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Abstract Regression models are very useful in describing and predicting real world phenomena. The Logistic regression is
an extremely robust and flexible method for dichotomous classification prediction. This model is a classification model rather
than regression model. When the number of predictors in regression models is high, data analysis is difficult. Dimension
reduction has become one of the most important issues in regression analysis because of its importance in dealing with
problems with high-dimensional data. In this paper, the methods of diminishing the dimension of variables in logistic
regression, which include the estimation of central subspace based on the inverse regression, the likelihood acquisition
method and principal component analysis are considered. Using a real data associated with the dental problems the Logistic
regression is fitted and the correct classification of the data computed. At the end, The simulation study is presented to
compare the sufficient dimension reduction methods with each other. In the simulation, MATLAB software is used and the
Programs are attached at the end of the article in appendix.
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1. Introduction

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between
a dependent variable and one or more independent variables.In other word it is one of the most important
statistics topics that examines the relationship between a response variable Y and a variable X = (X1, ...,Xp)T .
In parametric regression, the link function is a simple algebraic function of X, and least squares or maximum
likelihood methods (among others) can be applied in order to find the best global fit. In full generality, the goal
of a regression is to infer about the conditional distribution of the univariate response variable Y given p × 1
vector of predictors X. The logistic regression model, is a statistical method for binary classification that can
be generalized to multiclass classification which is very easy to realize and achieves very good performance
with linearly separable classes. Logistic regression is a simple and more efficient method for binary and linear
classification problems. When the dependent variable has two categories, then it is a binary logistic regression.
When the dependent variable has more than two categories, then it is a multinomial logistic regression. When
the dependent variable category is to be ranked, then it is an ordinal logistic regression (Afshari et. al. 2017).
Logistic regression solves many problems faced in freemium product development that linear regression cant,
because rather than predicting a numerical value, it predicts a discrete, dichotomous value . For this reason, logistic
regression might more accurately be called logistic classification.In regression models, the number of predictor
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variables is a main problem. Today, advances in technology have led to the creation of data with many explanatory
variables, which is difficult to analyze, so dimensional reduction methods can be a reasonable method in this area.
Reducing the number of variables without losing information has met the purpose of this study. The problem of
dimensionality also provides the ability to use regression graphs (Afshari, 2017).

Since in many statistical applications the dimension p is large, the statistical analysis becomes difficult.
Therefore, it is very important to reduce the dimension p without much loss of information on regression. One
of the proposed solution in dealing with this problem is to reduce the number of these variables. This has been
achieved through the development of sufficient dimension reduction methods. The goal is to find the appropriate
subspace with a small dimension. Since the subspace depends on parameters, it should be estimated. Real-world
data, such as speech signals, digital photographs, or FMRI scans, usually has a high dimensionality. In order to
handle such real-world data adequately, its dimensionality needs to be reduced. The intrinsic dimensionality of data
is the minimum number of parameters needed to account for the observed properties of the data (Fukunaga, 1990).
Dimensionality reduction is important in many domains, since it mitigates the curse of dimensionality and other
undesired properties of high-dimensional spaces (As a result, dimensionality reduction facilitates, among others,
classification, visualization, and compression of high-dimensional data, see for instant, Jimenez and Landgrebe,
1997, for more information).
Dimension reduction for regression, as pioneered by such authors as Duan and Li (1991), Li (1991, 1992), Cook and
Weisberg (1991), and Cook (1994, 1998), is aimed at reducing the dimension of a vector-valued predictor X, while
preserving its regression relation with a real-valued response Y . Research into dimension reduction has gained
considerable momentum in recent years due to the rapidly increasing data volume and dimension, which demand
preprocessing techniques to reduce their scope. Li, et. al. (2003) considered the analysis of multivariate response
data with multivariate regressors. Methods for reducing the dimensionality of response variables developed, with
the goal of preserving as much regression information as possible. Yin and Cook (2005), proposed a general
dimension-reduction method that combines the ideas of likelihood, correlation, inverse regression and information
theory. Yin et. al. (2008) proposed a dimension reduction method for estimating the directions in a multiple-
index regression based on information extraction and showed that under the assumption of elliptical predictors, the
estimation of multiple-index regressions can be decomposed into successive single-index estimation problems.
Zhu et. al. (2010), offered a complete methodology of cumulative slicing estimation to sufficient dimension
reduction and proposed three methods that are termed, respectively, as cumulative mean estimation, cumulative
variance estimation, and cumulative directional regression. Luo et. al. (2014) introduced a new sufficient dimension
reduction framework that targets a statistical functional of interest, and proposed an efficient estimator for the
semiparametric estimation problems of this type.
Li (1991) and Duan and Li (1991) introduced a link-free and distribution-free method for estimation of central
subspace called Sliced inverse regression (SIR) method to estimate the subspace. The basic principle of SIR is
to reverse the role of Y and X and to study the geometric property of the first conditional moment E(X∣Y ).
In fact, the Sliced Inverse Regression (SIR) is an effective method for dimension reduction in high-dimensional
regression problems. The original method, however, requires the inversion of the predictors covariance matrix.
Hsing and Carroll (1992) have derived the asymptotic properties of this procedure for the special case where
each slice contains only two observations. Li et al. (1999) extended sliced inverse regression (SIR) of Li (1991)
to the setting which allows for censoring in the data. Bura and Cook (2001), considered the assumptions on the
predictor distribution, under which the chi-squared test was proved to apply, are relaxed, and the result is extended.
A general weighted chi-squared test that does not require normal regressors for the dimension of a regression is
given. Simulations show that the weighted chi-squared test is more reliable than the chi-squared test when the
regressor distribution digresses from normality significantly. The term Sliced refers to the fact that a slicing is
realized on the response variable Y to facilitate the estimation of the inverse conditional expectation. Li and Yin
(2008), proposed a regularized SIR approach based on the least-squares formulation of SIR. An alternating least-
squares algorithm developed, to enable SIR to work when the number of predictors, p, exceeds the sample size, n,
and highly correlated predictors.
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Cook and Weisberg (1991) proposed another method that use second conditional moment E(X∣Y ) names sliced
average variance estimation (SAVE) for estimating the central subspace. This method has good performance in
finding quadratic forms and fail to find linear trend and in this method, the response variable should be discrete
or categorical. Ye and Weiss (2003) introduced the broad classes of dimension reduction candidate matrices, and
distinguished estimators of the matrices from the matrices themselves. Also they proposed bootstrap methodology
to select among candidate matrices, estimators and dimension, and in particular we investigate linear combinations
of different methods. Zhu and Zhu (2007), used the kernel method to estimate the SAVE and proved that this
estimator is both asymptotically normal and root n consistent. Examples and real data presented for illustrating
our method. Li and Wang (2007) introduced the directional regression method to estimate the central subspace,
which combines the methods of dimension reduction based on the first two conditional moments. Zhu et. al.
(2007) presented a further investigation for the hybrid methods of inverse regression-based algorithms and a set
of simulations for several typical models were carried out to guide the selection of coefficient in the hybrids. Lue
(2008), considered the SAVE for censored data. Based on the weight adjustment, he developed the modification
of sliced average variance estimation for estimating the lifetime central subspace without requiring a prespecified
parametric model. The simulation results reported and comparisons made with the sliced inverse regression of Li et
al. (1999). Cook and Forzani (2009) introduced the likelihood acquired directions methods, which is more desirable
than other methods. Also, principal component analysis is one of the oldest methods for dimension reduction. In
this paper, we introduce these methods in details and use them in clinical data and compare them with each other.
Sliced inverse regression (SIR) and sliced average variance estimator (SAVE), which are based on the first
two conditional moments E(X∣Y ) and E(XXT ∣Y ), are among the most commonly used dimension reduction
estimators. They have well-known limitations, however. In particular, SIR is known to fail when the response
surface is symmetric about the origin, whereas SAVE is not very efficient in estimating monotone trends for small
to moderate sample sizes. Li and Wang (2007) introduced a natural and simple principle for dimension reduction,
called directional regression (DR), that synthesizes the dimension reduction methods based on first two conditional
moments and achieves substantial improvement in accuracy. They developed the asymptotic distribution of the DR
estimator, and from that a sequential test procedure to determine the dimension of the central space. Like contour
regression, DR is derived from empirical directions, but achieves higher accuracy and requires substantially less
computation. Yu et al. (2014), extended directional regression to a general family of estimators via the notion of
general empirical directions and developed a new methodology for nonlinear dimension reduction.
Principal component analysis (PCA) is probably the oldest and certainly the most popular technique for computing
lower-dimensional representations of multivariate data. The technique is linear in the sense that the components
are linear combinations of the original variables (features), but non-linearity in the data is preserved for effective
visualization. The technique can be presented as an iterative computation of the direction of highest variation
followed by projection onto the perpendicular hyperplane. This quickly provides a few perpendicular directions
that account for the majority of the variation in the data, giving a low dimensional representation of the data. A
complete set of principal components can be viewed as a rotation in the original variable space. See, for example
Joliffe (1986) for a comprehensive treatment and history of principal component analysis.
The rest of this paper is organized as follows. In Section 2, the main definitions on the dimension reduction subspace
are given. In Section 3, the estimation methods of central subspace based on inverse regression consist of sliced
inverse regression, sliced average variance estimation and directional regression are presented. In Section 4, the
maximum likelihood estimation of central subspace which does not depend on the condition of being normal is
obtained. In Section 5, the application of the presented method using a real example associated with the dental
problems and the correct classification of the data are computed. In Section 6, the simulation study is presented to
compare the sufficient dimension reduction methods with each other. Concluding remarks are given in Section 7.
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2. Dimension reduction subspace

Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of
reduced dimensionality. Ideally, the reduced representation should have a dimensionality that corresponds to the
intrinsic dimensionality of the data.In this section we want to discuss about Dimension reduction subspace:

When we want to reduce the dimension of predictor variables from p to a smaller value d without loss of
information, the equation

Y = f(βT
1 X,βT

2 X, ...,βT
d X, ϵ), (1)

makes it possible. In equation (1), βj , j = 1, ..., d, is an unknown parameter, f is an unknown function on Rd+1 and
also ϵ is independent of random vector X. When the equation (1) holds, the βTX gives all information we need to
know about the variable Y .

Definition 1
The term βTX is sufficient reduction for the regression Y on X if:

Y áX∣βTX. (2)

The equation (2) means that given βTX, the variables Y and X are independent. Thus the subspace spanned by
the columns of β, S(β), is called a dimension reduction subspace (DRS) for Y ∣X. Since (2) holds for β = Ip, so
DRS is not necessarily unique. In applications we prefer to use graphical tools to show data. For this purpose we
reduce a dimension of subspace and thus the idea of minimum dimension reduction subspace is appeared.(Cook,
1998).

Definition 2
The subspace S is called minimum dimension reduction subspace (min DRS) for regression Y on X if the
following relations hold:
1) The subspace S be a DRS.
2) For each Sdrs, dimS ≤ dimSdrs.

Note that, the minimum DRS is also not necessarily unique. The following example shows this subject.

Example 1
Let p = 2 and X = (x1, x2) be uniformly distributed on the unit circle, then ∣∣X∣∣ = 1. Set Y ∣X = x2

1 + ϵ, where ϵ is
an independent error. Since x2

1 + x2
2 = 1, either x1 or x2 has full information about the Y ∣X, then

Y ∣X = x2
1 + ϵ = (1 − x2

2) + ϵ.

Thus S((1, 0)T ) and? S((0, 1)T ) are both min DRS (Cook, 1998).

Minimum dimension reduction subspaces are not unique and one regression has several min DRS with the same
dimensions, this dimension is called structural dimension (d) of the regression. When the subspace is not unique,
we face with problem in estimating it, so the idea of a central DRS would be helpful (Cook, 1998).

Definition 3
(Cook, 1998). The subspace S is called minimum dimension reduction subspace (min DRS) for regression Y on
X if the following relations hold:
1) The subspace S be a DRS.
2) For each Sdrs, S ⊂ Sdrs.

The central DRS is denoted by SY ∣X. The central subspace exists if and only if the intersection of all DRS be a
DRS, i.e. SY ∣X = ⋂Sdrs. Since the central subspace depends on the parameter, it should be estimated. In the next
sections, we explain about the estimation methods of central subspace based on inverse regression.
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3. The estimation of central subspace based on inverse regression

Now we want to Estimate centeral subspace based on inverse regression Based on three subsection as below:

3.1. Sliced inverse regression

Li (1991), introduced sliced inverse regression method for estimation of central subspace. Let Z = Σ−1/2(X −
E(X)) and Σ be a covariance matrix of vector Z, we use inverse regression Z∣Y to estimate central subspace.
Recall that in this method, the response variable should be discrete or categorical.

Theorem 1
Let η be a basis for SY ∣Z, Pη be a projection matrix on SY ∣Z and E(Z∣ηTZ) = PηZ, then we have

E(Z∣Y ) = PηE(Z∣Y ), (3)

and
E(Z∣Y ) ∈ SY ∣Z, (4)

or equivalently
SE(Z∣Y ) ⊂ SY ∣Z. (5)

Proof
To proof (3), we know that Y á Z∣ηTZ and Pη +Qη = Ip. Therefore

E(Z∣Y ) = E(E(Z∣ηTZ, Y )∣Y ) = E(E(Z∣ηTZ)∣Y ) = E(E((Pη +Qη)Z∣ηTZ)∣Y )
= E(E((PηZ +QηZ)∣ηTZ)∣Y ) = E(PηE(Z∣ηTZ) +QηE(Z∣ηTZ)∣Y )
= E((PηPηZ +QηPηZ)∣Y ) = E((Pη +Qη)PηZ∣Y ) = E(PηZ∣Y )
= PηE(Z∣Y ).

Since Pη is a projection matrix on SY ∣Z and E(Z∣Y ) = PηE(Z∣Y ), then we haveE(Z∣Y ) ∈ SY ∣Z.

According to theorem 1, we estimate E(Z∣Y ) ∈ SY ∣Z using the following algorithm.

Algorithm 1
1. Let Z = Σ̂xx

−1/2(X − X̄) be standard form of vector X where Σ̂xx is covariance matrix.
2. We partition range of Y into H slices I1, ..., IH . Let the proportion of the Yi, i = 1, 2, . . . , n, that falls in
slice r be p̂r, so

p̂r = 1/n
n

∑
i=1

Ir(Yi), (6)

where Ir(Yi) is indicator function of Yi in each slice.
3. Compute the sample mean of Ẑ within each slice:

Z̄r =
∑n

i=1 ẐiIr(Yi)
∑n

i=1 Ir(Yi)
. (7)

The slice mean converges almost surely to the population mean:

E(Z∣Y = h) ∈ SE(Z∣Y ) ⊂ SY ∣Z = Σ1/2SY ∣X.

4. Find the eigenvalues and eigenvectors of the weighted sample covariance matrix:

V̂ = 1

n

H

∑
h=1

nhZ̄hZ̄
T
h .

Stat., Optim. Inf. Comput. Vol. 11, March 2023



S. HEYDARI, M. AFSHARI, S. TAHMASBI AND M. ALIZADEH 427

5. Let d = dim[SE(Z∣Y )], the SIR estimation of subspace SE(Z∣Y ) is attained by

ŜE(Z∣Y ) = S(η̂1, ..., η̂d),

where ηi is the ith largest eigenvector of V̂. The SIR estimate of SY ∣X is

Σ̂−1/2ŜE(Z∣Y ) = S(Σ̂−1/2η̂1, ..., Σ̂
−1/2η̂d).

The proposed algorithm has a good performance for determining the linear trend. Assume that response variable
is binary and let Σj = var(Z∣Y = j), f = P (Y = 1), ν = µ1 −µ0 and ∆ = Σ1 −Σ0.(Li, 1991).

3.2. Sliced average variance estimation

Cook and Weisberg (1991) proposed another method names sliced average variance estimation(SAVE) for
estimating the central subspace. This method has good performance in detecting a quadratic forms. Again recall
that in this method, the response variable should be discrete or categorical.

Theorem 2
Let η be a basis for SY ∣Z, and

1)E(Z∣ηTZ) = PηZ.
2)V ar(Z∣ηTZ) =Qη,

where Pη is a projection operator on SY ∣Z and Qη = Ip −Pη, then we have:

ΣZ∣Y =Qη +PηΣZ∣Y Pη, (8)

and
S(Ip −ΣZ∣Y ) ⊂ SY ∣Z. (9)

Proof
Consider that

ΣZ∣Y = E[var(Z∣ηTZ, Y )∣Y ] + var[E(Z∣ηTZ, Y )∣Y ].
Since Y á Z∣ηTZ, then we have

ΣZ∣Y = E[var(Z∣ηTZ)∣Y ] + var[E(Z∣ηTZ)∣Y ].

According to the first assumption of the theorem, we have

ΣZ∣Y = E[var(Z∣ηTZ)∣Y ] +PηΣZ∣Y Pη. (10)

By using the second assumption,
ΣZ∣Y =Qη +PηΣZ∣Y Pη. (11)

To estimate the relation (9), consider that

Ip −ΣZ∣Y = Pη +PηΣZ∣Y Pη.

Thus

Pη(Ip −ΣZ∣Y )Pη = PηPηPη +PηPηΣZ∣Y PηPη = Pη +PηΣZ∣Y Pη

= (Ip −ΣZ∣Y ).

According to the assumptions 1 and 2 of theorem, we get

span{E(Ip − var(Z∣Y ))2} ⊆ SY ∣Z, (12)

which is a basis for SAVE.
The SAVE algorithm is purposed in 5 steps to estimate E(Ip − var(Z∣Y ))2.
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Algorithm 2
(Cook and Weisberg, 1991)

1. Let Z = Σ̂xx
−1/2(X − X̄) be standard form of vector X where Σ̂xx is covariance matrix.

2. We divide the range of Y in to H slices and compute covariance matrix of V̂r for each slice. Note that V̂r is
the estimation of V ar(Z∣Ỹ ).

3. Let fr is the sample fraction of observations in each slice and compute:

M =
H

∑
h=1

fr(I − V̂r)2.

4. Consider the jth predictor of SAVE, then

Sj = ηT
j Ẑi j = 1, ..., p, i = 1, .., n,

where ηjdenote the eigenvector corresponding to the jth-largest eigenvalue of M.

5. Finally the SAVE estimate of SY ∣X is obtained by:

S(Σ̂−1/2η̂1, ..., Σ̂
−1/2η̂d).

3.3. Directional regression

Li and Wang (2007) introduced the directional regression method to estimate the central subspace, which combines
the methods of dimension reduction based on the first two conditional moments.

Lemma 1
Suppose that U, V, W and Z be random vectors, then following expressions are equivalent

U áW∣(Z,V) U áV∣Z (13)

U áV∣(Z,W) U áW∣Z (14)

U á (V,W)∣Z (15)

Theorem 3
Suppose that ν ∈ Rp, ν ⊥ SY ∣Z and
1) E(νTZ∣PηZ) is a linear function of Z.
2) V ar(νTZ∣PηZ) be constant.
Then for each (Y, Ỹ ) columnar space 2Ip −A(Y, Ỹ ) in SY ∣Z Placed.

Proof
Using lemma 1, (Z, Y ) á (Z̃, Ỹ ) results that

Z á Z̃∣(Y, Ỹ ), Z á Ỹ ∣Y, Z̃ á Y ∣Ỹ ,

then A(Y, Ỹ ) extends as follows:

A(Y, Ỹ ) = E(ZZT −ZZ̃T − Z̃ZT + Z̃Z̃T ∣Y, Ỹ )
= E(ZZT ∣Y ) −E(Z∣Y )E(Z̃T ∣Ỹ ) −E(Z̃∣Ỹ )E(ZT ∣Y ) +E(Z̃Z̃T ∣Ỹ ). (16)

Now we just show that
S⊥Y ∣Z ⊂ {span(Ip −A(Y, Ỹ ))}

⊥. (17)
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Suppose that νy ∈ S⊥Y ∣Z. According to assumption 1:

E(νTZ∣PZ) = αTPZ, ∃α ∈ Rp (18)

then

0 ≤ αTPα = (αTPZ)(αTPZ)T = E(νTZ∣PZ)ZTPα

= E(νTZZTPα∣PZ).

Now with taking expectation value from both sides, we have

0 ≤ αTPα = E(νTZZTPα) = νTPα.

Since νy ∈ S⊥Y ∣Z and P is a projection matrix on SY ∣Z, then

νTPα = 0, (19)

So that αTPα = 0 and αTPZ = 0, and
E(νTZ∣PZ) = 0. (20)

According to assumption 2:
E((νTZ)2∣PZ) = c +E2(νTZ∣PZ) = c. (21)

Equal to conditional variance νTZ with condition PZ. with taking expectation value from both side Phrase c = νTν
Obtained. Therefore

E((νTZ)2∣PZ) = νTν.

We know that Y á Z∣PZ, then

E(νTZ∣Y ) = E[E(νTZ∣PZ)∣Y ] = 0,

and

E[(νTZ)2∣Y ] = E{E(νTZ)2∣PZ)∣Y } = νTν.

By replacing these relations in a relation (16) and considering that (Z, Y ) and (Z̃, Ỹ ) have same distribution, we
get that

νTA(Y, Ỹ )ν = 2νTν, (22)

and
νT (2Ip −A(Y, Ỹ ))ν = 0. (23)

From this theorem, Matrix column space can be as

G = E[2Ip −A(Y, Ỹ )]2, (24)

an estimate for SY ∣Z . Lee and Wang (2007) computed the discrete estimate for G as follows:

Ĝ = 2∑E
2
n(ẐẐT − Ip∣Y ∈ Jh)p̂h + [∑En(Ẑ∣Y ∈ Jh)En(ẐT ∣Y ∈ Jh)p̂h]2

+ 2∑En(ẐT ∣Y ∈ Jh)En(Ẑ∣Y ∈ Jh)p̂h
×∑En(Ẑ∣Y ∈ Jh)En(ẐT ∣Y ∈ Jh)p̂h,
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where

En(Ẑ∣Y ∈ Jh) =
En[ẐI(Y ∈ Jh)]
EnI(Y ∈ Jh)

= ∑
n
i=1 ẐI(Yi ∈ Jh)
∑n

i=1 I(Yi ∈ Jh)
.

Now a sufficient tool is provided to estimate SY ∣X. Suppose that λ̂1 ≥ ... ≥ λ̂p and η̂1, ..., η̂p are the eigenvalues
and eigenvectors of Ĝ, respectively. To estimate SY ∣X is used from d first eigenvector
η̂1, ..., η̂d . so that

Σ̂−1/2η̂1, ..., Σ̂
−1/2η̂d (25)

4. Likelihood acquired directions

The methods for estimating the central subspace that were introduced in the previous section are limited to the
normality condition of Y ∣X . In this section, another method is proposed which is based on the likelihood function
and also it doesn’t necessarily to be normal. Cook and Forzani (2009) introduced the likelihood acquired approach
based on the likelihood function. again for this method we divide continuous response to H slices.

Proposition 1
(Cook and Forzani, 2009). Suppose X∣Y = y ∼ N(µy,∆y), y ∈ SY . Let β be a semi-orthogonal basis matrix for
S ⊆ Rp and (β,β0) ∈ Rp×p. Then S is a dimension reduction subspace if and only if the following two conditions
are satisfied. For every y ∈ SY :

1. (βTX∣Y = y) ∼ N(βTµ + βT∆βνy,β
T∆yβ); for some amounts νy ∈ Rdim(S).

2. βT
0 X∣(βT X, Y = y) ∼ N(HβTX + (βT

0 −HβT )µ,D),

where D = (βT
0 ∆

−1β0)−1 and H = (βT
0 ∆β)(βT∆β)−1.

Using the above proposition, we can obtain the likelihood function for the LAD model.

Lemma 2
Suppose that B ∈ Rp×p be a symmetric positive definite matrix, and (β,β0) ∈ Rp×p, A full rank matrix with
βTβ0 = 0, then:

β(βT Bβ)−1βT +B−1β0(βT
0 B−1β0)−1βT

0 B−1 = B−1, (26)

and consequently:
Ip − PT

β(B) = Pβ0(B−1). (27)

In addition, if β and β0 be orthogonal, then:

(βT
0 B−1β0)−1 = βT

0 Bβ0 − βT
0 Bβ(βT Bβ)−1βT Bβ0 (28)

− (βT
0 B−1β0)(βT

0 B−1β) = (βT
0 Bβ)(βT Bβ)−1 (29)

β0(βT
0 B−1β0)−1βT

0 = B −Bβ(βT Bβ)−1βT B (30)

∣βT
0 Bβ0∣ = ∣B∣∣βT B−1β∣ (31)

(Rao, 1973)

Theorem 4
Under the LAD model when d is known and the normal assumption is hold, the MLE of SY ∣X, maximizes over
S ∈ G(d,p) the log likelihood function

Ld(S) = −
np

2
(1 + log(2π)) + n

2
log∣PSΣ̃PS ∣0 −

n

2
log∣Σ̃∣

− 1

2

h

∑
y=1

nylog∣PS∆̃yPS ∣0 (32)
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Maximizes it, in which ∣A∣0 is product of nonzero eigenvalues of symmetric and semi-definite A (Cook and
Forzani, 2009).

Proof
Suppose that β is semi orthogonal matrix for SY ∣X Then, the likelihood logarithm is based on the distribution
(βTX,βT

0 X∣Y ) In the form of

Ld =∑
y

log{f(βTX∣Y )f(βT
0 X∣βTX, Y )}

= −np
2
log(2π) − n

2
log∣D∣ − 1

2
∑
y

nylog∣βT∆yβ∣

− 1

2
∑
y

∑
i

[βT (Xyi −µ −∆βνy)]T (βT∆yβ)−1[βT (Xyi −µ −∆βνy)]

− 1

2
∑
y

∑
i

[(βT
0 −HβT )(Xyi −µ)]TD−1[(βT

0 −HβT )(Xyi −µ)]

= −np
2
log(2π) − n

2
log∣D∣ − 1

2
∑
y

nylog∣βT∆yβ∣

− 1

2
∑
y

ny[βT (X̄y −µ −∆βνy)]T (βT∆yβ)−1[βT (X̄y −µ −∆βνy)]

− 1

2
∑
y

ny(X̄y −µ)TKD−1KT (X̄y −µ)

−∑
y

ny

2
tr{βT ∆̃yβ(βT∆yβ)−1}

−∑
y

ny

2
tr{KD−1KT ∆̃y}

where K = (βo − βHT ), H = (βT
0 ∆β)(βT∆β)−1 and D = (βT

0 ∆
−1β0)−1. We show the forth statement of

above equation by T4. We set ā = ∑y fyay where fy =
ny

n
. To minimum

T4

n
=∑

y

fy(Zy − B̄νy)TB−1y (Zy − B̄νy)

Relative to the terms ν̄ = 0. We use the Lagrange coefficient λ ∈ Rd in whichZy = βT (X̄ −µ) By = βT∆yβ

B̄ = βT∆β Namely, we must minimize
T4

n
+ λT ν̄ .

We now have a derivative of νy:

−2fyB̄B−1y Zy + 2fyB̄B−1y B̄νy + fyλ = 0, (33)

or equivalently

2fyZy + 2fyB̄νy + fyByB̄
−1λ = 0.

By adding on y, the second term is zero and the third term be λ. So that λ = 2Z̄. Therefore, from the equation (33)
we have:

νy = B̄−1(Zy −ByB̄
−1Z̄).
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By substituting νy in T4:

T̃4

n
=∑

y

fyZ̄
T B̄−1BjB

−1
j BjB̄

−1Z̄ = Z̄T B̄−1Z̄ = (βT X̄ − βTµ)T B̄−1(βT X̄ − βTµ).

To find maximum of µ:

∂Ld

∂µ
= nβ(βT∆β)−1βT (X̄ −µ) + nKD−1KT (X̄ −µ). (34)

Using (27), definition of H and Pβ(∆), we have:

KT = βT
0 −HβT = βT

0 − (βT
0 ∆β)(βT∆β)−1βT

= βT
0 (Ip −PT

β(∆)) = β
T
0 Pβ0(∆−1)

= (βT
0 ∆

−1β0)−1βT
0 ∆

−1.

Thus

KD−1KT = (β0 − βHT )TD−1(βT
0 −HβT )

=∆−1β0(βT
0 ∆

−1β0)−1(βT
0 ∆

−1β0)−1(βT
0 ∆

−1β0)−1βT
0 ∆

−1

=∆−1β0(βT
0 ∆

−1β0)−1βT
0 ∆

−1. (35)

By substituting (35) in equation (34), we get:

∂Ld

∂µ
= nβ(βT∆−1β)−1βT (X̄ −µ) + n∆−1β0(βT

0 ∆
−1β0)−1βT

0 ∆
−1(X̄ −µ).

Now follows from the (26) from lemma 2 have the following result:

∂Ld

∂µ
= n∆−1(X̄ −µ).

Thus µ̂ = X̄ and ν̂ = 0. If we set Σ̃y = ∆̃y + (X̄y − X̄)(X̄y − X̄)T , then

Ld = −
np

2
log(2π) − n

2
log∣D∣ − 1

2
∑
y

log∣βT∆yβ∣

− 1

2
∑
y

ny[(βT
0 −HβT )(X̄y − X̄)]TD−1[(βT

0 −HβT )(X̄y − X̄)]

− 1

2
∑
y

tr((βT ∆̃yβ)(βT∆yβ)−1)

− 1

2
∑
y

nytr((βT
0 −HβT )TD−1(βT

0 −HβT )∆̃y)

= −np
2
log(2π) − n

2
log∣D∣ − 1

2
∑
y

nylog∣βT∆yβ∣

−∑
y

ny

2
tr{βT ∆̃yβ(βT∆yβ)−1} −∑

y

ny

2
tr{KD−1KT Σ̃y}

The maximum likelihood of By obtains by:

B̂y = β̂T∆yβ = βT ∆̃yβ,
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and thus

Ld = −
np

2
log(2π) − nd

2
− n

2
log∣D∣ − 1

2
∑
y

nylog∣βT ∆̃yβ∣ −∑
y

ny

2
tr{KD−1KT Σ̃y}.

To find the MLE of K, remember that K = (βo − βHT ) and it suffices to find MLE of H. Therefore,

∂Ld

∂H
=∑

y

nyD
−1βT

0 Σ̃yβ +∑
y

nyD
−1HβT Σ̃yβ,

Consequently
Ĥ = (∑

y

nyβ
T
0 Σ̃yβ)(∑

y

nyβ
T Σ̃yβ)−1 = (βT

0 Σ̃β)(βT Σ̃β)−1),

where Σ̃ = ∑y fyΣ̃y. Using (26), the maximum likelihood function relative to D is:

D̂ = (βT
0 − ĤβT )Σ̃(βT

0 − ĤβT )T

= [(βT
0 Σ̃

−1β0)−1βT
0 Σ̃

−1]Σ̃[(βT
0 Σ̃

−1β0)−1βT
0 Σ̃

−1]
= (βT

0 Σ̃
−1β0)−1.

Using (31), the log likelihood in β is as follows:

Ld = −
np

2
(1 + log2π) + n

2
log∣βT

0 Σ̃
−1β0∣ −

1

2
(∑

y

nylog∣βT ∆̃yβ∣

= −np
2
(1 + log2π) + n

2
log∣βT Σ̃β∣ − n

2
log∣Σ̃∣ − 1

2
∑
y

nylog∣βT ∆̃yβ∣. (36)

Since ∣PSΣ̂PS ∣0 = ∣βT Σ̂β∣? by substituting in (36), equation (32) is obtained. For the value of β, H and D one
can get ∆ one by one. Now, we use the relationships (35) and (26):

∆−1 = βA−1βT +KD−1KT , (37)

where A = βT∆β. The estimation of A is considered as β̂T ∆̃β̂, where β̂ is the value of β that maximize the
equation (36). The MLE of ∆−1 obtains by substituting β, K, A and D in (37). Therefore:

∆̂−1 = β̂(β̂T ∆̃β̂)−1β̂T + K̂(K̂T Σ̃K̂)−1K̂T

= β̂(β̂T ∆̃β̂)−1β̂T + Σ̃−1 − β̂(β̂T Σ̃β̂)−1β̂T .

Also
Σ̂ = ∆̂ +PT

β̂(∆̂)M̂Pβ̂(∆̂),

where M̂ is estimation of var(µy) and all estimators are set to maximize the logarithm of likelihood function.

4.1. Robustness of ŜY ∣X to non-normality

Diaconis and Freedman (1984) showed that under appropriate conditions, almost all projection of high-dimensional
data are normal. Therefore, when data is not normal, the LAD method is expected to maintain its desirable
performance. Cook and Forzani (2009) showed by simulation that the errors are not normal, the LAD method
has good performance. In the other word, the estimation of SY ∣X is robustness to nonnormality.
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5. Simulation study

In this section, we compare sufficient dimension reduction methods with each other and also with principal
component analysis. We use the MATLAB software to do this simulation study. First for n = 500, we generate
the random vector X from the Normal distribution Np(0, Ip) and ϵ ∼ N(0, 1). We consider the following models:

a) Y = 4X1/a + ϵ, a = 1, ..., 10, p = 8, h = 5
b) Y = X2

1 /(20a) + 0.1ϵ, a = 1, ..., 10, p = 8, h = 5
c) Y = X1/(10a) + aX2

1/100 + 0.6ϵ, a = 1, ..., 10, p = 8, h = 5
d) Y = 0.4a(βT

1 X)2 + 3 sin(βT
2 X/4) + 0.2ϵ, a = 1, ..., 10, p = 20, h = 10.

For the first three models, SY ∣X = span((1, ..., 0)T ) and for the forth model is spanned by SY ∣X =
span((1, 1, 1, 0, ..., 0)T ) and span(1, 0, ..., 0, 1, 3)T ). We suppose the conditional distribution of X∣Y is normal for
the first model and for other models nonnormal. The figure 1 compare the angle between SY ∣X and its estimation
by methods SIR, SAVE, DR and LAD with 400 replications. Figure 1a is plot of linear model, it shows that for
small amount of a all the methods except PCA have a good performance, by increasing a the SAVE, PCA and
DR methods have Poor performance but SIR and LAD behave good. In Figure 1b, we have quadratic and PCA
again couldn’t do well. Also it is known that SIR perform well just for linear models., but other methods perform
similarly and LAD do best among them. Model 3 has both linear and quadratic term. Figure 1c shows average angle
between SY ∣X and its estimation for this model. For small a, SIR perform well but by increasing a the strength of
the linear trend decreases and the strength of the quadratic trend increases, so the SAVE method do better. As it
is obvious in figure, LAD has good performance far all value of a. Again for the model PCA is not good method.
In Figure 1d, the purposed model has linear tend in βT

2 X2 and quadratic trend in βT
1 X1. Since SIR couldn’t find

quadratic trend and SAVE is poor in finding linear trend, SO as in figure shown, the LAD’s performance is best
among all methods. The DR mothod is good for small value of a. The PCA couldn’t find a trend for this model too.

6. Application

For patients with jaw or skeletal and dental problems, such as the lack of proper fitting of the teeth during
chewing, lack of proper jaw contact, jawbone opening, mouth opening and other, one of the treatment options
is orthognathism surgery. Nowadays the number of people needed to have orthognathism surgery is increasing
and the cost of this surgery is high, so it is necessary to have an exact plan for it. There are different surgery for
orthognathism surgery. In orthognathism surgery treatment, morphology of craniofacial and position of head and
neck and airway change. Sometimes, in orthodontic treatment, the patient may return to the initial condition. By
knowing what changes in craniofacial morphology and head and neck and airway conditions occur, this problem
can be cured in orthodontic treatment. For this purpose, the patients are selected from the archives in the orthodontic
part of department of Dentistry, Tabriz University of Medical Sciences. The dimensions of their jaws and facial
expressions are measured. From 47 different angles and depending on the size of the measurements, are placed
in two groups. For the first group, lower maxillary surgery was done forward, and for the second group, upper
maxillary surgery was done forward. We investigate data in two steps.

6.1. Before surgery

At this stage, that is, before the surgery, for 55 selected patients, the facial dimensions are measured and depending
on the size, fall into one of two groups. In fact for response variable Y = {1, 2}, we have 47 predictor variables. The
goal is to provide a model to predict which surgery should be performed after o measuring the dimensions of the
patient’s face. For this data, 26 patients are in the first group and 29 patients in the second group. Given a total size
with sample 55 and the number of predictor variables, it is clear that a suitable logistic model(Because the response
variable consists of two groups) can not be fitted to these data. We reduce the dimension of predictors in to two
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Figure 1. The average angle between SY ∣X and its estimation

using proposed methods. Figure 2 shows the results. As you can see in the figure 2, the DR, SIR − SAV E and
LAD methods separate data well. Since the number of sample is relatively lower than the number of predictors,
the dimension reduction methods based on inverse regression is not as good as LAD, so we choose the LAD model
to offer a model. The following model obtains for data:

logit(Y ) = −320.35 − 5.73LAD1 + 8.22LAD2. (38)

Now, according to the model (38), we can quantitatively obtain the correct classification of the data. Table 1 shows
the classification values. As you can see in table 1, the SIR and DR methods have not been able to classify the
data due to the small number of samples relative to the number of predictors. The values listed in table 1 for the
PCA show that the poor performance of this method, because we know that this method is not designed for this
purpose.
To determine if the fitted model correctly predicts the variables of the response variable, each time a sample of data
is deleted and the remaining 54 data is subtracted, then appropriate logistic regression model is fitted to them. Then
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Figure 2. The first two predictors of the various methods for preoperative data (the circle represents the first group and the
star represents the second group).
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Table 1. Correct percentage of preoperative data classification

Y SAV E DR LAD PCA

0 100 − 100 46.2
1 100 − 100 65.5

Total 100 − 100 56.4

we predict the response variable of the data we removed from fitted model. So this action should be repeated 55
times. The results of 55 repetitions showed that only 5 cases had a prediction error, ie the predictor varies with the

actual response variable. In fact, the prediction error is
2 + 3
55

. The results are reported in the table 2. So, in addition
to dimension reduction, the prediction model has good performance.

Table 2. Prediction error classification for first stage data

predicted value
observed value 0 1 total

0 24 2 26
1 3 26 29

toatal 27 28 55

6.2. The second stage: difference between the data before and after surgery

In this stage, the surgery is done on the patients of two groups. As stated, for the first group, lower maxillary
surgery was done forward, and for the second group, upper maxillary surgery was done forward. Then we get the
difference of 47 predictor variables before and after surgery. in this section by choosing the appropriate dimension
reduction method and offering proper logistic regression model, we predict that which surgery has been performed
on the patient? As you can see in figure3, the DR and LAD methods separated data well. But according to the
above, the LAD method also performs well for parameter estimation. Therefore, to reduce the dimension of the
data, we use the LAD method and the model

logit(Y ) = −18.06 + 7.89LAD1 + 2.79LAD2, (39)

is fitted for the differential data. Table 3 also shows the correct percentage for the second stage data, as in the
previous table. The LAD method classified the 96.4 the percentage of data correctly. Again, the values in the table
3 for the PCA method show the poor performance of this method. To calculate the prediction error of data, each

Table 3. Correct percentage of difference data classification

Y SAV E DR LAD PCA

0 100 100 96.2 0
1 100 100 96.6 100

total 100 100 96.4 64.4

time, by deleting a sample, we reduce the number of sample size to 54, and fit the appropriate model for it. Then
we predict the response variable of the data and remove from fitted model. In this case, the prediction error is
dfrac2 + 455. The results are presented in the Table 4. Again the proposed model performs well.
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Figure 3. First two predictors of the various methods for the differential data (the circle representing the first group and the
star representing the second group).

7. Conclusions

In the present paper, the methods of diminishing the dimension of variables, which include the estimation of central
subspace based on the inverse regression, the likelihood acquisition method and principal component analysis
considered. By reducing the dimension of variables without losing any information, good results are obtained.
The Likelihood Acquired Directions method and methods based on inverse regression have good performance
for regression models since they designed for regression purposes. Using a real data associated with the dental
problems the Logistic regression is fitted and the correct classification of the data computed. The simulation study
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Table 4. Prediction error classification for the second stage data

predicted value
observed value 0 1 total

0 22 4 26
1 2 27 29

total 24 31 55

is presented to compare the sufficient dimension reduction methods with each other. Among all the dimension
reduction methods, the LAD perform the best. The LAD method is robust for nonnormality, too. Also, the Principal
Component Analysis has not good performance for regression models.
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Appendix

function n = Dmatel(m)

[p,q]=size(m);

if mod(q,3)==1
q=q-1;
end
if mod(q,3)==2
q=q-2;
end

l=m(1,4);
u=m(1,3);

for i=1:q

if mod(i,3)==1 & min(m(:,i))¡l
l=min(m(:,i));
end
if mod(i,3)==0 & max(m(:,i))¿u
u=max(m(:,i));
end

end

delta=u-l;

for i=1:p
for j=1:q

m(i,j)=(m(i,j)-l)/delta;

end
end
A=m;
A
for i=1:p
for j=1:q

if mod(j,3)== 1
c(i,j)=m(i,j+1)/(1+m(i,j+1)-m(i,j));
end

if mod(j,3)== 0
c(i,j)=m(i,j)/(1+m(i,j)-m(i,j-1));
end
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end
end
B=c;
B

for i=1:p
for j=1:q

if mod(j,3)== 1
g(i,j)=(c(i,j)*(1-c(i,j))+c(i,j+2)*c(i,j+2))/(1-c(i,j)+c(i,j+2));
else g(i,j)=0;
end
end
end
D=g;
D

for i=1:p
for j=1:q
if mod(j,3)== 1
g(i,j)=l+delta*g(i,j);
end
end
end
n=g;

........................................................................................................................................
data = load(’ta1255.txt’);
Y = data(:,1);
X = data(:,2:end);
figure(1);
WXsir,Wsir = SIR(Y,X,’disc’,1);
plotDR(WXsir,Y,’disc’,’SIR’);

.........................................................................................................................................
function [Wn,fn,fp,vals] = pfc(Yaux,X,u,morph,parameters)

if strcmpi(morph,’disc’),
Y = mapdata(Yaux);
parameters.nslices = max(Y);
else
Y = Yaux;
parameters.nslices = length(Y);
end
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data parameters = setdatapars(Y,X,parameters.nslices);

Fhandle = F(@F4pfc,data parameters);

if strcmpi(morph,’cont’)
SIGMAfit = get fitted cov(Y,X,parameters.fy);
else
SIGMAfit = get average cov(X,data parameters);
end
SIGMA = data parameters.sigmag;
SIGMAres = SIGMA - SIGMAfit;

p = cols(X);
Wn = eye(p);
fp = Fhandle(ones(1,p));
if u == p,

fn = fp;
else
Wn,vals = firsteigs(inv(SIGMAres)*SIGMA,u);
Wn = orth(Wn);
fn = Fhandle(vals);
vals;
end

............................................................................................................................................
ncols=8; nreps=50; u=1;
nrows=[20 40 60 100 150 200 250 300];
dim lrt=zeros(nreps,length(nrows));
dim bic=zeros(nreps,length(nrows));
dim aic=zeros(nreps,length(nrows));

for k=1:length(nrows)
disp([’nrows = ’ int2str(nrows(k))]);
X = zeros(nrows(k)*3,ncols);
for j=1:nreps
alp = zeros(nrows(k),ncols);
alp(:,ncols) = 1;
mu = [6, 4, 2];
sig = [1, 4, 8];

t1 = normrnd(0,1,nrows(k)*3, ncols);
t2uno = normrnd( 0,1,nrows(k)*3, 1);
t2 = zeros(nrows(k)*3,ncols);
for i=1:ncols
t2(:,i) = t2uno;
end
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X1 = mu(1)*alp + t1(1:nrows(k),:) + sig(1)* t2(1:nrows(k),:).*alp;
X2 = mu(2)*alp + t1((nrows(k)+1):2*nrows(k),:) + sig(2)*(t2((nrows(k)+1):2*nrows(k),:) ).*alp;
X3 = mu(3)*alp + (t1((2*nrows(k)+1):3*nrows(k),:) ) + sig(3)*(t2((2*nrows(k)+1):3*nrows(k),:) ).*alp;

X = [X1; X2; X3];
Y = ones(size(X,1),1);
Y(size(X1,1)+1:(size(X1,1)+size(X2,1)),1)=2;
Y(size(X1,1)+size(X2,1)+1:(size(X1,1)+size(X2,1)+size(X3,1)),1)=3;

[WX,W,fn,d] = ldr(Y,X,’LAD’,’disc’,’lrt’,’alpha’,0.05);
dim lrt(j,k) = d;

[WX1,W1,fn1,d1]=ldr(Y,X,’LAD’,’disc’,’aic’);

[WX2,W2,fn2,d2] = ldr(Y,X,’LAD’,’disc’,’bic’);
dim aic(j,k) = d1;
dim bic(j,k) = d2;
end
end

mean eq1 = zeros(3,length(nrows));
mean eq12 = zeros(3,length(nrows));

for k=1:length(nrows)
mean eq1(1,k) = sum(dim lrt(:,k)==1)/size(dim lrt,1);
mean eq12(1,k) = sum(dim lrt(:,k)¡3)/size(dim lrt,1);
mean eq1(2,k) = sum(dim aic(:,k)==1)/size(dim aic,1);
mean eq12(2,k) = sum(dim aic(:,k)¡3)/size(dim aic,1);
mean eq1(3,k) = sum(dim bic(:,k)==1)/size(dim bic,1);
mean eq12(3,k) = sum(dim bic(:,k)¡3)/size(dim bic,1);
end

figure(1);
plot(nrows,mean eq1);
title(’d=1’);
xlabel(’n y’);
ylabel(’F(1)’);
ylim([0 1]);

figure(2);
plot(nrows,mean eq12);
title(’d=1’);
xlabel(’n y’);
ylabel(’F(1,2)’);
ylim([0 1]);
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