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1. Introduction

Analyzing dependent variables is of great importance. For example, In Economic studies; Study the relation
between (years of education and personal income, personal income and expenditure and inflation and
unemployment), in Biological studies; Study of ( blindness in the left and right eye, the age at death of parent
and child in a genetic study, the relation between blood pressure and body weight for a patient and the failure time
of the left and right kidney) in engineering studies ; analyzing the lifetime of a twine-engine plane, also warranty
polices based on failure time and warranty servicing time, as well as, different applications like Shock model,
competing risks model, stress model, maintenance model and longevity model.

Bivariate Marshal-Olkin family is of great importance for understanding and analyzing the failure time of two
variables interacting together, because it takes into consideration all different cases of the random variables (i.e.
the first random variable is smaller, greater or equal to the second random variable).

Failure times are usually not observed for all units. Those units for which the exact failure time is unknown are
called censored data. This data contributes valuable information and should not be omitted from the analysis. There
are different censoring schemes like Type I, Type II, random, hybrid and progressive censoring. Type I, Type II,
random and hybrid censoring do not allow any unit to be randomly removed during the experiment. Progressive
censoring deals with this disadvantage by allowing units to be randomly removed from the experiment, which
results in reducing the cost and time of the experiment.

Let (X1, X2, . . . , Xn) be a random sample from a probability distribution with absolutely continuous cdf F.
these units are placed on a test at time t = 0. At this time of the ith failure, Ri, 1 ≤ i ≤ m, number of surviving units
are randomly withdrawn from the experiment. Thus, if n failures are observed then R1 +R2 + · · ·+Rm number
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of units that progressively censored; hence n = m+R1 +R2 + · · ·+Rm. The censoring scheme is denoted by
the vector R = (R1, R2, . . . , Rm) and Xi:m:n, i = 1, . . . ,m. Is the ith failure time, and called progressive Type II
censoring order statistic. The above steps can be extended in bivariate case as follows:

Suppose that there are n independent pairs of components (X1i, X2i), i = 1 . . . n under experiment, and each
of them has bivariate life time distribution. During the experiment, immediately after the ith failure is observed,
Ri functioning items are randomly removed from the test. The m complete (ordered ) lifetimes thus observed are
denoted by X1i:m:n, i = 1, . . . ,m with corresponding concomitants variables denoted by X[2i:m:n], i = 1, . . . ,m
and hence X[2i:m:n] is called concomitants of progressively Type II censored order statistics. Further details on
progressive censoring and concomitants can be found by Balakrishnan and Aggarwala (2000) and Nagaraja and
Abo-Eleneen(2008).

In the presence of progressive Type-II censored samples, El-Sherpieny et al. (2019) discussed estimation for
the FGM bivariate Weibull model, Muhammed and Almetwally (2020) introduced Bayesian and Non-Bayesian
estimation for the bivariate inverse Weibull model uder progressive Type-II censoring. Moreover, El-Sherpieny et
al. (2021) obtained Bayesian and non-Bayesian estimation for the parameters of bivariate generalized Rayleigh
model based on clayton copula under progressive Type-II censoring schemes with random removal .This paper
deals with generalizing the likelihood function in case of two dependent variables follow Marshal- Olkin bivariate
models based on progressive Type II censoring.

The rest of the paper is organized as follows. In Section 2, Marshal – Olkin bivariate models and their properties
are described, the data description is also provided in Section 3. The Maximum likelihood estimation for the model
parameters is discussed in Section 4, asymptotic and Bootstrap confidence intervals for the model parameters are
introduced in Section 5, Bayesian estimation for the model parameters is proposed in Section 6. Finally, simulation
studies and concluding remarks are discussed in Sections 7 and 8 respectively.

2. Marshal-Olkin Bivariate Models

According to Marshal and Olkin (1967) and using the maximization process. A class of bivariate Marshal- Olkin
distributions will be discussed in this section.

If (X1, X2) is distributed as bivariate Marshal- Olkin model denoted by MOB(α1, α2, α3,Θ). Then, the joint
cdf, pdf and the conditional probability density function for bivariate Marshal-Olkin (MOB) models are as follows

FX1,X2(x1, x2) = FB(x1;α1; Θ)FB(x2;α2; Θ)FB(x3;α3; Θ), (1)

where x3 = min{x1, x2}and FB(.; θ)is the baseline function Note that (1) can be written as

FX1,X2
(x1, x2) =


FB(x1;α13; Θ) · FB(x2;α2; Θ) if x1 < x2

FB(x1;α1; Θ) · FB(x2;α23; Θ) if x2 < x1

FB(x;α123; Θ) if x1 = x2.

(2)

Where αi3 = αi + α3 , i = 1, 2.
If (X1, X2) distributed as MOB(α1, α2, α3,Θ), then the joint pdf of (X1, X2) is given as

f(x1, x2) =

 f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f3(x) if 0 < x1 = x2 = x.

(3)

where
f1(x1, x2) = fB(x1;α13,Θ) · fB(x2;α2,Θ),

f2(x1, x2) = fB(x1;α1,Θ) · fB(x2;α23,Θ),

f3(x) =
α3

α1 + α2 + α3
· fB(x;α123,Θ),
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696 ANALYSIS OF DEPENDENT VARIABLES

α123 = α1 + α2 + α3 and fB(.; Θ) is the baseline function.

It should be mentioned that the MOB models has both an absolute continuous part and a singular part. That
given by Marshal and Olkin (1967) by the following theorem.

Theorem 1. If (X1, X2) is distributed as MOB(α1, α2, α3,Θ), then

FX1,X2
(x1, x2) =

α12

α123
Fa(x1, x2) +

α3

α123
Fs(x1, x2), (4)

where x3 = min{x1, x2},

Fs(x1, x2) = FB(min{x1, x2};α123; Θ).Fs(x1, x2) = FB(min{x1, x2};α123; Θ).

and
Fa(x1, x2) =

α123

α23
FB(x1;α1; Θ)FB(x2;α2; Θ)FB(x3;α3; Θ)− α3

α12
FB(x3;α123; Θ).

Here Fs(., .)and Fa(., .) are the singular and the absolutely continuous part respectively.

Along the same line Muhammed (2017) introduced the Marshal-Olkin bivariate Dagum (MOBD) distribution as
follows

The baseline cdf and pdf following univariate Dagum distribution are given as

fB (x;λ, δ, β) = λ δ β x−δ−1 (1 + λ x−δ )
−β−1

, FB (x;λ, δ, β) = (1 + λ x−δ )
−β

Respectively, where λ > 0 is a scale parameter and δ > 0 and β > 0 are shape parameters respectively.
Then, according to (1) the joint cdf of (X1, X2) follows MOBD distribution is given as follows

FMOBD(x1, x2) = FB(x1;β1; Θ)FB(x2;β2; Θ)FB(x3;β3; Θ) (5)

where x3 = min(x1, x2)and Θ = (λ, δ).

The corresponding joint pdf of (X1, X2) is given as

fMOBD(x1, x2) =

 f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f3(x) if 0 < x1 = x2 = x < ∞,

(6)

Where
f1 (x1, x2) = fB (x1;β13,Θ) fB (x2;β2,Θ) ,

f2 (x1, x2) = fB (x1;β1, ,Θ) fB (x2;β23,Θ) ,

and
f3(x) =

β3

β123
· fB(x;β123,Θ).

.
The absolute continuous part and the singular part of the MOBD distribution function are given as

FX1,X2
(x1, x2) =

β12

β123
Fa(x1, x2) +

β3

β123
Fs(x3), (7)

where x3 = min{x1, x2}, Fs(x3) = (1 + λx3
−δ)−β123 ,

and Fa(x1, x2) =
β123

β23
(1 + λx1

−δ)β1(1 + λx2
−δ)β2(1 + λx3

−δ)β3 − β3

β12
(1 + λx3

−δ)−β123 .
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Muhammed (2017) introduced an absolutely continuous bivariate Dagum (BVDac) distribution as following
A random vector (Y1, Y2) follows a BVDac distribution if its pdf is given by

fY1,Y2(y1, y2) =

{
c f1(y1, y2) if y1 < y2
c f2(y1, y2) if y1 > y2

= c.

{
fD(y1;β13) · fD(y2;β2) if y1 < y2
fD(y1;β1) · fD(y2;β23) if y1 > y2

,
(8)

Where c is the normalizing constant and c = β123

β12
.

3. Data Description and Likelihood Function

Suppose that there are n independent pairs of components (X1i, X2i), i = 1 . . . n under experiment, and each of
them has MOB(β1, β2, β3,Θ) lifetime distribution.

Based on a Type II progressive censoring scheme (n,m,R1, . . . , Rm), we have the following observations;

D =
[
(x11:m:n, x[21:m:n]), (x12:m:n

, x[22:m:n]

)
, . . . , (x1m:m:n, x[2m:m:n])],

Where X1i:m:n be the ith order statistic of X1and X[2i:m:n]be its concomitant of X2, i = 1 . . .m
Then the joint probability of (X1i:m:n, X[2i:m:n]), i = 1 . . .m is given by

L (θ) =

m∏
i=1

f(X1i:m:n,X[2i:m:n])(x1i:m:n, x[2i:m:n])[SX1
(x1i:m:n)]

Ri

= C

m∏
i=1

[f1(x1i:m:n, x[2i:m:n])]
δ1i [f2(x1i:m:n, x[2i:m:n])]

δ2i [f3(x1i:m:n, x[2i:m:n])]
δ3i [SX1

(x1i:m:n)]
Ri . (9)

Where C = n (n−R1 − 1) . . . (n−R1 −R2 − · · · −m+ 1) , f1 (.) , f2 (.) , f3(.) are as given in (3) and SX1(.)
is the survival function of X1. Also δji, j = 1, 2, 3 are event indicators such that

δ1i =

{
1, X1i:m:n < X[2i:m:n]

0, otherwise
,

δ2i =

{
1, X1i:m:n > X[2i:m:n]

0, otherwise
,

δ3i =

{
1, X1i:m:n = X[2i:m:n]

0, otherwise
,

That produce m1 =
∑m

i=1 δ1i , m2 =
∑m

i=1 δ2i and m3 =
∑m

i=1 δ3i such that m = m1 +m2 +m3.
Throughout this paper it is assumed that n,m,R1, . . . , Rmare predetermined and fixed.

Follows are special cases from Progressive Type II censoring that applied on bivariate Marshal- Olkin family of
Distributions:

I) Complete Case: If R1 = · · · = Rm = 0 and n = m Then, (9) reduced to

L (θ) =

n∏
i=1

[f1(x1i, x2i)]
δ1i [f2(x1i, x2i)]

δ2i [f3(x1i, x2i)]
δ3i .

where n1 =
∑n

i=1 δ1i , n2 =
∑n

i=1 δ2i and n3 =
∑n

i=1 δ3i such that n = n1 + n2 + n3.
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698 ANALYSIS OF DEPENDENT VARIABLES

II) Type II Censoring Case : if R1=R2= · · · =Rm−1= 0, and Rm=n−m
Then (9) reduced to

L (θ) = C[SX1(xm:m:n)]
n−m

.

m∏
i=1

[f1(x1i:m:n, x[2i:m:n])]
δ1i [f2(x1i:m:n, x[2i:m:n])]

δ2i [f3(x1i:m:n, x[2i:m:n])]
δ3i .

4. Maximum Likelihood Estimation

Assume D = (x11:m:n, x[21:m:n]) < (x12:m:n, x[22:m:n]) < . . . (x1m:m:n, x[2m:m:n]) denote progressively Type II
censored sample from MOBD distribution whose pdf and cdf are given as (5) and (6) , for simplicity assume
x1i = xi:m:n and x2i = x[2i:m:n] .

The log-likelihood function l (Θ) = LogL(Θ) without normalized constant is
then given as

l (Θ) ∝ (2m1 + 2m2 +m3) log λ+ (2m1 + 2m2 +m3) log δ +m1logβ13

+ m1logβ2 ++ m2logβ1 ++ m2logβ23 ++ m3logβ3

−(β13 + 1)

m∑
i=1

δ1ilog(1 + λx−δ
1i )−(β2 + 1)

m∑
i=1

δ1ilog(1 + λx−δ
2i )

−(β1 + 1)

m∑
i=1

δ2ilog(1 + λx−δ
1i )−(β23 + 1)

m∑
i=1

δ2ilog(1 + λx−δ
2i )

−(β123 + 1)

m∑
i=1

δ3ilog(1 + λx−δ
1i ) +

m∑
i=1

Ri log[1−(1 + λx−δ
1i )

−β123
].

Where Θ = (β1, β2, β3, λ, δ).
The first derivatives of the log- likelihood function with respect to β1, β2, β3, λ and δ are as following

∂l

∂β1
=

m1

β13
+

m2

β1
−A1 (λ, δ) +B1 (β13, λ, δ) ,

∂l

∂β2
=

m1

β2
+

m2

β23
−A2 (λ, δ) ,

∂l

∂β3
=

m1

β13
+

m2

β23
+

m3

β3
−A3 (λ, δ) +B1 (β13, λ, δ) ,

∂l

∂λ
=

2m1 + 2m2 +m3

λ
− (β13 + 1) a (x1i, δ1iλ, δ)− (β2 + 1) a (x2i, δ1i, λ, δ)

− (β1 + 1) a (x1i, δ2i, λ, δ)− (β23 + 1) a (x2i, δ2i, λ, δ)

− (β123 + 1) a (x1i, δ3i, λ, δ) +B2 (β13, λ, δ) .

∂l

∂δ
=

2m1 + 2m2 +m3

δ
−− (β13 + 1) b (x1i, δ1iλ, δ)− (β2 + 1) b (x2i, δ1i, λ, δ)

− (β1 + 1) b (x1i, δ2i, λ, δ)− (β23 + 1) b (x2i, δ2i, λ, δ)

− (β123 + 1) b (x1i, δ3i, λ, δ) +B3 (β13, λ, δ) .

Where

a (x1i, δ1i, λ, δ) =

m∑
i=1

δ1i
x−δ
1i

1 + λx−δ
1i

, b (x1i, δ1i, λ, δ) =

m∑
i=1

λδ1i
x−δ
1i logx1i

1 + λx−δ
1i

,
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A1 (λ, δ) =

m∑
i=1

δ1ilog(1 + λx−δ
1i ) + δ2ilog

(
1 + λx−δ

1i

)
+ δ3ilog

(
1 + λx−δ

1i

)
,

A2 (λ, δ) =

m∑
i=1

δ1ilog(1 + λx−δ
2i ) + δ2ilog

(
1 + λx−δ

2i

)
+ δ3ilog

(
1 + λx−δ

1i

)
,

A3 (λ, δ) =

m∑
i=1

δ1ilog(1 + λx−δ
1i ) + δ2ilog

(
1 + λx−δ

2i

)
+ δ3ilog

(
1 + λx−δ

1i

)
,

B1 (β13, λ, δ) =

m∑
i=1

Ri
(1 + λx−δ

1i )
−β13

log(1 + λx−δ
1i )

1−(1 + λx−δ
1i )

−β13
, B2 (β13, λ, δ) =

m∑
i=1

β13.Ri.
(1 + λx−δ

1i )
−β13

x−δ
1i

1−(1 + λx−δ
1i )

−β13
,

B3 (β13, λ, δ) =

m∑
i=1

Ri β13 λ
(1 + λx−δ

1i )
−β123

x−δ
1i logx1i

1−(1 + λx−δ
1i )

−β13
.

After equating the above set of equations to zero, it is noted that they have not explicit form; therefore, their
solutions are numerically obtained using Newton-Raphson method as will be seen in Section 7. They are solved
simultaneously to obtain β̂1, β̂2, β̂3, λ̂ and δ̂.

5. Interval Estimation

In this section the confidence intervals for the five unknown parameters for MOBD distribution are proposed in
different methods such as asymptotic confidence intervals and bootstrap confidence intervals

5.1. Asymptotic Confidence Intervals

The most common to set confidence intervals for the parameters is to use the asymptotic normal distribution of
MLEs. In relation to asymptotic variance – covariance matrix of the MLEs of the parameters, according to Cohen
(1965 ) it can be approximated by numerically inverting the Fisher information matrix F, where it is consist of the
negative derivatives of the natural logarithm of the likelihood function evaluated at ( β̂1, β̂2, β̂3, λ̂, δ̂) the MLEs of
the parameters.

Now, the second derivatives of the log- likelihood function are as follows

I11 =
∂2l

∂β2
1

=
−m1

β2
13

− m2

β2
1

−B4 (β13, λ, δ) ,

I22 =
∂2l

∂β2
2

=
−m1

β2
2

− m2

β2
23

, I12 = I21 = 0,

I33 =
∂2l

∂β2
3

=
−m1

β2
13

− m2

β2
23

− m3

β2
3

−B4 (β13, λ, δ) ,

I13 =
∂2l

∂β1∂β3
=

−m1

β2
13

−B4 (β13, λ, δ) ,

I23 =
∂2l

∂β2∂β3
=

−m2

β2
23

,

I41 =
∂2l

∂λ∂β1
= B5 (β13, λ, δ)−A4 (λ, δ) ,

I43 =
∂2l

∂λ∂β3
= B5 (β13, λ, δ)−A5 (λ, δ) ,
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I42 =
∂2l

∂λ∂β2
= −A6 (λ, δ) ,

I44 =
∂2l

∂λ2
= −2m1 + 2m2 +m3

λ2
+ (β13 + 1) d (x1i, δ1iλ, δ) + (β2 + 1) d (x2i, δ1i, λ, δ)

+ (β1 + 1) d (x1i, δ2i, λ, δ) + (β23 + 1) d (x2i, δ2i, λ, δ) ,

+(β123 + 1) d (x1i, δ3i, λ, δ) +B6 (β13, λ, δ) ,

I45 =
∂2l

∂λ∂δ
= (β13 + 1) g (x1i, δ1iλ, δ) + (β2 + 1) g (x2i, δ1i, λ, δ) ,

+(β1 + 1) g (x1i, δ2i, λ, δ) + (β23 + 1) g (x2i, δ2i, λ, δ) ,

+(β123 + 1) g (x1i, δ3i, λ, δ) +B7 (β13, λ, δ) ,

I51 =
∂2l

∂δ∂β1
= B8 (β13, λ, δ) + g (x1i, δ1i, λ, δ) + g (x1i, δ2i, λ, δ) + g (x1i, δ3i, λ, δ) ,

I52 =
∂2l

∂δ∂β2
= g (x2i, δ1i, λ, δ) + g (x2i, δ2i, λ, δ) + g (x1i, δ1i, λ, δ) ,

I53 =
∂2l

∂δ∂β3
= g (x2i, δ1i, λ, δ) + g (x2i, δ2i, λ, δ) + g (x1i, δ3i, λ, δ) +B9 (β13, λ, δ) .

Where

d (x1i, δ1i, λ, δ) =

m∑
i=1

δ1i
x−δ
1i

(1 + λx−δ
1i )

2 , g (x1i, δ1i, λ, δ) =

m∑
i=1

δ1i
x−δ
1i logx1i

(1 + λx−δ
1i )

2

A4 (λ, δ) =

m∑
i=1

δ1i
x−δ
1i

1 + λx−δ
1i

+ δ2i
x−δ
1i

1 + λx−δ
1i

+ δ3i
x−δ
1i

1 + λx−δ
1i

,

A5 (λ, δ) =

m∑
i=1

δ1i
x−δ
1i

1 + λx−δ
1i

+ δ2i
x−δ
2i

1 + λx−δ
2i

+ δ3i
x−δ
1i

1 + λx−δ
1i

,

A6 (λ, δ) =

m∑
i=1

δ1i
x−δ
2i

1 + λx−δ
2i

+ δ2i
x−δ
2i

1 + λx−δ
2i

+ δ3i
x−δ
1i

1 + λx−δ
1i

,

B4 (β13, λ, δ) =

m∑
i=1

Ri
(1 + λx−δ

1i )
−β13

(log(1 + λx−δ
1i ))

2

(1−(1 + λx−δ
1i )

−β13
)
2 ,

B5 (β13, λ, δ) =

m∑
i=1

Ri

(
1− β13 .

log
(
1 + λx−δ

1i

)
1−(1 + λx−δ

1i )
−β13

)
x−δ
1i (1 + λx−δ

1i )
−β13−1

1−(1 + λx−δ
1i )

−β13
,

B6 (β13, λ, δ) = β13

m∑
i=1

Ri

(1 + λx−δ
1i )

−2β13−2
x−2δ
1i . [(β13 + 1) .

(
1 + λx−δ

1i

) −β13 − 1]

(1−(1 + λx−δ
1i )

−β13
)
2 ,

B7 (β13, λ, δ) = β13

m∑
i=1

Ri

x−δ
1i .
(
1 + λx−δ

1i

) −β13−1
logx1i[1− (β13 + 1)λx−δ

1i ]− β13λx
−δ
1i .
(
1 + λx−δ

1i

) −β13−1

(1−(1 + λx−δ
1i )

−β13
)
2 ,

B8 (β13, λ, δ) = λ

m∑
i=1

Ri

x−δ
1i logx1i[1− β13log

(
1 + λx−δ

1i

)
[1− (1 + λx−δ

1i )
−β13

] + β13(1 + λx−δ
1i )

−β13
log
(
1 + λx−δ

1i

)
]

(1−(1 + λx−δ
1i )

−β13
)
2 ,
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B9 (β13, λ, δ) = β13

m∑
i=1

Ri
(1 + λx−δ

1i )
−β13−1

1−(1 + λx−δ
1i )

−β13
.

Therefore, the asymptotic variance –covariance matrix can be written as follows

F−1 =


I11 I12 I13 I14 I15
I21 I22 I23 I24 I25
I31 I32 I33 I34 I35
I41 I42 I43 I44 I45
I51 I52 I53 I54 I55


−1∣∣∣∣∣∣∣∣∣∣

Θ=Θ̂

Now, the asymptotic normality results will be stated to obtain the asymptotic confidence intervals of β1, β2, β3, λ
and δ. It can be stated as follows√

n [(λ̂− λ), (δ̂ − δ), (β̂1 − β1), (β̂2 − β2), (β̂3 − β3)] → N5(0 , F−1) as n → ∞
Where F−1 is the variance-covariance matrix, Θ̂ = (β̂1, β̂2, β̂3, λ̂, δ̂). and Θ = (β1, β2, β3, λ, δ).Since Θ is

unknown , then F−1(Θ) is estimated by F−1(Θ̂); the asymptotic variance-covariance matrix that defined above
and this can be used to obtain the asymptotic confidence intervals of β1, β2, β3, λ and δ.

The problem with applying normal approximation of the MLE is that when the sample size is small, the
normal approximation may be poor. However a different transformation of the MLE can be used to correct the
inadequate performance of the normal approximation. Meeker and Escobar (1998) suggested the use of the normal
approximation for the log transformed MLE. Let ŵi, i = 1, 2, 3, 4 with (ŵ1 = β̂1, ŵ2 = β̂2, ŵ3 = β̂3, ŵ4 =

λ̂ and ŵ5 = δ̂ ). A two sided 100(1− γ) % normal approximation confidence Intervals for ŵi, i = 1, 2, 3, 4, 5 ,
are given by [

ŵiexp

(−z γ
2

√
var(ŵi)

ŵi

)
, ŵiexp

(z γ
2

√
var(ŵi)

ŵi

) ]
.

Where and z γ
2

is the percentile of the standard normal distribution with right tail γ
2 .

5.2. Bootstrap Confidence Intervals

The bootstrap is a resampling method for the statistical inference. It is commonly used to estimate confidence
intervals, moreover it can also use to estimate bias and variance of an estimator or calibrate hypothesis tests. The
parametric and nonparametric bootstrap have been studied by many authors such as Davison and Hinkley (1997),
Efron and Tibshirani (1993) and Kreiss and Paparoditis(2011). It is concluded that the nonparametric bootstrap
method does not work well. So, in this section, we use the parametric bootstrap method to construct confidence
intervals for the unknown parameters β1, β2, β3, λ and δ. two parametric bootstrap methods will be introduced,
percentile bootstrap confidence interval (B-PCI) discussed by Efron (1982) and bootstrap-t confidence interval
(B-TCI) discussed by Hall (1988). The following steps are followed to obtain samples for both methods:

1. Obtain the MLEs Θ̂= (β̂1, β̂2, β̂3, λ̂, δ̂) for the unknown parameters Θ = (β1, β2, β3, λ, δ) based on the
original progressively Type II censored sample

(x1i, x2i) = (x11:m:n, x[21:m:n]) < (x
12:m:n

, x[22:m:n]) < · · · < (x1m:m:n, x[2m:m:n])

2. By using Θ̂, generate a bootstrap sample (x1i, x2i)
∗
, i = 1, 2, . . .m where (x1i, x2i)

∗ ∼ MOBD
distribution.

3. As in step 1 based on (x1i, x2i)
∗
, i = 1, 2, . . .m. Compute the bootstrap sample estimates of Θ̂ say, Θ̂∗

4. Repeat the above steps 2 and 3, N=1000 times, then we have N estimate of Θ.
5. Order the bootstrap replications of Θ̂∗ such that Θ̂∗

1 < Θ̂∗
2 < · · · < Θ̂∗

N .
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Percentile bootstrap confidence interval (B-PCI):
Let G (ξ) = P (Θ̂∗ ≤ ξ) be the cdf of Θ̂∗. Define Θ̂∗ = G−1(ξ) for given ξ. The approximate bootstrap

100 (1− γ)% confidence interval of Θ̂∗ is given by

(Θ̂∗
γ
2
, Θ̂∗

1− γ
2
)

Bootstrap-t confidence interval (B-TCI): In step 3 get Θ̂∗ and also calculate var(Θ̂
∗
) using the observed fisher

information matrix.
Compute the statistic T ∗

j =
Θ̂∗

j−Θ̂√
var(Θ̂∗

j )
, j = 1, . . . N

Arrange the bootstrap replications of T ∗such that T ∗
1 < T ∗

2 < · · · < T ∗
N.

Let H (ξ) = P (T ∗ ≤ ξ) be cdf of T ∗. For a given ξ define

Θ̂boot−t = Θ̂ +

√
var

(
Θ̂
)

H−1(ξ)

The approximate 100 (1− γ)% bootstrap confidence interval of Θ̂ will be

(Θ̂boot−t

(γ
2

)
, Θ̂boot−t

(
1− γ

2

)
).

6. Bayes Estimation

In this section the Bayesian analysis for the MOBD distribution is considered. The explicit Bayes estimators under
the squared error loss function are obtained. When the parameters λ and δ are assumed to be fixed known, the same
conjugate prior on β1, β2 and β3 is considered as follows:

Assume β1, β2 and β3 are independent, and distributed as gamma as following

πi (βi) =
bai

Γ(ai)
βi

ai−1e−biβi , i = 1, 2, 3 , βi > 0

The joint prior density of β1, β2 and β3 is given as follows

π0 (β1, β2, β3) =

3∏
i=1

bai

Γ(ai)
βi

ai−1e−bi βi

Posterior Analysis and Bayesian Estimation
Assume we have a bivariate sample from MOBD (β1, β2, β3) under progressive Type II censoring and it is

denoted as
D =

[
(x11:m:n, x[21:m:n]), (x12:m:n

, x[22:m:n]

)
, . . . , (x1m:m:n, x[2m:m:n])]

Let m = m1 +m2 +m3 , βi3 = β1 + β3 , i = 1, 2
Then the Likelihood function can be rewritten as follows

L(D\Θ) = Exp(logL(D\Θ) )

L (D\Θ) = λ2m1+2m2+m3δ2m1+2m2+m3βm1
13 βm2

23 βm1
2 βm2

1 βm3
3

.Exp {−(β13 + 1)Z1 (λ, δ)− (β2 + 1)Z2 (λ, δ)− (β1 + 1)Z3 (λ, δ)

− (β23 + 1)Z4 (λ, δ)− (β123 + 1)Z5 (λ, δ)}.
m∏
i=1

(1− [Z(λ, δ)
−β13 ])

Ri

.
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L (D\Θ) ∝
m∏
i=1

m1∑
j=1

m2∑
k=1

Ri∑
l=1

(−1)
l

(
Ri

l

)(
m1

j

)(
m2

k

)
βm 2+j
1 βm1+k

2 βm−j−k
3

.Exp (β1T1 + β2T2 + β3T3) . (10)

Where

Z1 (λ, δ) =

m∑
i=1

log
(
1 + λx−δ

1i

)δ1i
, Z2 (λ, δ) =

m∑
i=1

log
(
1 + λx−δ

2i

)δ1i
,

Z3 (λ, δ) =

m∑
i=1

log
(
1 + λx−δ

1i

)δ2i
, Z4 (λ, δ) =

m∑
i=1

log
(
1 + λx−δ

2i

)δ2i
,

Z5 (λ, δ) =

m∑
i=1

log
(
1 + λx−δ

1i

)δ3i
, Z (λ, δ) =

m∑
i=1

(
1 + λx−δ

1i

)
,

Z6 (λ, δ) = l logZ (λ, δ) , T1 = Z1 (λ, δ) + Z3 (λ, δ) + Z5 (λ, δ) + Z6 (λ, δ) ,

T2 = Z2 (λ, δ) + Z4 (λ, δ) + Z5 (λ, δ) ,

and
T3 = Z1 (λ, δ) + Z3 (λ, δ) + Z4 (λ, δ) + Z5 (λ, δ) + Z6 (λ, δ)

.
Since f (D,Θ) = π0 (Θ)L(D\Θ) and f (D) =

∫
f (D\Θ) dΘ=

∫
π0 (Θ)L(D\Θ)dΘ

Hence the joint posterior density function of Θ = (β1, β2, β3) given the data D, denoted by π1( Θ\D) can be
written as

π1( Θ\D) =
f (D,Θ)

f (D)

π1 ( Θ\D) ∝
m∏
i=1

m1∑
j=1

m2∑
k=1

Ri∑
l=1

Aijkl Gamma [β1; a1j , b1 + T1] .Gamma [β2; a2k, b2 + T2]

.Gamma [β3; a3jk, b3 + T3] . (11)

Where Aijkl =
Cijkl∏m

i=1

∑m1
j=1

∑m2
k=1

∑Ri
l=1 Cijkl

,

and Cijkl = (−1)
l

(
Ri

l

)(
m1

j

)(
m2

k

)
.

Γ(a1j)
[b1+T1]

a1j . Γ(a2k )

[b2+T2]
a2k . Γ(a3jk)

[b3+T3]
a3jk .

a1j = a1 +m2 + j, a2k = a2 +m1 + k and a3jk = a3 +m− j − k.

Therefore, under the assumption of independence of β1, β2and β3 and λ, δ are assumed to be known. It is possible
to get the Bayes estimators of β1, β2and β3 explicitly under the square error loss function as follows:

β̌1 =
1

b1 + T1

m∏
i=1

m1∑
j=1

m2∑
k=1

Ri∑
l=1

Aijkl a1j , (12)

β̌2 =
1

b2 + T2

m∏
i=1

m1∑
j=1

m2∑
k=1

Ri∑
l=1

Aijkl a2k , (13)
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and

β̌3 =
1

b3 + T3

m∏
i=1

m1∑
j=1

m2∑
k=1

Ri∑
l=1

Aijkl a3jk , (14)

Bayesian Estimation for Complete Case:

The complete case appeared, If R1 = · · · = Rm = 0 and n = m. Hence, the likelihood function can be written
as special case of (10) as follows

L (D\Θ) ∝
n1∑
j=1

n2∑
k=1

(
n1

j

)(
n2

k

)
βn2+j
1 βn1+k

2 βn−j−k
3 .Exp (β1T1 + β2T2 + β3T3)

Where D = {(x11, x21), . . . , (x1n, x2n)}, Θ = (β1, β2, β3) ,

n1 =
∑n

i=1 δ1i , n2 =
∑n

i=1 δ2i and n3 =
∑n

i=1 δ3i such that n = n1 + n2 + n3,

Z1 (λ, δ) =
∑n

i=1 log
(
1 + λx−δ

1i

)δ1i
, Z2 (λ, δ) =

∑n
i=1 log

(
1 + λx−δ

2i

)δ1i
,

Z3 (λ, δ) =
∑n

i=1 log
(
1 + λx−δ

1i

)δ2i
, Z4 (λ, δ) =

∑n
i=1 log

(
1 + λx−δ

2i

)δ2i
, Z5 (λ, δ) =

∑n
i=1 log

(
1 + λx−δ

1i

)δ3i
,

T1 = Z1(λ, δ) + Z3(λ, δ) + Z5(λ, δ), T2 = Z2(λ, δ) + Z4(λ, δ) + Z5(λ, δ),

and T3 = Z1 (λ, δ) + Z3 (λ, δ) + Z4 (λ, δ) + Z5 (λ, δ).

And the corresponding joint posterior density function reduces to

π1(Θ\D)∝
n1∑
j=1

n2∑
k=1

AjkGamma[β1; a1j , b1 + T1].Gamma[β2; a2k, b2 + T2]

.Gamma [β3; a3jk, b3 + T3] .

Where Ajk =
Cjk∑n1

j=1

∑n2
k=1 Cjk

, and Cjk =

(
n1

j

)(
n2

k

)
.

Γ(a1j)
[b1+T1]

a1j . Γ(a2k )

[b2+T2]
a2k . Γ(a3jk)

[b3+T3]
a3jk ,

a1j = a1 + n2 + j, a2k = a2 + n1 + k and a3jk = a3 + n− j − k.

Hence, the Bayes estimators of β1, β2and β3 explicitly under the square error loss function based on complete
samples are given as follows:

β̌1 =
1

b1 + T1

n1∑
j=1

n2∑
k=1

Ajk a1j ,

β̌2 =
1

b2 + T2

n1∑
j=1

n2∑
k=1

Ajk a2k,

and

β̌3 =
1

b3 + T3

n1∑
j=1

n2∑
k=1

Ajk a3jk.
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7. Simulation Study

In this section, some results based on simulations are presented, to compare the performance of MLE for the
model parameters for different sample sizes, and censoring schemes. The performance of the resulting estimators
have been considered in terms of their Average estimates (AVG), Mean Square Error (MSE) and Estimated Risk
(ER). Also, obtained confidence intervals (CIs) are compared by using asymptotic distributions of MLEs and two
bootstrap CIs, the comparison of them are made in terms of coverage percentage (CP). For each simulated sample
a 95% CI are computed and the estimated CP was computed as the number of CIs that covers the true value divided
by repeated times (1000)

In this study, the following censoring schemes (CS) are considered:
Scheme I: Rm = n−m, Ri = 0 for i ̸= m.
Scheme II: R1 = n−m, Ri = 0 for i ̸= 1.
Scheme III: Rm+1

2
= n−m, Ri = 0 for i ̸= m+1

2 ; if m odd and Rm
2
= n−m, Ri = 0 for i ̸= m

2 ; if m even.
Scheme IV: R 2m−1

2 +1 = · · · = Rn
2
= 1, other Ri = 0 .

The population parameter values are (β1 = 1.8, β2 = 1.4, β3 = 1.7, λ = 0.5 and δ = 1.2 ) and the sample
sizes are ( n = 20, 40 and 80 ) and number of censoring stages are ( m = 10, 15, 20, 30, 40).

The Bayes Estimates (BEs) and ER of β1, β2 and β3 are computed based on squared error loss function using
equations (12), (13) and (14) at prior distribution parameters as (a1 = 1.3 , a2 = 1.5 , a3 = 1.7 , b1 = 0.3, b2 =
0.5 , b3 = 0.7 ).

8. Concluding Remarks

Based on progressive Type II censored samples, this paper is related to derive the likelihood function and to full
Bayesian and non- Bayesian estimation procedures for the analysis of dependent variables using Marshal - Olkin
bivariate models in general and considered Marshal– Olkin bivariate Dagum distribution especially. The Bayesian
estimates are obtained in explicit forms. But non- Bayesian ones cannot be obtained in explicit form. A simulation
study was conducted to examine the performance of the resulting estimators for different sample sizes, different
censoring schemes and different parameter values. Simulation results for the MLEs and the BEs are summarized
in Table 1 and Table 2. From the results, the following general remarks are observed:

For increasing sample size the MSEs of the considered parameters decreases
As expected, for fixed values of the sample size, scheme II in which the censoring occurs after the first observed

failures gives more accurate results through the MSEs and CIs than other schemes. Moreover, results in censoring
schemes III and IV are closed to other.

For small sample sizes, the results corresponding to Bayesian procedure are better than those corresponding to
non- Bayesian procedure in the sense of ER.

Additionally, it is noted that Bayesian estimators have a closed forms, which it is highly recommended to study
its properties as a future work.
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Table 1. AVG and (MSE) of MLEs and BEs and (ER) for The Model Parameters

MLE (MES) BE (ER)
(n, m) CS β1(1.8) β2(1.4) β3(1.7) λ(0.5) δ(1.2) β1(1.8) β2(1.4) β3(1.7)

(20,10)

I 1.051 0.983 1.293 2 0.932 1.834 1.52 1.1
(0.561) (0.174) (0.166) (2.25) (0.072) (0.058) (0.06) (0.05)

II 1.494 1.343 1.576 1.23 1.911 1.843 1.53 1.2
(0.094) (0.31) (0.124) (0.533) (0.506 ) (0.044) (0.08) (0.03)

III 1.441 1.023 0.653 1.89 0.983 1.854 1.61 1.3
(0.128) (0.142) (1.09) (1.932) (0.047) (0.055) (0.067) (0.03)

IV 1.432 1.044 0.661 1.812 0.99 1.841 1.84 1.3
(0.135) (0.127) (1.079) (1.721) (0.044) (0.057) (0.09) (0.03)

(20,15)

I 1.043 0.971 1.193 2.2 0.899 1.832 1.97 1.5
(0.573) (0.184) (0.257) (2.89) (0.091) (0.045) (0.072) (0.052)

II 1.44 1.3 1.3 1.001 1.921 1.831 1.72 1.52
(0.13) (0.16) (0.16) (0.251) (0.52) (0.032) (0.015) (0.047)

III 1.42 1.111 0.651 1.781 0.892 1.844 1.63 1.43
(0.144) (0.084) (1.1) (1.641) (0.095) (0.038) (0.012) (0.016)

IV 1.423 1.052 0.711 1.732 0.897 1.822 1.91 1.61
(0.142) (0.121) (0.978) (1.518) (0.092) (0.049) (0.08) (0.019)

(40,20)

I 1.53 1.177 1.97 0.814 1.41 1.845 1.75 1.75
(0.08) (0.05) (0.073) (0.099) (0.044) (0.037) (0.01) (0.01)

II 1.699 1.45 1.871 0.805 1.37 1.824 1.57 1.74
(0.09) (0.025) (0.029) (0.093) (0.029) (0.021) (0.011) (0.019)

III 1.63 1.21 2.01 0.751 1.501 1.8 1.82 1.76
(0.03) (0.036) (0.096) (0.063) (0.096) (0.017) (0.014) (0.018 )

IV 1.65 1.26 1.91 0.8 1.503 1.809 1.51 1.77
(0.023) (0.02) (0.044) (0.09) (0.092) (0.012) (0.016) (0.017 )

(40, 30)

I 1.55 1.221 1.92 0.762 1.39 1.837 1.34 1.72
(0.06) (0.032) (0.048) (0.068) (0.036) (0.013) (0.013) (0.0162)

II 1.667 1.543 1.841 0.702 1.35 1.82 1.37 1.74
(0.018) (0.02) (0.02) (0.04) (0.02) (0.011) (0.01) (0.016)

III 1.621 1.27 1.978 0.762 1.499 1.86 1.39 1.75
(0.032) (0.017) (0.07) (0.069) (0.089) (0.014) (0.0002) (0.015)

IV 1.599 1.25 1.991 0.772 1.512 1.881 1.38 1.76
(0.04) (0.022) (0.085) (0.074) (0.097) (0.015) (0.004) (0.014)

(80,30)

I 1.861 1.32 1.77 0.591 1.3 1.801 1.44 1.71
(0.004) (0.06) (0.0049) (0.0083) (0.01) (0.001) (0.003) (0.013)

II 1.842 1.37 1.73 0.521 1.26 1.802 1.42 1.73
(0.002) (0.0009) (0.009) (0.0004) (0.0036) (0.0015) (0.0021) (0.003)

III 1.85 1.307 1.781 0.551 1.29 1.872 1.45 1.72
(0.003) (0.0086) (0.0066) (0.00261) (0.0081) (0.01) (0.0013) (0.002)

IV 1.851 1.309 1.783 0.408 1.27 1.865 1.46 1.721
(0.003) (0.00083) (0.0067) (0.0084) (0.0049) (0.001) (0.0003) (0.0012)

(80, 40)

I 1.863 1.381 1.75 0.583 1.29 1.854 1.43 1.732
(0.0039) (0.00036) (0.0025) (0.0069) (0.0028 ) (0.0023) (0.0004) (0.0006)

II 1.833 1.352 1.722 0.507 1.19 1.898 1.41 1.742
(0.007) (0.0018) (0.0005) (0.00005) (0.0001) (0.0014) (0.0002) (0.0004)

III 1.861 1.334 1.73 0.552 1.281 1.832 1.44 1.764
(0.0082) (0.0044) (0.0009) (0.0027) (0.0066 ) (0.0019) (0.0001) (0.00015)

IV 1.862 1.324 1.732 0.553 1.284 1.876 1.43 1.783
(0.0038) (0.0058) (0.001) (0.0028) (0.007) (0.002) (0.0003) (0.0001)
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Table 2. Coverage Probability (CP) of a 95% CIs for The Model Parameters

ACI Boot- P Boot- t
(n,m) CS β1 β2 β3 λ δ β1 β2 β3 λ δ β1 β2 β3 λ δ

(20,10)

I 0.894 0.886 0.873 0.9 0.874 0.917 0.902 0.926 0.918 0.908 0.891 0.893 0.882 0.895 0.877
II 0.933 0.903 0.915 0.942 0.91 0.945 0.954 0.955 0.943 0.923 0.839 0.911 0.881 0.892 0.916
III 0.916 0.894 0.886 0.891 0.905 0.891 0.909 0.894 0.87 0.905 0.862 0.855 0.887 0.909 0.89
IV 0.893 0.891 0.865 0.823 0.914 0.902 0.932 0.915 0.94 0.917 0.915 0.846 0.828 0.872 0.831

(20,15)

I 0.932 0.96 0.894 0.925 0.862 0.974 0.952 0.928 0.9 0.898 0.952 0.896 0.931 0.934 0.942
II 0.941 0.941 0.903 0.937 0.909 0.937 0.929 0.941 0.927 0.919 0.951 0.95 0.938 0.925 0.92
III 0.929 0.892 0.972 0.894 0.883 0.934 0.941 0.961 0.891 0.901 0.937 0.913 0.901 0.929 0.886
IV 0.921 0.913 0.941 0.932 0.891 0.914 0.922 0.942 0.879 0.915 0.897 0.925 0.933 0.941 0.899

(40,20)

I 0.898 0.904 0.943 0.884 0.905 0.921 0.939 0.894 0.821 0.864 0.929 0.933 0.942 0.913 0.819
II 0.956 0.952 0.93 0.963 0.932 0.941 0.973 0.953 0.903 0.924 0.932 0.954 0.931 0.936 0.903
III 0.92 0.933 0.902 0.932 0.943 0.952 0.942 0.942 0.936 0.945 0.914 0.935 0.892 0.923 0.91
IV 0.901 0.921 0.943 0.894 0.924 0.914 0.916 0.926 0.953 0.964 0.961 0.953 0.864 0.917 0.889

(40,30)

I 0.914 0.935 0.942 0.972 0.943 0.955 0.951 0.919 0.935 0.953 0.896 0.897 0.829 0.858 0.839
II 0.942 0.952 0.984 0.961 0.953 0.953 0.924 0.942 0.945 0.936 0.954 0.922 0.921 0.901 0.94
III 0.932 0.972 0.963 0.952 0.942 0.916 0.926 0.897 0.952 0.982 0.934 0.901 0.983 0.921 0.997
IV 0.943 0.962 0.957 0.899 0.91 0.92 0.917 0.902 0.942 0.892 0.941 0.934 0.976 0.951 0.932

(80,30)

I 0.952 0.927 0.895 0.942 0.916 0.926 0.973 0.932 0.954 0.973 0.916 0.948 0.939 0.942 0.918
II 0.975 0.937 0.951 0.985 0.987 0.963 0.952 0.917 0.985 0.943 0.952 0.954 0.935 0.901 0.934
III 0.952 0.962 0.887 0.992 0.998 0.952 0.946 0.973 0.877 0.921 0.894 0.935 0.962 0.893 0.917
IV 0.971 0.991 0.894 0.995 0.909 0.934 0.947 0.942 0.895 0.93 0.925 0.946 0.947 0.976 0.949

(80,40)

I 0.979 0.982 0.899 0.921 0.983 0.985 0.981 0.931 0.945 0.891 0.931 0.925 0.929 0.952 0.974
II 0.977 0.954 0.961 0.953 0.978 0.999 0.96 0.895 0.982 0.874 0.916 0.989 0.992 0.961 0.995
III 0.981 0.972 0.993 0.945 0.939 0.978 0.976 0.945 0.97 0.951 0.954 0.915 0.975 0.952 0.942
IV 0.935 0.981 0.903 0.956 0.954 0.966 0.902 0.931 0.991 0.976 0.911 0.922 0.962 0.952 0.953
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