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Abstract We construct optimal extrapolation estimates of π based on random polygons generated by n independent points
uniformly distributed on a unit circle in R2. While the semiperimeters and areas of these random n-gons converge to π
almost surely and are asymptotically normal as n → ∞, in this paper we develop various extrapolation processes to further
accelerate such convergence. By simultaneously considering the random n-gons and suitably constructed random 2n-gons
and then optimizing over functionals of the semiperimeters and areas of these random polygons, we derive several new
estimates of π with faster convergence rates. These extrapolation improvements are also shown to be asymptotically normal
as n → ∞.
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1. Introduction

Given a convex set K ⊆ Rd, the stochastic properties of the convex hull Kn generated by n independent points
chosen at random in K have been studied by many authors. For example, for K ⊂ R2 bounded and convex, and
the random points uniformly distributed over K, Rényi and Sulanke [13, 14] derived limiting expressions for the
expected values of the number of vertices, the perimeter and the area of Kn. In the case of a unit disk in R2,
Hsing [7] further proved that the asymptotic variance of the area An of the convex hull Kn is of the order n−5/3

and satisfies the central limit theorem n5/6(An − E(An))
L−→ N (0, σ2) where σ2 = lim

n→∞
n5/3Var(An) is a positive

constant and the notation L−→ denotes convergence in distribution [3, 5, 15]. In [17], Vu further extended these results
to general dimensions d ≥ 2 and established central limit theorems for the volume and the number of all lower-
dimensional faces of the random polytope Kn. As an example of unbounded sets, Hueter [8] considered n random
points independently and normally distributed in the plane R2 and showed that the area An of the corresponding
convex hull satisfies the central limit theorem (An − 2π log n)/ logn

L−→ N (0, 2π3/2) as n → ∞.
More recently, Bélisle [2] (see also [19, 21]) studied the case when the points are independently and uniformly

randomly selected on the unit circle in R2. In such cases, the resulting convex hull is an inscribed random n-
gon which can be obtained by simply connecting all adjacent vertices on the circle. Additionally, a random
circumscribing n-gon may also be constructed which is tangent to the circle at each of the random vertices [20].
Then the semiperimeter Sn and the area An of the random inscribed n-gon and the semiperimeter (and area)
S′
n of the random circumscribing n-gon all converge to π with probability 1 (abbre. as w.p.1) as n → ∞ with
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Sn = π + n−1+δo(1), An = π + n−1+δo(1) and S′
n = π + n−1+δo(1) for any δ > 0, where each o(1) represents

a random variable that converges to 0 w.p.1 as n → ∞. Moreover, the distributions of Sn, An and S′
n are also

asymptotically normal with n5/2(Sn − (π − π3/n2))
L−→ N (0, 10π6), n5/2(An − (π − 4π3/n2))

L−→ N (0, 160π6)

and n5/2(S′
n − (π + 2π3/n2))

L−→ N (0, 40π6). See also [18] for extensions of these convergence results to cases
when the vertices are not independently or not uniformly distributed on the circle.

In the special case when the vertices happen to be equally spaced on the circle, such cyclic polygons
become regular polygons inscribed in or circumscribed about the circle with Sn = n sin π

n = π − π3

6n2 +
π5

120n4 − π5

5040n6 + · · · = π +O(n−2), An = 1
2n sin 2π

n = π − 2π3

3n2 + 2π5

15n4 − 4π5

315n6 + · · · = π +O(n−2) and S′
n =

n tan π
n = π + π3

3n2 + 2π5

15n4 + 17π7

315n6 + · · · = π +O(n−2) for large n. Since Archimedes, these geometric quantities
have provided famous approximations of π [1, 10, 16]. By further applying extrapolation methods [9, 12] which go
back to Huygens, it is easy to see that the weighted average Yn = 2

3Sn + 1
3S

′
n = π + π5

20n4 + · · · = π +O(n−4)
generates a far more accurate estimate of π than either Sn or S′

n alone. In fact, by including also An, it is
possible to further kill the error terms at the order O(n−4) to obtain Zn = 16

15Sn − 1
5An + 2

15S
′
n = π + π7

105n6 +
· · · = π +O(n−6). In [19, 20], such linear combinations have been shown to hold also for random cyclic
polygons with Yn = 2

3Sn + 1
3S

′
n = π + n−3+δo(1) and Zn = 16

15Sn − 1
5An + 2

15S
′
n = π + n−5+δo(1). Moreover,

Yn and Zn are also asymptotically normal with n9/2(Yn − (π + 6π5/n4))
L−→ N (0, 8136π10) and n13/2(Zn − (π +

48π7/n6))
L−→ N (0, 7792128π14).

Note that the original Archimedean approach also incorporates an important doubling process of the number
of vertices of the regular polygons with the famous geometric-harmonic-mean relations 1/Sn + 1/S′

n = 2/S′
2n,

SnS
′
2n = S2

2n providing the key tool for efficient computations of the semiperimeters S2n and S′
2n of the

corresponding regular 2n-gons directly from the semiperimeters Sn and S′
n of the preceding regular n-gons. With

each iteration of this doubling process, the approximation errors decrease roughly by a factor of 1/4, that is, S2n −
π ≈ 1

4 (Sn − π) and S′
2n − π ≈ 1

4 (S
′
n − π). Similarly, for Yn = 2

3Sn + 1
3S

′
n and Zn = 16

15Sn − 1
5An + 2

15S
′
n, we

have Y2n − π ≈ 1
16 (Yn − π), Z2n − π ≈ 1

64 (Zn − π). By applying again extrapolation techniques, we may obtain
several improved estimates through, for example, Xn = 4

3S2n − 1
3Sn = π − π5

480n4 + · · · , Y∗
n = 16

15Y2n − 1
15Yn =

32
45S2n + 16

45S
′
2n − 2

45Sn − 1
45S

′
n = π − π7

1120n6 + · · · , and Z∗
n = 64

63Z2n − 1
63Zn = −208

945Sn + 1
315An − 2

945S
′
n +

1024
945 S2n + 128

945S
′
2n = π − π9

30240n8 + · · · . In fact, by optimizing over all linear combinations of Sn, An, S′
n and S2n,

A2n (which equals Sn), S′
2n, we can further obtain Wn = − 976

3465Sn + 3
385An − 2

3465S
′
n + 4096

3465S2n + 64
693S

′
2n =

π − π11

221760n10 + · · · .
In this paper, we aim to extend these extrapolation estimates to the more interesting case of random inscribed

and circumscribed polygons. However, unlike the case of regular polygons, the process to double the number of
vertices of a random polygon is more complicated and how this is done may affect the corresponding optimal
extrapolation estimates. Such an effort was first made in [19] where the author proposed three different approaches
for the doubling process, namely, independent doubling, equal bisection and random bisection respectively, albeit
for the relatively easy case of inscribed polygons only. The first approach simply uses an independent set of 2n
vertices independently and uniformly distributed on the circle. The second approach retains the original n random
vertices and at the same time inserts n new vertices by equally bisecting each of the resulting n arcs. The third
approach offers a kind of hybrid of the above two approaches where instead of the midpoints, a new random vertex
is inserted on each of the n arcs separated by the original random vertices. Here we follow the same doubling
approaches, but include also random circumscribing polygons so that we can take full advantage of the estimates
made available by the doubling process to obtain even faster rates of convergence than those derived in [19].

The equal bisection approach turns out to be the closest to the classical Archimedean case. As is
shown in [19], in terms of linear combinations of Sn and S2n, exactly the same expression Xn =
4
3S2n − 1

3Sn satisfies Xn = π + n−3+δo(1) for any δ > 0 with n9/2(Xn − (π − π5/n4))
L−→ N (0, 113π10/8).

Similarly, for Yn = 2
3Sn + 1

3S
′
n and Zn = 16

15Sn − 1
5An + 2

15S
′
n, we can derive the extrapolation improvements

Y∗
n = 16

15Y2n − 1
15Yn = − 2

45Sn − 1
45S

′
n + 32

45S2n + 16
45S

′
2n, Z∗

n = 64
63Z2n − 1

63Zn = −208
945Sn + 1

315An − 2
945S

′
n +

1024
945 S2n + 128

945S
′
2n with Y∗

n = π + n−5+δo(1), Z∗
n = π + n−7+δo(1) and n13/2(Y∗

n − (π − 9π7/(2n6)))
L−→
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N (0, 136971π14/2), n17/2(Z∗
n − (π − 12π9/n8))

L−→ N (0, 6989472π18). On the other hand, by directly optimizing
over all linear combinations of the quantities Sn, An, S′

n, S2n, S′
2n (again with A2n = Sn), we can obtain the same

optimal estimate Wn = − 976
3465Sn + 3

385An − 2
3465S

′
n + 4096

3465S2n + 64
693S

′
2n = π + n−9+δo(1) with n21/2(Wn −

(π − 180π11/n10))
L−→ N (0, 22852044000π22). See Theorems 4.1-4.2 below for details.

However, for the independent doubling and random bisection approaches, due to additional sources of the
randomness, it becomes much harder (or impossible) to achieve the same level of extrapolation improvements.
For example, when combining S′

n and S′
2n, no matter how we choose the coefficients, there is no way to

cancel the leading order error terms in S′
n and S′

2n to improve upon X ′
n = αS′

2n + βS′
n = π + n−1+δo(1). Due

to this, we choose instead to minimize the bias in its leading error term. This yields α = 4/3 and β = −1/3

for independent doubling with n5/2(X ′
n − π)

L−→ N (0, 20π6/3), and α = 2, β = −1 for the random bisection
approach with n5/2(X ′

n − π)
L−→ N (0, 16π6). Similar conclusions may also be drawn for Y∗

n = αY2n + βYn and
Z∗

n = αZ2n + βZn. See Theorems 3.1-3.2 and 5.1-5.2 for details.
The remainder of the paper is organized as follows. First we state some useful preliminary results in Section

2. Then we present the three doubling processes and establish the corresponding optimal extrapolation estimates
respectively in Sections 3, 4 and 5.

2. Preliminaries

2.1. Random divisions of the unit interval

Let n ≥ 2 and X0 := 0 < X1 < · · · < Xn−1 < Xn := 1 be the order statistics of n− 1 independent and uniformly
distributed random points on the unit interval. It is well-known [4, 11] that the n spacings Xi −Xi−1, i =
1, 2, · · · , n, are identically distributed with common probability density function (PDF) f(x) = (n− 1)(1− x)n−2

for 0 < x < 1, and for any i ̸= j, the joint PDF of Xi −Xi−1 and Xj −Xj−1 is given by f(x, y) = (n− 1)(n−
2)(1− x− y)n−3 for x > 0, y > 0, and x+ y < 1.

Let k ∈ N and Dn,k =
Pn

i=1 |Xi −Xi−1|k. Then it is easy to compute that E(Dn,k) = k!n!/(n+ k − 1)! ≈
k!/nk−1, Var(Dn,k) ≈ {(2k)!− (1 + k2)(k!)2}/n2k−1 for large n. Furthermore, we have

Lemma 2.1 (Asymptotic convergence of Dn,k [2, 19])
For any k ∈ N and δ > 0, it holds that

1. nk−1−δDn,k → 0 in probability, and nk−2−δDn,k → 0 w.p.1 as n → ∞,
2.

√
n(nk−1Dn,k − k!)

L−→ N (0, σ2
k) where σ2

k = (2k)!− (1 + k2)(k!)2.

2.2. Random cyclic polygons

Given n independent random points uniformly distributed on the unit circle, we label them Pi = (cos θi, sin θi),
0 ≤ i ≤ n in counterclockwise direction where θ0 < θ1 < · · · < θn−1 < θn = θ0 + 2π and Pn represents the same
point as P0. Without loss of generality, we assume θ0 = 0. A further rescaling θi = 2πXi then yields 0 =
X0 < X1 < · · · < Xn−1 < Xn = 1, which amounts to a random division of (0, 1) by n− 1 independent random
points uniformly distributed over (0,1). By connecting these consecutive vertices, we obtain a random inscribed
n-gon P1P2 · · ·Pn with semiperimeter and area given respectively by Sn =

Pn
i=1 sinπ(Xi −Xi−1), An =

1
2

Pn
i=1 sin 2π(Xi −Xi−1).

By using Lemma 2.1 and the Taylor approximation
���sinx−

Pm
i=1(−1)i−1 1

(2i−1)!x
2i−1

��� ≤ 1
(2m+1)! |x|

2m+1 of
the sine function for any m ∈ N and x ∈ R, it is known that [19]

Sn =
mX
j=1

(−1)j−1

(2j − 1)!
π2j−1Dn,2j−1 + n−(2m−1)+δo(1), (1)

An =
mX
j=1

(−1)j−122j−2

(2j − 1)!
π2j−1Dn,2j−1 + n−(2m−1)+δo(1). (2)
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On the other hand, the tangent lines through any two consecutive vertices Pi−1 and Pi intersect outside the circle
at a point Qi =

�
cosπ(Xi+Xi−1)
cosπ(Xi−Xi−1)

, sinπ(Xi+Xi−1)
cosπ(Xi−Xi−1)

�
. By connecting these points consecutively, we can similarly obtain

a random circumscribing n-gon Q1Q2 · · ·Qn which is tangent to the circle at each Pi with both semiperimeter and
area now given by S′

n =
Pn

i=1 tan
θi−θi−1

2 =
Pn

i=1 tanπ(Xi −Xi−1).
Note that if θi − θi−1 ≥ π for some i, or equivalently, ∆n := max1≤i≤n |Xi −Xi−1| ≥ 1/2, such random

circumscribing polygons actually do not exist (when ∆n = 1/2) or fall completely outside the circle (when ∆n >
1/2). Also, due to the singularity of tanx at x = π/2, even if ∆n < 1/2, S′

n may become unbounded when ∆n gets
close to 1/2. Nevertheless, by using a cut-off technique for the Taylor series tanx =

P∞
i=1

B2i(−4)i(1−4i)
(2i)! x2i−1 =

x+ 1
3x

3 + 2
15x

5 + 17
315x

7 + 62
2835x

9 + · · · where Bj is the jth Bernoulli number, together with Lemma 2.1 and the
exponential decay property of the tail probability Pr(∆n ≥ t) for any t ∈ (0, 1) as n → ∞, it is still possible to
obtain a similar asymptotic expansion for S′

n for any m ≥ 1 [20]:

S′
n =

mX
j=1

B2j(−4)j(1− 4j)

(2j)!
π2j−1Dn,2j−1 + n−(2m−1)+δo(1). (3)

In particular, for m = 1, we see that Sn, An, S
′
n → π w.p.1 as n → ∞. Furthermore, as in the case of regular

polygons, by using linear combinations of Sn, An, S′
n, we can obtain the following extrapolation improvements.

Lemma 2.2 ([19, 20])
Let Xn = 4

3Sn − 1
3An, Yn = 2

3Sn + 1
3S

′
n and Zn = 16

15Sn − 1
5An + 2

15S
′
n. Then for any δ > 0, it holds that Xn =

π + n−3+δo(1), Yn = π + n−3+δo(1), Zn = π + n−5+δo(1) and n9/2(Xn − (π − 4π5/n4))
L−→ N (0, 3616π10),

n9/2(Yn − (π + 6π5/n4))
L−→ N (0, 8136π10), n13/2(Zn − (π + 48π7/n6))

L−→ N (0, 7792128π14).

3. Independent Doubling of Random Cyclic Polygons

To extend the classical extrapolation methods based on Archimedean polygons [1, 9] to the case of random cyclic
polygons, we use similar ideas in [19] to double the sides of a random n-gon so that the semiperimeters and
areas of the random n-gons and 2n-gons may be combined to generate higher order accurate estimates of π.
We start in this section with the relatively easy case of independent doubling, that is, the random 2n-gons are
generated by 2n independent points uniformly distributed on the unit circle in R2, independent of how the vertices
of the preceding random n-gons are chosen. Thus we have two independent sets of random divisions of (0, 1),
one for the n-gons by 0 = X0 < X1 < · · · < Xn−1 < Xn = 1, and one for the 2n-gons by 0 = Y0 < Y1 < · · · <
Y2n−1 < Y2n = 1. The semiperimeters and areas of the newly constructed random 2n-gons can now be expressed
as S2n =

P2n
i=1 sinπ(Yi − Yi−1), A2n = 1

2

P2n
i=1 sin 2π(Yi − Yi−1), S′

2n =
P2n

i=1 tanπ(Yi − Yi−1).
With the availability of the additional estimates S2n, A2n and S′

2n, we may apply extrapolation techniques to
derive improved estimates for π. By replacing n with 2n in Lemma 2.2, similar convergence estimates clearly also
hold for X2n = 4

3S2n − 1
3A2n, Y2n = 2

3S2n + 1
3S

′
2n, and Z2n = 16

15S2n − 1
5A2n + 2

15S
′
2n. Here we focus on the

construction of further extrapolation improvements, making full use of the semiperimeters and areas of both the
n-gons and the 2n-gons.

We start with linear combinations of S′
n and S′

2n in the form of X ′
n = αS′

2n + βS′
n where α, β ∈ R. Clearly

for X ′
n → π as n → ∞, it is necessary (and sufficient) that α+ β = 1. Taking m = 2 in (3) yields S′

n =
π + 1

3π
3Dn,3 + n−3+δo(1) and S′

2n = π + 1
3π

3D2n,3 + n−3+δo(1), and hence X ′
n = π + 1

3π
3(αD2n,3 + βDn,3) +

n−3+δo(1) where Dn,3 =
Pn

i=1 |Xi −Xi−1|3 and D2n,3 =
P2n

i=1 |Yi − Yi−1|3 are independent of each other. As a
result, no matter how we choose the coefficients α and β, there is no way to eliminate the leading order error term
containing αD2n,3 + βDn,3 to achieve X ′

n = π + n−3+δo(1). In view of this, we turn to minimize instead the bias
in X ′

n which implies E(αD2n,3 + βDn,3) = 0, or equivalently, α+ 4β = 0. Together with α+ β = 1, this yields
α = 4/3, β = −1/3, and hence X ′

n = π + 1
3π

3D∗
n,3 + n−3+δo(1) where D∗

n,3 = 4
3D2n,3 − 1

3Dn,3.
By Lemma 2.1, X ′

n clearly satisfies n1−δ(X ′
n − π) → 0 w.p.1 for any δ > 0. Also, due to the independence

of D2n,3 and Dn,3, it holds that n5/2D∗
n,3 = 4

3n
5/2(D2n,3 − 3!/(4n2))− 1

3n
5/2(Dn,3 − 3!/n2)

L−→ N (0, 60).

Stat., Optim. Inf. Comput. Vol. 9, March 2021



S. WANG, W.-Q. XU AND J. LIU 245

By using Slutsky’s theorem [6, 15] (with 0 < δ ≤ 1/2), we then obtain n5/2(X ′
n − π)

L−→ N (0, 20π6/3).
Similarly, by combining Sn with S′

2n, or An with S′
2n, we can obtain Y ′

n = 2
3S

′
2n + 1

3Sn = π + 1
6π

3D∗
n,3 +

n−3+δo(1), Z ′
n = 8

9S
′
2n + 1

9An = π + 2
9π

3D∗
n,3 + n−3+δo(1) with n5/2(Y ′

n − π)
L−→ N (0, 5π6/3), n5/2(Z ′

n −
π)

L−→ N (0, 80π6/27). Thus, we obtain the following asymptotic results of X ′
n, Y ′

n and Z ′
n.

Theorem 3.1
Let X ′

n = 4
3S

′
2n − 1

3S
′
n, Y ′

n = 2
3S

′
2n + 1

3Sn and Z ′
n = 8

9S
′
2n + 1

9An. Then for any δ > 0, it holds that X ′
n = π +

n−1+δo(1), Y ′
n = π + n−1+δo(1), Z ′

n = π + n−1+δo(1) and n5/2(X ′
n − π)

L−→ N (0, 20π6/3), n5/2(Y ′
n − π)

L−→
N (0, 5π6/3), n5/2(Z ′

n − π)
L−→ N (0, 80π6/27).

Next, by further combining Yn = 2
3Sn + 1

3S
′
n and Y2n = 2

3S2n + 1
3S

′
2n, we obtain Y∗

n = αY2n + βYn = π +
1
20π

5(αD2n,5 + βDn,5) + n−5+δo(1) where α, β ∈ R and α+ β = 1. Again, since there is no way to eliminate the
term αD2n,5 + βDn,5, we choose α, β such that E(αD2n,5 + βDn,5) = 0. This yields α = 16/15, β = −1/15, and
hence Y∗

n = 16
15Y2n − 1

15Yn = − 2
45Sn − 1

45S
′
n + 32

45S2n + 16
45S

′
2n = π + 1

300π
5D∗

n,5 + n−5+δo(1) where D∗
n,5 =

16D2n,5 −Dn,5 satisfies n9/2D∗
n,5 = −n9/2(Dn,5 − 5!/n4) + 16n9/2(D2n,5 − 5!/(16n4))

L−→ N (0, 4881600).
Finally, by combining Zn = 16

15Sn − 1
5An + 2

15S
′
n and Z2n = 16

15S2n − 1
5A2n + 2

15S
′
2n, we get Z∗

n =
64
63Z2n − 1

63Zn = − 16
945Sn + 1

315An − 2
945S

′
n + 1024

945 S2n − 64
315A2n + 128

945S
′
2n = π + 1

6615π
7D∗

n,7 + n−7+δo(1)

where D∗
n,7 = 64D2n,7 −Dn,7 satisfies n13/2D∗

n,7 = −n13/2(Dn,7 − 7!/n6) + 64n13/2(D2n,7 − 7!/(2n)6)
L−→

N (0, 128862316800). Therefore, it follows that

Theorem 3.2
Let Y∗

n = − 2
45Sn − 1

45S
′
n + 32

45S2n + 16
45S

′
2n and Z∗

n = − 16
945Sn + 1

315An − 2
945S

′
n + 1024

945 S2n − 64
315A2n +

128
945S

′
2n. Then for any δ > 0, it holds that Y∗

n = π + n−3+δo(1), Z∗
n = π + n−5+δo(1) and n9/2(Y∗

n − π)
L−→

N (0, 1356π10/25), n13/2(Z∗
n − π)

L−→ N (0, 432896π14/147).

4. Bisection of the Random n-gon

Next, we take the bisection approach to construct random 2n-gons, namely by inserting a new vertex Pi−1/2 =
(cos θi−1/2, sin θi−1/2) exactly half way between any two consecutive vertices Pi−1 and Pi of the existing random
n-gon, where θi−1/2 = (θi−1 + θi)/2. With the same rescaling θi−1/2 = 2πXi−1/2, we obtain 0 = X0 < X1/2 <
X1 < · · · < Xn−1 < Xn−1/2 < Xn = 1. While this may also be viewed as a random division of (0, 1), the 2n− 1
points X1/2, X1, · · · , Xn−1, Xn−1/2 do not correspond to the order statistics of 2n− 1 independent points
uniformly distributed on (0, 1), and thus the corresponding random 2n-gons do not behave the same as random 2n-
gons generated directly by 2n independent points uniformly distributed on the unit circle. Nevertheless, these newly
constructed random 2n-gons turn out to be the closest to the Archimedean approach. For notational convenience,
their semiperimeters and areas are again denoted by S2n, A2n, S′

2n. Then we have S2n = 2
Pn

i=1 sin
π(Xi−Xi−1)

2 ,
S′
2n = 2

Pn
i=1 tan

π(Xi−Xi−1)
2 with A2n =

Pn
i=1 sinπ(Xi −Xi−1) = Sn. By using the Taylor expansions for

tanx and sinx, similar to (1), (2) and (3), we have, for any m ≥ 1,
S2n =

Pm
j=1(−1)j−1 π2j−1

22j−2(2j−1)!Dn,2j−1 + n−(2m−1)+δo(1),

A2n =
Pm

j=1(−1)j−1 π2j−1

(2j−1)!Dn,2j−1 + n−(2m−1)+δo(1),

S′
2n =

Pm
j=1

B2j(−4)j(1−4j)
(2j)!

π2j−1

22j−2 Dn,2j−1 + n−(2m−1)+δo(1).

By combining Sn, An with S2n or A2n, it is known [19] that Xn = 4
3S2n − 1

3Sn, Yn = 4
3A2n − 1

3An, Zn =
64
45S2n − 4

9Sn + 1
45An provide improved approximations of π. Here, by including also S′

n or S′
2n, we aim to

construct additional higher-order extrapolation estimates of π.
First, we consider X ′

n = αS′
2n + βS′

n with α+ β = 1. By using S′
2n = π + 1

12π
3Dn,3 +

1
120π

5Dn,5 +
n−5+δo(1) and S′

n = π + 1
3π

3Dn,3 +
2
15π

5Dn,5 + n−5+δo(1), we have X ′
n = π + 1

12π
3(α+ 4β)Dn,3 +
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1
120π

5(α+ 16β)Dn,5 + n−5+δo(1). Note that by setting α+ 4β = 0, it is now possible to eliminate the leading
error term involving Dn,3 in X ′

n. Together with α+ β = 1, this yields α = 4/3, β = −1/3, and thus X ′
n = 4

3S
′
2n −

1
3S

′
n = π − 1

30π
5Dn,5 + n−5+δo(1) with n9/2(X ′

n − (π − 4π5/n4)) = − 1
30π

5n9/2(Dn,5 − 5!/n4) + n−1/2+δo(1).

By Lemma 2.1, we have n9/2(Dn,5 − 5!/n4)
L−→ N (0, 3254400). Then by applying Slutsky’s theorem, we obtain

n9/2(X ′
n − (π − 4π5/n4))

L−→ N (0, 3616π10) as n → ∞.
Similarly, we may combine S′

2n and Sn or S′
2n and An to obtain Y ′

n = 2
3S

′
2n + 1

3Sn = π +
1

120π
5Dn,5 + n−5+δo(1) and Z ′

n = 8
9S

′
2n + 1

9An = π + 1
45π

5Dn,5 + n−3+δo(1) with n9/2(Y ′
n − (π + π5/n4))

L−→
N (0, 226π10) and n9/2(Z ′

n − (π + 8π5/(3n4)))
L−→ N (0, 14464π10/9). We note that these estimates for X ′

n, Y ′
n

and Z ′
n are stronger than those in Theorem 3.1 for the case of independent doubling.

Theorem 4.1
Let X ′

n = 4
3S

′
2n − 1

3S
′
n, Y ′

n = 2
3S

′
2n + 1

3Sn and Z ′
n = 8

9S
′
2n + 1

9An. Then for any δ > 0, it holds that X ′
n =

π + n−3+δo(1), Y ′
n = π + n−3+δo(1), Z ′

n = π + n−3+δo(1) and n9/2(X ′
n − (π − 4π5/n4))

L−→ N (0, 3616π10),
n9/2(Y ′

n − (π + π5/n4))
L−→ N (0, 226π10), n9/2(Z ′

n − (π + 8π5/(3n4)))
L−→ N (0, 14464π10/9).

Next, to eliminate the error term containing Dn,5, we combine Yn = 2
3Sn + 1

3S
′
n and Y2n = 2

3S2n +
1
3S

′
2n to obtain Y∗

n = 16
15Y2n − 1

15Yn = − 2
45Sn − 1

45S
′
n + 32

45S2n + 16
45S

′
2n = π − 1

1120π
7Dn,7 + n−7+δo(1). By

further combining Zn = 16
15Sn − 1

5An + 2
15S

′
n and Z2n = 16

15S2n − 1
5A2n + 2

15S
′
2n, we also have Z∗

n = 64
63Z2n −

1
63Zn = −208

945Sn + 1
315An − 2

945S
′
n + 1024

945 S2n + 128
945S

′
2n = π − 1

30240π
9Dn,9 + n−9+δo(1). Finally, like in the

Archimedean case, by optimizing over all linear combinations of Sn, An, S′
n and S2n, S′

2n (again with
A2n = Sn), we can obtain Wn = − 976

3465Sn + 3
385An − 2

3465S
′
n + 4096

3465S2n + 64
693S

′
2n = π − 1

221760π
11Dn,11 +

n−11+δo(1). Therefore, we obtain the following theorem.

Theorem 4.2
Let Y∗

n, Z∗
n and Wn be defined as above. Then for any δ > 0, it holds that Y∗

n = π + n−5+δo(1), Z∗
n = π +

n−7+δo(1), Wn = π + n−9+δo(1) and n13/2(Y∗
n − (π − 9π7/(2n6)))

L−→ N (0, 136971π14/2), n17/2(Z∗
n − (π −

12π9/n8))
L−→ N (0, 6989472π18), n21/2(Wn − (π − 180π11/n10))

L−→ N (0, 22852044000π22).

5. Random Bisection

Finally, we consider a variation of the above bisection process by allowing each newly added vertex
Pi−1/2 between the two consecutive vertices Pi and Pi−1 to be uniformly randomly chosen on the arcúPi−1Pi, with each Pi−1/2 also independent of the others. For each newly added point Pi−1/2, the rescaled
Xi−1/2 can now be written as Xi−1/2 = Xi−1 + (Xi −Xi−1)Ui where U1, U2, · · · , Un are independent and
uniformly distributed over (0,1) and are also independent of X1, X2, · · · , Xn−1. The semiperimeters and areas
of the newly constructed random inscribed and circumscribing 2n-gons can now respectively be expressed
as S2n =

Pn
i=1 sin{π(Xi −Xi−1)Ui}+ sin{π(Xi −Xi−1)(1− Ui)}, A2n = 1

2

Pn
i=1 sin{2π(Xi −Xi−1)Ui}+

sin{2π(Xi −Xi−1)(1− Ui)}, S′
2n =

Pn
i=1 tan{π(Xi −Xi−1)Ui}+ tan{π(Xi −Xi−1)(1− Ui)}.

Denote Mn,k =
Pn

i=1 |Xi −Xi−1|k{Uk
i + (1− Ui)

k}. Then, similar to (1), (2) and (3), we have, for any m ≥ 1,

S2n =
Pm

j=1
(−1)j−1

(2j−1)! π
2j−1Mn,2j−1 + n−(2m−1)+δo(1),

A2n =
Pm

j=1
(−1)j−122j−2

(2j−1)! π2j−1Mn,2j−1 + n−(2m−1)+δo(1),

S′
2n =

Pm
j=1

B2j(−4)j(1−4j)
(2j)! π2j−1Mn,2j−1 + n−(2m−1)+δo(1).

Note that Uk
i + (1− Ui)

k follows the same distribution as D2,k. Thus it is easy to compute that E(Mn,k) =

E(D2,k)E(Dn,k) = O
�
n−(k−1)

�
and Var(Mn,k) = E(Dn,2k)Var(D2,k) = O

�
n−(2k−1)

�
for large n.
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Lemma 5.1 ([19])
Let n, k ∈ N and δ > 0. Then nk−2−δMn,k → 0 w.p.1 as n → ∞ and nk−1/2(Mn,k − k!n−(k−1)E(D2,k))

L−→
N (0, eσ2

k) where eσ2
k = (2k)!E(D2

2,k)− (1 + k2)(k!)2E(D2,k)
2, E(D2,k) =

2
k+1 , and E(D2

2,k) =
2

2k+1

�
1 + (k!)2

(2k)!

�
.

The next lemma establishes asymptotic estimates for general linear combinations of Mn,k and Dn,k and will be
proved later in Section 6.

Lemma 5.2
Let M∗

n,k = λ1Mn,k + λ2Dn,k where λ1, λ2 ∈ R. Then nk−2−δ(M∗
n,k − π) → 0 w.p.1 as n → ∞ for any δ > 0

and nk−1/2
¦
M∗

n,k −
�

2
k+1λ1 + λ2

�
k!/nk−1

© L−→ N (0, σ̄2
k) where σ̄2

k = λ2
1eσ2

k + λ2
2σ

2
k + 4

k+1λ1λ2σ
2
k and σ2

k =

(2k)!− (1 + k2)(k!)2.

In particular, for k = 3, we have from Lemma 5.1, Mn,3 = n−1+δo(1) and n5/2(Mn,3 − 3/n2)
L−→ N (0, 126).

Since S2n = π − 1
3!π

3Mn,3 + n−3+δo(1), A2n = π − 4
3!π

3Mn,3 + n−3+δo(1) and S′
2n = π + 1

3π
3Mn,3 +

n−3+δo(1), it follows that n1−δ(S2n − π) → 0, n1−δ(A2n − π) → 0, n1−δ(S′
2n − π) → 0 w.p.1 as n → ∞ for any

δ > 0. By Slutsky’s theorem, we obtain immediately, n5/2(S2n − (π − π3/(2n2)))
L−→ N (0, 7π6/2), n5/2(A2n −

(π − 2π3/n2))
L−→ N (0, 56π6) and n5/2(S′

2n − (π + π3/n2))
L−→ N (0, 14π6).

To construct extrapolation improvements of π based on the semiperimeters and areas of both the random n-gons
and the newly constructed random 2n-gons, we again start with linear combinations of S′

2n, S′
n in the form of

X ′
n = αS′

2n + βS′
n with α+ β = 1. Using S′

2n = π + 1
3π

3Mn,3 + n−3+δo(1), S′
n = π + 1

3π
3Dn,3 + n−3+δo(1),

we obtain X ′
n = π + 1

3π
3(αMn,3 + βDn,3) + n−3+δo(1) where αMn,3 + βDn,3 =

Pn
i=1 |Xi −Xi−1|3{α[U3

i +
(1− Ui)

3] + β}. Here again, there is no way to eliminate the leading error term αMn,3 + βDn,3. Consequently,
we choose α and β such that E(αMn,3 + βDn,3) = 0. This yields α = 2, β = −1 and thus X ′

n = 2S′
2n − S′

n =
π + 1

3π
3M∗

n,3 + n−3+δo(1) where M∗
n,3 = 2Mn,3 −Dn,3. Similarly, by combining S′

2n with Sn, or S′
2n with An,

we can obtain Y ′
n = 1

2S
′
2n + 1

2Sn = π + 1
12π

3M∗
n,3 + n−3+δo(1) and Z ′

n = 4
5S

′
2n + 1

5An = π + 2
15π

3M∗
n,3 +

n−3+δo(1). By Lemma 5.2, we have n5/2M∗
n,3

L−→ N (0, 144). Then by Slutsky’s theorem, we obtain n5/2(X ′
n −

π)
L−→ N (0, 16π6), n5/2(Y ′

n − π)
L−→ N (0, π6) and n5/2(Z ′

n − π)
L−→ N (0, 64π6/25). Therefore, we have

Theorem 5.1
Let X ′

n = 2S′
2n − S′

n, Y ′
n = 1

2S
′
2n + 1

2Sn and Z ′
n = 4

5S
′
2n + 1

5An. Then for any δ > 0, it holds that X ′
n =

π + n−1+δo(1), Y ′
n = π + n−1+δo(1), Z ′

n = π + n−1+δo(1) and n5/2(X ′
n − π)

L−→ N (0, 16π6), n5/2(Y ′
n − π)

L−→
N (0, π6), n5/2(Z ′

n − π)
L−→ N (0, 64π6/25).

Similarly, for α+ β = 1, we have Y∗
n = αY2n + βYn = π + π5

20 (αMn,5 + βDn,5) + n−5+δo(1). By setting
E(αMn,5 + βDn,5) = 0, we get α = 3/2, β = −1/2 so that Y∗

n = 3
2Y2n − 1

2Yn = −1
3Sn − 1

6S
′
n + S2n + 1

2S
′
2n =

π + 1
20π

5M∗
n,5 + n−5+δo(1) where M∗

n,5 = 3
2Mn,5 − 1

2Dn,5 satisfies n9/2M∗
n,5

L−→ N (0, 583200).
Finally, we combine Zn and Z2n to obtain Z∗

n = 4
3Z2n − 1

3Zn = −16
45Sn + 1

15An − 2
45S

′
n + 64

45S2n −
4
15A2n + 8

45S
′
2n = π + π7

105M
∗
n,7 + n−7+δo(1) where M∗

n,7 = −1
3Dn,7 +

4
3Mn,7 satisfies n13/2M∗

n,7
L−→

N (0, 10984028160). Therefore, we conclude as follows.

Theorem 5.2
Let Y∗

n and Z∗
n be defined as above. Then for any δ > 0, it holds that Y∗

n = π + n−3+δo(1), Z∗
n = π + n−5+δo(1)

and n9/2(Y∗
n − π)

L−→ N (0, 1458π10), n13/2(Z∗
n − π)

L−→ N (0, 14944256π14/15).

6. Proof of Lemma 5.2

The proof of Lemma 5.2 follows similar ideas as in [2, 19]. Using the equivalent representation

(X1 −X0, X2 −X1, . . . , Xn −Xn−1)
L
=

�
V1Pn
i=1 Vi

,
V2Pn
i=1 Vi

, . . . ,
VnPn
i=1 Vi

�
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where V1, V2, . . . , Vn are independent standard exponential random variables, we can rewrite

M∗
n,k = λ1Mn,k + λ2Dn,k =

Pn
i=1 V

k
i {λ1[U

k
i + (1− Uk

i )] + λ2}
(
Pn

i=1 Vi)k
.

By the multivariate central limit theorem, we can now obtain, as n → ∞,

√
n

�� 1
n

Pn
i=1 V

k
i {λ1[U

k
i + (1− Uk

i )] + λ2}
1
n

Pn
i=1 Vi

�
−
�
µ∗
1

µ∗
2

��
L−→ N (0, Σ∗)

where µ∗
1 = E(V k

i {λ1[U
k
i + (1− Uk

i )] + λ2}) = k!(λ1E(D2,k) + λ2), µ∗
2 = E(Vi) = 1 and Σ∗ is the

covariance matrix of the random vector (V k
i {λ1[U

k
i + (1− Uk

i )] + λ2}, Vi) with Σ∗
11 = Var(V k

i {λ1[U
k
i +

(1− Uk
i )] + λ2}) = (2k)!E[(λ1D2,k + λ2)

2]− (k!)2(λ1E(D2,k) + λ2)
2, Σ∗

22 = Var(Vi) = 1 and Σ∗
12 = Σ∗

21 =
Cov(V k

i {λ1[U
k
i + (1− Uk

i )] + λ2}, Vi) = k · k!(λ1E(D2,k) + λ2).
Finally, we choose f(x, y) = xy−k with ∂f

∂x = y−k, ∂f
∂y = −kxy−k−1. Then we have f( 1n

Pn
i=1 V

k
i {λ1[U

k
i +

(1− Uk
i )] + λ2}, 1

n

Pn
i=1 Vi) = nk−1M∗

n,k with f(µ∗
1, µ

∗
2) = ( 2

k+1λ1 + λ2)k!, ∂f
∂x (µ

∗
1, µ

∗
2) = 1 and ∂f

∂y (µ
∗
1, µ

∗
2) =

−kk!( 2
k+1λ1 + λ2). Thus by Cramér’s theorem [6], we have, as n → ∞,

√
n

�
nk−1M∗

n,k −
�

2

k + 1
λ1 + λ2

�
k!

�
= nk−1/2

�
M∗

n,k −
�

2

k + 1
λ1 + λ2

�
k!/nk−1

�
L−→ N (0, σ̄2

k)

where σ̄2
k =

�
1,−kk!( 2

k+1λ1 + λ2)
�
Σ∗
�
1,−kk!( 2

k+1λ1 + λ2)
�T

= λ2
1eσ2

k + λ2
2σ

2
k + 4

k+1λ1λ2σ
2
k.

This finishes the proof of Lemma 5.2.

7. Conclusions

Given n independent points uniformly distributed on the unit circle in R2, we studied in this paper the problem of
developing optimal extrapolation improvements of random approximations of π based on geometric quantities such
as the semiperimeter and area of the corresponding random cyclic polygons. By simultaneously considering these
random n-gons and suitably constructed random 2n-gons and optimizing over functionals of their semiperimeters
and areas, we derived several new estimates of π with faster convergence rates. In addition, we also proved that
these extrapolation improvements are asymptotically normal as n → ∞. It would be interesting to further extend
such asymptotic convergence results to higher dimensional cases or for more general non-uniform or non-i.i.d.
distributions.
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