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A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences
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Abstract In this paper, we obtain an explicit Berry-Esseen bound in the central limit theorem for nonlinear statistics with
bounded differences. Some examples are provided as well.
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1. Introduction

Let X = (X1, X2, ..., Xn) be a vector of independent random variables (not necessarily identically distributed),
defined on some probability space (Ω,F , P ) and taking values in a measurable space X . We consider the problem
of investigating the rate of convergence in the central limit theorem for nonlinear statistics of the form

W = f(X) = f(X1, X2, ..., Xn), (1)

where f : Xn → R is a measurable function. This problem, of course, is one of the most fundamental topics in
statistics and its study has a long history. A significant amount of general results for W and its special forms can
be found in the literature, see e.g. [1, 2, 6, 8, 9, 10] and the references therein.

Let X ′ = (X ′1, X
′
2, ..., X

′
n) be an independent copy of X = (X1, X2, ..., Xn). For each A ⊆ [n] := {1, 2, ..., n},

define the random vector XA as

XA
i =

{
X ′i, if i ∈ A,
Xi, if i /∈ A.

For each j ∈ [n], we write Xj instead of X{j} and define the difference operator ∆j by

∆jf(X) := f(X)− f(Xj). (2)

Definition 1.1. We say that the nonlinear statisticW has the bounded differences property if there exist nonnegative
deterministic constants c1, ..., cn such that, almost surely,

|∆jf(X)| ≤ cj , 1 ≤ j ≤ n. (3)

The motivation of the present paper comes from the observation that many existing statistics belong to the class of
nonlinear statistics with bounded differences (the reader can consult Sections 3.2 and 6.1 in [3] for several specific
examples provided there). Hence, it is necessary to study the central limit theorem and the rate of convergence for
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this class. In fact, we can use the results obtained in [4, 13] to derive the following bound

dW (σ−1W,Z) ≤ 1

σ2

√
Var(E[T |W ]) +

1

2σ3

n∑
j=1

c3j , (4)

dK(σ−1W,N) ≤ 1

σ2

√
Var(E[T |W ]) +

1

σ2

√
Var(E[T ′|W ]) +

4 +
√

2π

16σ3

n∑
j=1

c3j , (5)

where T ′ := 1
2

∑
A([n]

1

( n
|A|)(n−|A|)

∑
j /∈A

∆jf(X)|∆jf(XA)| and

T :=
1

2

∑
A([n]

1(
n
|A|
)
(n− |A|)

∑
j /∈A

∆jf(X)∆jf(XA). (6)

Here and in the sequel,Z is a standard normal random variable and dW , dK denote the Wasserstein and Kolmogorov
distances, respectively. A bound on dK is called the Berry-Esseen bound. For reader’s convenience, we recall that

dW (W,Z) := sup
|h(x)−h(y)|≤|x−y|

|E[h(W )]− E[h(Z)]|,

dK(W,Z) := sup
z∈R
|P (W ≤ z)− P (Z ≤ z)|.

It should be noted that, from the statistical point of view, the Kolmogorov distance is more informative in practice.
Indeed, for instance, the Berry-Esseen bound can be used for the construction of confidence intervals. However, by
its definition, the additional term

√
Var(E[T ′|W ]) is sometimes not easy to compute. In this paper, our aim is to

point out that, for nonlinear statistics with bounded differences, the term
√

Var(E[T ′|W ]) in (5) can be removed.
In other words, our Berry-Esseen bound is the same as the Wasserstein bound (4) (up to constant). This allows us
to employ the existing results in the literature and we are able to obtain the Berry-Esseen bound without doing any
further computations.

The rest of this article is organized as follows. In the next Section, after stating and proving the main result in
Theorem 2.1, we provide several examples to illustrate the theory.

2. The main results

Our proof is based on the techniques of Stein’s method and the smoothed indicator functions. Let us recall here the
following fundamental results from Lemma 2.3 in [4] and Lemma 2.5 in [7].

Lemma 2.1
For any g, f : Xn → R such that E[g2(X)] and E[f2(X)] are both finite, we have

Cov(g(X), f(X)) =
1

2

∑
A([n]

1(
n
|A|
)
(n− |A|)

∑
j /∈A

E[∆jg(X)∆jf(XA)].

Lemma 2.2
Given z ∈ R and α > 0, define the function hα,z by

hα,z(w) =

 1 w ≤ z,
1 + (z − w)/α z < w ≤ z + α,
0 w > z.

Let ϕ be the solution to the Stein equation

ϕ′(w)− wϕ(w) = hα,z(w)− Ehα,z(Z).
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Then, for all w, v ∈ R, we have

0 ≤ ϕ(w) ≤ 1, |ϕ′(w)| ≤ 1, |ϕ′(w)− ϕ′(v)| ≤ 1 (7)

and

|ϕ′(w + v)− ϕ′(w)| ≤ |v|
(

1 + |w|+ 1

α

∫ 1

0

11[z,z+α](w + rv)dr

)
. (8)

We now are in a position to state and prove the main result of the present paper.

Theorem 2.1
Let W = f(X) be a nonlinear statistic with bounded differences. Suppose that EW = 0 and σ2 := Var(W ) <∞.
Then, we have the following Berry-Esseen bound

dK(σ−1W,Z) ≤ 2

σ2

√
Var(E[T |W ]) +

5

σ3

n∑
j=1

c3j , (9)

where T is defined by (6) and cj , j ∈ {1, 2, ..., n} are as in (3).

Proof
Assume without loss of generality that σ = 1. For each A ⊆ [n], we denote WA = f(XA). When A = {j}, we
write W j instead of W {j}. Let hα,z be as in Lemma 2.2. It follows from Lemma 2.1 that

Ehα,z(W )− Ehα,z(Z) = E[ϕ′(W )]− E[Wϕ(W )]

= E[ϕ′(W )]− 1

2

∑
A([n]

1(
n
|A|
)
(n− |A|)

∑
j /∈A

E[∆jϕ(W )∆jW
A]. (10)

For each j ∈ {1, 2, ..., n}, we have

∆jϕ(W ) = ϕ(W )− ϕ(W j)

=

∫ W−W j

0

ϕ′(W − t)dt =

∫ ∆jW

0

ϕ′(W − t)dt

= ϕ′(W )∆jW +

∫ ∆jW

0

[ϕ′(W − t)− ϕ′(W )]dt.

We now put Rj :=
∫ ∆jW

0
[ϕ′(W − t)− ϕ′(W )]dt and use the notations x− = min(x, 0), x+ = max(x, 0). Then,

we have
∆jϕ(W ) = ϕ′(W )∆jW +Rj , 1 ≤ j ≤ n, (11)

and, by (8), the remainder term Rj satisfies the following estimate

|Rj | ≤
∫ (∆jW )+

(∆jW )−

|ϕ′(W − t)− ϕ′(W )|dt

≤
∫ (∆jW )+

(∆jW )−

|t|
(

1 + |W |+ 1

α

∫ 1

0

11[z,z+α](W − rt)dr
)
dt

=
1

2
(1 + |W |)(∆jW )2 +

1

α

∫ (∆jW )+

(∆jW )−

(∫ t+

t−

11[z,z+α](W + u)du

)
dt.

Furthermore, by bounded differences property, we can get

|Rj | ≤
c2j
2

(1 + |W |) +
1

α

∫ cj

−cj

(∫ t+

t−

11[z,z+α](W + u)du

)
dt, 1 ≤ j ≤ n. (12)
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Inserting (11) into (10) yields

Ehα,z(W )− Ehα,z(Z) = E[ϕ′(W )(1− T )]− 1

2

∑
A([n]

1(
n
|A|
)
(n− |A|)

∑
j /∈A

E[Rj∆jW
A]. (13)

Note that we also have |∆jW
A| ≤ cj , and hence, the estimates (12) give us

|E[Rj∆jW
A]| ≤

c3j
2

(1 + E|W |) +
cj
α

∫ cj

−cj

(∫ t+

t−

E[11[z,z+α](W + u)]du

)
dt

=
c3j
2

(1 + E|W |) +
cj
α

∫ cj

−cj

(∫ t+

t−

P (z ≤W + u ≤ z + α)du

)
dt, 1 ≤ j ≤ n.

By the fundamental property of the standard normal random variable P (Z ≤ b)− P (Z ≤ a) ≤ |b− a|/2 for all
a, b ∈ R, we obtain

P (z ≤W + u ≤ z + α) = P (W ≤ z + α− u)− P (Z ≤ z + α− u)

+ P (Z ≤ z + α− u)− P (Z ≤ z − u) + P (Z ≤ z − u)− P (W ≤ z − u)

≤ 2dK(W,Z) +
α

2
.

This, together with the fact that E|W | ≤ Var(W ) = 1, implies

|E[Rj∆jW
A]| ≤

c3j
2

(1 + E|W |) +
cj
α

∫ cj

−cj

(∫ t+

t−

(2dK(W,Z) + α/2)du

)
dt

≤ 2c3j

(
3

2
+
dK(W,Z)

α

)
, 1 ≤ j ≤ n. (14)

Recalling (7), we combine (13) and (14) to get the following

|Ehα,z(W )− Ehα,z(Z)| ≤ E|E[T |W ]− 1|+
(

3

2
+
dK(W,Z)

α

) ∑
A([n]

1(
n
|A|
)
(n− |A|)

∑
j /∈A

c3j

= E|E[T |W ]− 1|+
(

3

2
+
dK(W,Z)

α

) n∑
j=1

c3j ∀ z ∈ R, α > 0,

or equivalently

sup
z∈R
|Ehα,z(W )− Ehα,z(Z)| ≤ E|E[T |W ]− 1|+

(
3

2
+
dK(W,Z)

α

) n∑
j=1

c3j ∀α > 0.

To finish the proof, we observe that

P (W ≤ z)− P (Z ≤ z) ≤ Ehα,z(W )− P (Z ≤ z)
= Ehα,z(W )− Ehα,z(Z) + Ehα,z(Z)− P (Z ≤ z)

≤ Ehα,z(W )− Ehα,z(Z) +
α

2
∀ z ∈ R.

The same argument will gives us a corresponding lower bound. That is to say

dK(W,Z) ≤ sup
z∈R
|Ehα,z(W )− Ehα,z(Z)|+ α

2
∀α > 0,
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and hence,

dK(W,Z) ≤ E|E[T |W ]− 1|+
(

3

2
+
dK(W,Z)

α

) n∑
j=1

c3j +
α

2
∀α > 0.

Choosing α = 2
n∑
j=1

c3j , we obtain

dK(W,Z) ≤ 2E|E[T |W ]− 1|+ 5

n∑
j=1

c3j ≤ 2
√

Var(E[T |W ]) + 5

n∑
j=1

c3j ,

which leads us to the desired conclusion (9). Notice that the second inequality follows from the Hölder inequality
and the fact that E[T ] = σ2 = 1.

Once again, we would like to emphasize that our Berry-Esseen bound (9) is the same as the Wasserstein bound
(4). Hence, we can use the results obtained previously by other authors to derive the Berry-Esseen bound without
doing any further computations. Let us provide some examples to illustrate this advantage.

Example 2.1 (An occupancy problem). Suppose n balls are dropped into αn boxes such that all (αn)n possibilities
are equally likely. Let X be the set of labels of the αn boxes and let Xi denote the label of the box into which
ball i is dropped. Let W = f(X1, · · · , Xn) be the number of empty boxes. It is known from Section 3.2 in [4]
that |∆jW | ≤ 1 for all 1 ≤ j ≤ n. Thus W is a nonlinear statistics with bounded differences and cj = 1 for
all 1 ≤ j ≤ n. Moreover, also from Section 3.2 in [4], we have σ2 = Var(W ) ∼ (αe−1/α − (1 + α)e−2/α)n as
n→∞ and

√
Var(E[T |W ]) ≤ C

√
n for some constant C that does not depend on n. So, by Theorem 2.1, we

obtain the Berry-Esseen bound

dK

(
W − E[W ]

σ
, Z

)
≤ C√

n
.

Example 2.2 (A permutation statistic). Let Sn be the group of all n! permutations of {1, · · · , n}. Let the number
of descents be defined as

D(π) = |{i : 1 ≤ i ≤ n− 1, π(i+ 1) < π(i)}|, π ∈ Sn.

In seeking to make a metric on permutations using descents we were led to study

T (π) = D(π) +D(π−1).

Note that T (π) is a new permutation statistic introduced recently in [5]. In Theorem 1.1 of [5], Chatterjee and
Diaconis obtained the following results

E[T (π)] = n− 1 , σ2 := Var(T (π)) =
n+ 7

6
− 1

n
,

and the Wasserstein bound, for some C not depending on n,

dW

(
T (π)− E[T (π)]

σ
, Z

)
≤ Cn1/2

σ2
+
Cn

σ3
.

Moreover, T (π) can be considered as a measurable function of independent random variables: T (π) =
f(X1, · · · , Xn), where X1, · · · , Xn are independent uniformly distributed points on X = [0, 1]2. We have, in
addition, that |∆jf(X)| ≤ 4 for every j. Thus we can apply Theorem 2.1 and we obtain

dK

(
T (π)− E[T (π)]

σ
, Z

)
≤ Cn1/2

σ2
+
Cn

σ3
≤ C√

n
,

which, to the best of our knowledge, is new.
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Example 2.3 (Longest common subsequence). Let (Xi)i≥1 and (Yi)i≥1 be two infinite sequences whose
coordinates take their values in Am = {α1, · · · , αm}, a finite alphabet of size m. Next, let LCn be the length
of the longest common subsequences (LCSs) of the random words X1 · · ·Xn and Y1 · · ·Yn, i.e. LCn is the
maximal integer k ∈ {1, · · · , n}, such that there exist 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n, such that
Xis = Yjs for all 1 ≤ s ≤ k.

We now assume that (Xi)i≥1 and (Yi)i≥1 are two independent sequences of independent identically distributed
random variables having the same law. Thus, by its definition, LCn is a measurable function of 2n independent
random variables:

LCn = LCn(X1, · · · , Xn, Y1, · · · , Yn).

Although the study of LCn has a long history, the first limit theorem result for LCn was recently obtained by
Houdré and Işlak. In Theorem 1.1 of [11], they provide the following bound on the Wasserstein distance

dW

(
LCn − E[LCn]√

Var(LCn)
, Z

)
≤ C (log n)3/4

n3/14
,

where C > 0 is a constant independent of n, provided that Var(LCn) ≥ Kn for some K > 0 not depending on n.
From the proof of Theorem 1.1 in [11] (also see Example 3.4 in [3]), we have |∆jLCn| ≤ 1 for all 1 ≤ j ≤ 2n.

This means that LCn is a nonlinear statistics with bounded differences and cj = 1 for all 1 ≤ j ≤ 2n. Hence, by
using the estimates established in [11], our Theorem 2.1 provides the following Berry-Esseen bound

dK

(
LCn − E[LCn]√

Var(LCn)
, Z

)
≤ C (log n)3/4

n3/14
.

For further examples, we note that the nonlinear statistics, including U -statistics, V -statistics and Lipschitz L-
statistics, discussed in [12] also satisfy the bounded difference property. The Wasserstein bound obtained there also
holds true for the Berry-Esseen bound.
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