 0 and α3 > −1, let

A(α1, α2, α3, α4) =

∫ ∞

0

zα1 e−α2 z (1− e− z)α3

(1 + e− z)α4
dz.

Then after using some algebra, we obtain
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A(α1, α2, α3, α4) =

∫ ∞

0

zα1 e−α2 z (1− e− z)α3

(1 + e− z)α4
dz

=

∞∑
i1=0

(
−α4

i1

) ∫ ∞

0

zα1 e−(α2+i1) z (1− e− z)α3dz

=

∞∑
i1,i2=0

(−1)i2
(
−α4

i1

)(
α3

i2

)∫ ∞

0

zα1 e−(α2+i1+i2) zdz

=

∞∑
i1,i2=0

(−1)i2
(
−α4

i1

)(
α3

i2

)
Γ(α1 + 1)

(i1 + i2 + α2)α1+1
.

where Γ(.) denote the gamma function.

Next, the n-th moment of the WHL distribution is given as follows:

E(Tn) = 2

∞∑
j1,j3=0

aj1,j3 [β(2 j1 + 1) + j3]A(n, 1, β(2 j1 + 1) + j3 − 1, β(2 j1 + 1) + j3 + 1). (8)

For integer values of n, Let µ
′

n = E(Tn) and µ = µ
′

1 = E(T ), then one can also find the n-th central moment of
the WHL distribution as

µn = E(T − µ)n =

n∑
j1=0

(
n

j1

)
µ

′

j1(−µ)
n−j1 . (9)

Using (9), the measures of skewness and kurtosis of the WHL distribution can be obtained as

Skewness(X) =
µ

′

3 − 3µ
′

2µ
′

1 + 2µ
′

1

3(
µ

′
2 − µ

′
1
2
) 3

2

, (10)

and

Kurtosis(X) =
µ

′

4 − 4µ
′

1µ
′

3 + 6µ
′

1

2
µ

′

3 − 3µ
′

1

4

µ
′
2 − µ

′
1
2 , (11)

respectively. Additionally, the moment generating function of WHL distribution can be written as

E[es T] = 2

∞∑
j1,j3=0

aj1,j3 [β(2 j1 + 1) + j3] A(0, 1− t, β(2 j1 + 1) + j3 − 1, β(2 j1 + 1) + j3 + 1). (12)

Figures 3 shows the behaviour of mean, variance, skewness and kurtosis of WHL distribution. These figures show
that the WHL distribution is right skew with positive kurtosis.

2.4. Conditional moments

Here, we intend to determine the conditional moments of the new family. Let

B(β1, β2, β3, β4, y) =

∫ y

0

zβ1 e−β2 z (1− e− z)β3

(1 + e− x)β4
dz,
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Figure 3. Skewness and kurtosis of WHL(α, β)

For β1, β2, β4 > 0 and β3 > −1. Then, we obtain

B(β1, β2, β3, β4, y) =

∞∑
i1,i2=0

(−1)i2

(
−β4
i1

)(
β3
j

)
γ(y(β2 + i1 + i2), β1 + 1)

(i1 + i2 + β2)β1+1
,

where γ(z, a) =
∫ z

0
ta−1 e−t dt is the lower incomplete gamma function. So, the n-th conditional moments of T

can be expressed as

E(Tn|T > t) =
2

1− F (t)

∞∑
j1,j3=0

aj1,j3 [β(2 j1 + 1) + k] {Cj1,j3,β −Qj1,j3,β} (13)

where

Cj1,j3,β = A(n, 1, β(2 j1 + 1) + j3 − 1, β(2 j1 + 1) + j3 + 1)

Qj1,j3,β = B(n, 1, β(2 j1 + 1) + j3 − 1, β(2 j1 + 1) + j3 + 1, t)

Therefore

E(Tn|T ≤ t) =
2

F (t)

∞∑
j1,j3=0

aj1,j3 [β(2 j1 + 1) + j3]B(n, 1, β(2 j1 + 1) + j3 − 1, β(2 j1 + 1) + j3 + 1, t). (14)

2.5. Asymptotic

The asymptotic of equations (3), (4) and (5) as t→ 0+ are given by

F (t) ∼ α tβ

2β+1 arctan(α)

f(t) ∼ αβ tβ−1

2β+1 arctan(α)

ψ(t) ∼ αβ tβ−1

2β+1 arctan(α)− tβ
(15)

The asymptotic of equations (3), (4) and (5) as t→ ∞ are given by

F (t) ∼ 2αβ e−t

arctan(α)

f(t) ∼ 2αβ e−t

arctan(α)

ψ(t) ∼ 1. (16)
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2.6. EXTREME VALUE

If T̄ = (T1 + ...+ Tn)/n denotes the sample mean, then by the usual central limit theorem,
√
n(T̄ −

E(T ))/
√

Var(T ) approaches the standard normal distribution as n→ ∞. One may be interested in the asymptotic
of the extreme values Mn = max(T1, ..., Tn) and mn = min(T1, ..., Tn). Let τ(s) = 1

β , we obtain following
equations for the CDF in of WHL(α, β) as

lim
s→0

Π(s t)

Π(s)
= tβ (17)

and

lim
s→∞

1−Π(s+ t τ(s))

1−Π(s)
= e−t. (18)

Thus, from Leadbetter et al. (2012), there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr [an(Mn − bn) ≤ t] → e−e−t

,

and
Pr [cn(mn − dn) ≤ t] → 1− e−tβ ,

as n→ ∞. The form of the norming constants can also be determined.

3. Estimation

3.1. Maximum-likelihood estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the WHL distribution from complete
samples only. Let T1, . . . , Tn be a random sample of size n from the WHL(α, β) distribution. The log-likelihood
function for the vector of parameters = (α, β)T can be written as

l() = n log(
2αβ

arctan(α)
)−

n∑
i=1

ti + (β − 1)

n∑
i=1

log(1− e−ti)− (β + 1)

n∑
i=1

log(1− e−ti)

+

n∑
i=1

log
[
1 + Π̄(ti)

β−1
]
−

n∑
i=1

log
[
(1 + Π̄(ti)

β)2 + α2 Π(ti)
2β
]
. (19)

The log-likelihood can be maximized either directly by using the SAS (Procedure NLMixed) or by solving the
non-linear likelihood equations obtained by differentiating (19). The components of the score vector U() are given
by

Uα() =
n

α
− n

(1 + α2) arctan(α)
− 2α

n∑
i=1

Π(ti)
2β

(1 + Π̄(ti)β)2 + α2 Π(ti)2β
,

and

Uβ() =
n

β
+

n∑
i=1

log(Π(ti))−
n∑

i=1

Π̄(ti)
β−1 log[Π̄(ti)]

1 + Π̄(ti)β−1

− 2

n∑
i=1

Π̄(ti)
β(1 + Π̄(ti)

β) log[Π̄(ti)] + α2 Π(ti)
2β log[G(ti)]

(1 + Π̄(ti)β)2 + α2 Π(ti)2β
.

where Π(ti) =
1−e−ti

1+e−ti
and Π̄(ti) = 1−Π(ti).
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3.2. The other estimation methods

There are several approaches to estimate the parameters of distributions that each of them has its characteristic
features and benefits. In this subsection five of those methods are briefly introduced and will be numerically
investigated in the simulation study. Here {si; i = 1, 2, ..., n} and {si:n; i = 1, 2, ..., n} is the random sample and
associated order statistics and F is the distribution function of WHL distribution.
•Least squares and weighted least squares estimators
The Least Squares (LSE) and weighted Least Squares Estimators (WLSE) are introduced by Swain et al., (1988).
The LSE’s and WLSE’s are obtained by minimizing the following functions:

SLSE(α, β) =

n∑
i=1

(
FWHL(si:n;α, β)−

i

n+ 1

)2

,

and

SWLSE(α, β) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

(
FWHL(si:n;α, β)−

i

n+ 1

)2

.

•Cramér–von–Mises estimator
Cramér–von–Mises Estimator (CME) is introduced by Choi and Bulgren (1968). The CMEs is obtained by
minimizing the following function:

SCME(α, β) =
1

12n
+

n∑
i=1

(
FWHL(si:n;α, β)−

2i− 1

2n

)2

.

•Anderson–Darling and right-tailed Anderson–Darling
The Anderson Darling (ADE) and Right-Tailed Anderson Darling Estimators (RTADE) are introduced by
Anderson and Darling (1952). The ADE’s and RTADE’s are obtained by minimizing the following functions:

SADE(α, β) = −n− 1

n

n∑
i=1

(2i− 1){logFWHL(si;α, β) + logFWHL(sn+1−i;α, β)},

and

SRTADE(α, β) =
n

2
− 2

n∑
i=1

FWHL(si;α, β)−
1

n

n∑
i=1

(2i− 1) logFWHL(sn+1−i;α, β),

where FWHL (·) = 1− FWHL (·).
•Method of maximum product of spacings Cheng and Amin (1979 , 1983) introduced the maximum product of
spacings (MPS) method as an alternative to MLEs for estimating parameters of continuous univariate distributions.
The MPS’s are obtained by maximizing the following functions:

G(α, β) =

[
n+1∏
i=1

Di(α, β)

] 1
n+1

,

where Di(α, β) = FWHL(si:n;α, β)− FWHL(si−1:n;α, β), i = 1, ..., n,, FWHL(s0:n;α, β) = 0 and
FWHL(sn+1:n;α, β) = 1.

3.3. Simulation study

In order to explore the estimators introduced above we consider the one model that have been used in this section ,
and investigate MSE of those estimators for different samples. For instance according to what has been mentioned
above, for (α, β) = (0.5, 1.5), (1.5, 2), (2, 3).
The performance of each method of parameters estimations for the WHL distribution with respect to sample size
n is considered. To do this, a simulation study is done based on following steps:
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Step 1. Generate ten thousand samples of size n from (3) for Half-Logistic case. This work is done simply
by quantile function and generated data from uniform distribution .

Step 2. Compute the estimates for the one thousand samples, say
(
α̂i, β̂i

)
for i = 1, 2, ..., 104.

Step 3. Compute the biases and mean squared errors by

Biasε(n) =
1

10000

10000∑
i=1

(ε̂i − ε),

and

MSEε(n) =
1

10000

10000∑
i=1

(ε̂i − ε)
2
.

for ε = α, β. We repeated these steps for n = 30(40)500 with mentioned special case of parameters. So computing
Biasε(n) and MSEε(n) for ε = α, β and n = 30(40)500. To obtain the value of the estimators, we have used the
optim function and the Nelder-Mead method in the statistical package R version 3.4.4. The results are shown in
Figures 4-6.
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Figure 4. Bias and MSE of estimations for parameter values (α, β) = 0.5, 1.5)
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Figure 5. Bias and MSE of estimations for parameter values (α, β) = (1.5, 2)

One can see that MSE plots for three parameters with the increase in the volume of the sample all methods will
approach to zero and this verifies the validity of the these estimation methods and numerical calculations for the
distribution parameters WHL. Also

• Based on figures 4-6, for estimating α, LSE method has the minimum amount of bias, however for large
sample size, all methods have almost same behaviour and converge to zero as expected.

• Based on figures 4-6, for estimating β, LSE method has the minimum amount of bias, however for large
sample size, all methods have almost same behaviour and converge to zero as expected.

• Based on figures 4-6, for estimating α, MLE method has the minimum amount of MSE,however for large
sample size, all methods have almost same behaviour and converge to zero as expected..

• Based on figures 4-6, for estimating β, MLE method has the minimum amount of MSE, however for large
sample size, all methods have almost same behaviour and converge to zero as expected.

4. Applications

In this section, we present two applications by fitting the WHL model and some famous models. The Cramér–
von Mises (W∗), Anderson-Darling (A∗) and p− value for Kolmogorow-Smirnow test have been chosen for
comparison the models for the first two examples.
The exponentiated half-logistic (ESHL) distribution (Kang and Seo, 2011), Kumaraswamy standard Half-Logistic
distribution (KwSHL) (Cordeiro and de Castro, 2011) , the Beta standard Half-Logistic (BSHL) (Jones, 2004),
McDonald standard Half-Logistic (McSHL)distributin (Oliveria et.al, 2016), New Odd log-logistic standard Half-
Logistic (NOLL-SHL) distribution (Alizadeh et al. , 2019), weibull distrbution (W), Generalized Exponential
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Figure 6. Bias and MSE of estimations for parameter values (α, β) = (2, 3)

(GE) distribution (Gupta and Kundu, 1998), Log Normal (LN) distribution, Gamma (Ga) distribution, Lindley
(Li) distribution (Ghitany et al., 2008), Power Lindley (PL) distribution (Ghitany et al., 2013) and Generalized
Lindley (GL) distribution (Nadarajah et al., 2011) have been selected for comparison in two examples. The cdf of
these models are given in Appendix. The parameters of models have been estimated by the MLE method.

4.1. Data set I

. The first real data set is failure time of 50 items given by Murty (2004, p195). The data are: 0.008, 0.017, 0.058,
0.061, 0.084, 0.090, 0.134, 0.238, 0.245, 0.353, 0.374, 0.480, 0.495, 0.535, 0.564, 0.681, 0.686, 0.688, 0.921,
0.959, 1.022, 1.092, 1.260, 1.284, 1.295, 1.373, 1.395, 1.414, 1.760, 1.858, 1.892, 1.921, 1.926, 1.933, 2.135,
2.169, 2.301, 2.320, 2.405, 2.506, 2.598, 2.808, 2.971, 3.087, 3.492, 3.669, 3.926, 4.446, 5.119, 8.596 .
In the Table 1, a summary of the fitted information criteria and estimated MLE’s for this data with different models
have come, respectively. One can see , the WHL(α, β) distribution is selected as the best model with more criteria.
The histogram of the data set I and the plots of fitted pdf are displayed in Figure 7.

4.2. Data set II

. The second real data set is failure time of 50 items given by Murty (2004, p195). The data are: 0.061, 0.073,
0.075, 0.084, 0.086, 0.087, 0.088, 0.089, 0.089, 0.089, 0.099, 0.102, 0.117, 0.118, 0.119, 0.120, 0.123, 0.135,
0.143, 0.168, 0.183, 0.185, 0.191, 0.192, 0.199, 0.203, 0.213, 0.215, 0.257, 0.258, 0.275, 0.297, 0.297, 0.298,
0.299, 0.308, 0.314, 0.315, 0.330, 0.374, 0.388, 0.403, 0.497, 0.714, 0.790, 0.815, 0.817, 0.859, 0.909, 1.286 .
.
Similar to the previous application example, we have Tables 2 . As it is clear, the WHL(α, β) is selected as the best
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Table 1. Results for data set I

model estimated parameters (se) W ∗ A∗ p− value

WHL (α, β) 0.863 0.684 0.027 0.182 0.975
(0.456) (0.098)

NOLL-SHL (α, β) 0.796 0.743 0.041 0.256 0.715
(0.147) (0.126)

ESHL (α) 0.946 0.035 0.224 0.127
(0.133)

KwSHL (α, β) 0.719 0.668 0.037 230 0.910
(0.149) (0.116)

BSHL (α, β) 0.738 0.664 0.038 0.239 0.900
(0.136) (0.119)

McSHL (α, β, c) 91.722 0.677 0.007 0.034 0.218 0.921
(78.442) (0.115) (0.005)

Li(α) 0.910 0.049 0.300 0.865
(0.096)

PL(α, β) 0.994 0.882 0.063 0.375 0.818
(0.127) (0.096)

GE(α, β) 0.560 0.903 0.076 0.448 0.656
(0.105) (0.162)

GL(α, β) 0.790 0.767 0.046 0.285 0.887
(0.122) (0.142)

LN(α, β) −0.123 1.452 0.329 1.902 0.155
(0.205) (0.145)

Ga(α, β) 0.914 0.546 0.077 0.455 0.661
(0.159) (0.125)

W(α, β) 0.610 0.976 0.079 0.468 0.723
(0.105) (0.111)
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Figure 7. Histogram and fitted pdfs for data set I.

model with more criteria. The histogram of the data set I and the plots of fitted PDF are displayed in Figure 8.
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Figure 8. Unimodality of profile likelihood functions of parameters for first data set I.

Table 2. Results for data set II

model estimated parameters (se) W ∗ A∗ p− value

WHL (α, β) 88.986 1.705 0.107 0.840 0.761
(49.827) (0.227)

NOLL-SHL (α, β) 0.632 8.928 0.420 2.689 0.092
(0.094) (1.349)

ESHL (α) 0.445 0.192 1.398 7.745e− 06
(0.062)

KwSHL (α, β) 1.226 8.811 0.261 1.794 0.239
(0.145) (2.049)

BSHL (α, β) 1.490 8.713 0.240 1.674 0.263
(0.271) (1.822)

McSHL (α, β, c) 831.317 6.952 0.003 0.191 1.391 0.461
(183.122) (1.392) (0.004)

Li(α) 4.060 0.206 1.489 0.048
(0.493)

PL(α, β) 4.830 1.236 0.245 1.706 0.307
(0.731) (0.130)

GE(α, β) 5.088 1.955 0.178 1.320 0.511
(0.845) (0.432)

GL(α, β) 5.732 1.896 0.185 1.367 0.488
(0.861) (0.422)

LN(α, β) −1.539 0.771 0.091 0.743 0.644
(0.109) (0.077)

Ga(α, β) 1.718 5.828 0.197 1.436 0.406
(0.316) (1.242)

W(α, β) 4.189 1.257 0.237 1.664 0.318
(0.716) (0.129)
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Figure 9. Histogram and fitted pdfs for data set II.
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Figure 10. Unimodality of profile likelihood functions of parameters for first data set II.

5. Conclusions

We introduce a new two-parameter extension of half-logistic distributions based on arctan function called the
weighted half-logistic (WHL) distribution. Some properties of the new family, such as quantile function, extreme
value, linear combination for cdf and pdf, moments, conditional moments, moment generating function and mean
deviation are obtained. We estimate the parameters using maximum likelihood and other different methods. The
Bias and MSE plots of parameters for all methods, will approach to zero with the increase in the volume of the
sample which verifies the validity of the these estimation methods. The flexibility of this distribution is assessed by
applying it to real data sets and comparing purpose distribution with others. The results show that the new model
provide consistently better fits than other competitive models for these data sets. So Applications demonstrate the
importance of the new family.
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Appendix: cdf of competitive models in application section

FESHL(α)(t) = Π(t)α, t > 0, α > 0,

FNOLL−SHL(α,β)(t) =
Π(t)α

Π(t)α + Π̄(t)α
, t > 0, α > 0, β > 0,

FKwSHL(α,β)(t) = 1− [1−Π(t)α]
β
, t > 0, α > 0, β > 0,

FBSHL(α,β)(t) =
1

Beta(α, β)

∫ Π(t)

0

tα−1(1− t)β−1, t > 0, α > 0, β > 0,

FMcSHL(α,β,c)(t) =
1

Beta(α, β)

∫ Π(t)c

0

tα−1(1− t)β−1, t > 0, α > 0, β > 0, c > 0,

FLi(α)(t) = 1− 1 + α+ α t

1 + α
e−α t, t > 0, α > 0,

FPL(α,β)(t) = 1− 1 + α+ α tβ

1 + α
e−α tβ , t > 0, α > 0, β > 0,

FGE(α,β)(t) = (1− e−α t)β , t > 0, α > 0, β > 0,

FGL(α,β)(t) =

[
1− 1 + α+ α t

1 + α
e−α t

]β
, t > 0, α > 0,

FLN(α,β)t;α, β = Φ(
log(t)− α

β
), t > 0, α ∈ R, β > 0, t;α, β) =

βα

Γ(α)

∫ t

0

zα−1e−β zdz, t > 0nonumber

FGa(α,β), α > 0, β > 0,

FW (α,β)(t) = 1− e−α tβ , t > 0, α > 0, β > 0.

where Φ(z) =
∫ z

−∞
1√
2π

e−z2/2dz denote the cdf of standard normal random variable.
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