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Abstract The Internet of Things (IoT) is constituted of an important number of constrained nodes limited in terms of power
energy, computation capacity, storage capacity. They produce a considerable amount of data, which increases the data flow in
the network. The inefficient transmission of data via constrained nodes makes the network unstable, the energy consumption
increases rapidly, and the data delay increases strictly. To overcome these limitations, we propose a new approach that
allows nodes to select the efficient path to transmit data from source nodes to base stations (BSs) to optimize the data
flow in the constrained network. First, we grouped nodes using a density peaks (DP) clustering algorithm based on the
coordinate’s location of these nodes. Second, using the group nodes, the assignment of nodes to BSs that are considered as
the collectors of data is performed. Third, the nodes make a dynamic and automated path plan to optimize the data flow
in the constrained network. Simulation results on a real network data set demonstrate that our proposal outperforms the
state-of-the-art approaches in terms of the number of hops to achieve the cluster head (CH) node, the data delay, the network
lifetime, and the number of the alive nodes.
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1. Introduction

Kevin Ashton initialized the term Internet of Things in 1999. It is regarded as the next progression of the current
Internet. The Internet of Things is a novel communication model of devices to the Internet; it has attracted
much concentration due to its potential to transmit our physical world into a digital cyber world with important
information [1]. The IoT devices are often diminutive in size, sheer in number, hold less memory, use less power,
and have less computational capabilities. The IoT objective is a common aspect of our everyday life and depends
on the behaviour of users [2].

Sensors [3], radio-frequency identifications (RFIDs) [4], actuators [5],are essential components of embedded
systems in IoT, appropriated in numerous real-time applications [6].The sensors are used to sense the change
appearing in environments, while the actuators transform an electrical signal into a physical parameter to control
physical transformation. The increasing number of devices communicating will produce massive data traffic,
where the generators of data and the executors of tasks should collaboratively optimize the data gathering and
disseminating.

IoT oriented various platforms and applications that exploit communication among heterogeneous and non-
heterogeneous devices to execute tasks and provide real-time services [7, 8, 9, 10, 11, 12]. It creates a new type
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of connection between machine-machine, machine-human, and human-machine. These applications are related to
different environments like systems of a smart home [13, 14] (smart fridge, smart thermostat, smart door lock),
smart city[15, 16] (smart parking, smart streetlight), smart industrial, smart grid, etc.

Wireless Sensor Network (WSN) [17] serves as a medium that connects the digital world towards the real world.
WSNs comprise sensors deployed in an area of interest to monitor and to detect various phenomena. The path
plan of data from the source nodes to the BS/ sink should be designed according to an energy-efficient manner.
In more detail, the path of the data transmitted to achieve the destination should be minimized in terms of energy
consumption and network lifetime.

The random deployment of nodes (sensors and actuators) makes the density wobbling, including nodes with
a high number of neighbors and others with a low number of neighbors. The nodes possess different capacities
to monitor, process and transmit data, such as the capacity of storage, the capacity of processing, the energy
consumption, etc. As the capacities are limited and unstable, the network’s efficiency in providing data to nodes or
end-users is insufficient [18, 19, 20, 21, 22, 23].

As the IoT nodes are characterized by limited power energy, especially sensors and actuators, the collection
and transmission of data is a crucial issue. In more detail, nodes in a constraint network can act as providers and
intermediate nodes; they are responsible to sense data from an environment and responsible for data that come
from the neighbor nodes. The nodes (Cluster Head (CH) [24, 25, 26] that receive the data more than others deplete
more energy, which leads to a decrease in the network lifetime.

A novel approach to optimize data flow in a constrained IoT network is proposed. In this contribution, a network
with a large scale of sensors and multiple BSs is considered, such that the density peaks clustering algorithm is
used to cluster nodes based on their location. Furthermore, the assignment of nodes to the BSs is performed based
on the path distance and path length. The final, a dynamic path plan is proposed to balance the data flow in the
network. The rest of the paper is organized as follows: Section 2 introduces related works, Section 3 illustrates
the problem definition, Section 4 presents our proposed contribution, Section 5 provides experimental results and
discussion, and the final section concludes the paper and proposes future work.

2. Related works

Low-Energy Adaptive Clustering Hierarchy (LEACH) [27] is the most known cluster-based routing algorithm used
in many IoT networks. In LEACH algorithm, a node in the network is selected by nodes in a given area as a CH
for the cluster. This algorithm dynamically updates the CHs in the network, which is efficient to balance the load.
However, when a node with low energy is selected will die rapidly, which leads to a decrease in the network
lifetime, such that the CH are the aggregator of data.

A distributed routing path planning algorithm [28] is proposed in WSN. The cluster heads are selected according
to the timer value, computed based on residual energy, node’s density, and average distance to neighbors. The
authors presented synchronized and periodic rounds to avoid a high amount of energy consumption by the cluster
heads than non-cluster heads. The proposed work is measured in terms of energy consumption, network lifetime,
number of alive nodes, and network throughput. However, the data transmission delay is not considered.

A multi-path routing algorithm to transmit data from source nodes to BS is proposed [28].The algorithm is
focused on the residual energy on the hop count to discover the optimized path, which is added to the routing
table. The optimized path is based on ant colony optimization (ACO)[30]. The proposed algorithm considers
the minimum number of hops, the maximum residual energy, and the weighted energy to extend the network
lifetime. However, the clustering mechanism and the data transmission delay are not considered. A routing
algorithm for improving the network lifetime is proposed in [31]. The routing algorithm is based on the particle
swarm optimization (PSO)[32], where the relay nodes considered gateways are the principal elements for path
optimization. The gateways are responsible for gathering, aggregating, and transmitting data sent to BS/sink. The
simulation results can extend the network compared to other bio-inspired approaches. However, the clustering
mechanism and the data transmission delay are not considered.
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Two data aggregation and dissemination models are in a constraint IoT network [33], constructed by the sensor,
actuators, aggregators, gateways, and a central server. The first model considers the presence of actuators that can
use the data generated from the sensors. Meanwhile, the second model does not consider the actuators’ presence;
the data are transmitted to aggregator nodes that have to send it to getaway. Data transmission is performed
via multiple hops via the optimal path to reduce energy and extend the network lifetime. The proposed work is
evaluated in terms of the total energy consumption, the network lifetime, and the time consumed.

Authors in [34] proposed a clustering mechanism in a constraint network of IoT. Nodes select the most preferred
nodes (the cluster heads) as relay nodes to transmit data using the genetic algorithm [35] . The selection of the
most preferred nodes is based on the distance to the BS, the cluster head distance to the covered nodes, the standard
deviation of the cluster head distance, transfer energy, and the number of the transmission. The proposed work is
evaluated in terms of the number of slots, the number of packets transmitted to cluster heads, the number of packets
transmitted to BSs. However, the energy consumption and the network lifetime are not considered.

In [36] , a cluster head selection and clustering mechanism are proposed. The sensors select the near-optimal
cluster heads using the Artificial Bee Colony algorithm [37] based on the remaining energy of the sensors, the
number of neighbors, the Euclidian distance between the sensors and the sink, and the Euclidian distance between
sensors and their neighbors. The second phase is to cluster devices with cluster heads based on the Euclidian
distance between these devices and cluster heads and data generated. The simulations are evaluated in terms of
residual energy and data transmission delay. However, the network lifetime is not considered.

The authors in [38] proposed a mechanism to optimize the energy consumption in the IoT network, especially in
WSN. The CHs are selected using a hybrid Whale Optimization Algorithm (WOA) with Simulated Annealing
(SA)[39]. The parameters of the selection of CHs are energy consumption, path distance, delay, load, and
temperature. The fitness function is computed based on these parameters. The proposed mechanism is measured in
terms of temperature, the number of nodes alive, load, network energy, and costs. However, the data transmission
delay is not considered.

The data generated from source devices in the IoT networks is transmitted to high-level entities to respond to
the request requirements of users and applications. As the data transmission in a decentralized IoT network is
performed via multi-hop nodes, it is essential to consider the crucial elements to optimize the data flow in this
constrained network, which contains nodes limited in energy consumption, storage capacity, processing capacity,
etc. As illustrated in Table 1, each previous study focuses on some parameters of clustering mechanism, data
transmission delay, energy consumption, and network lifetime to achieve the best data optimization in a constrained
IoT network. However, in our contribution, we are considering all these parameters at once with the improvement
in the performance compared to the previous studies.

Table 1. Functional comparison of our proposal work with the previous studies to determine the level of traffic for a route

Clustering
mechanism

Data transmission
delay

energy
consumption

Network
lifetime

Handy et al[27] (2002)
√ √ √ √

Syed et al. [28] (2017)
√ √ √ √

Louid et al. [29] [29] (2017)
√ √ √ √

Damodar et al. [31] (2018)
√ √ √ √

Fitzgerald et al. [33](2018)
√ √ √ √

Shalli et al. [34] (2019)
√ √ √ √

Shamim et al. [36] (2020)
√ √ √ √

Celestine et al. [38] (2020)
√ √ √ √

Our proposal
√ √ √ √
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Figure 1. A simple example of a constrained network in IoT.

3. Preliminaries

3.1. Problem definition

The area of interest is considered a constrained network IoT constructed by sensor nodes, actuator nodes, and
BSs/sinks. The sensor nodes can sense the environment parameters; the actuator nodes or end-users can utilize the
sensed data. The actuator nodes can receive the data from sensor nodes via intermediate nodes or end-users via the
BS to perform a physical parameter.

To transmit the data from a source node to a destination node in a constrained IoT network constructed by limited
nodes in terms of energy consumption, processing capacity, and storage capacity, the mechanisms adopted have to
deal with these different constraints. The communication is one-hop (from node to another) and unicast.

This contribution considers that the network contains a set of BSs, which act as middlewares between the end-
users and the sensors/actuators. The problem is to manage data transmission from an optimized path that can
minimize the energy consumption, increase the network lifetime, decrease the data delay, and minimize the path
length and distance. It is an N-hard problem that we have to deal with these criteria simultaneously.

Figure 1 provides an example of transmission data from the source node S to the destination node D. As shown,
there are two paths: (i) a short path (the bold line) in terms of distance and the number of hops and (ii) the longest
path (the dashed line). The transmission of data from the shortest path can decrease energy consumption and
execution time. However, sending data from a short path does not guarantee efficient transmission and data flow
minimization in a constraint network. Furthermore, a node within a short path that transmits or execute data can
lead to the failure of node lifespan, which decreases the network lifetime. Thus, the objective is to transmit the data
from the optimized path, which is a short path and, at the same time, includes the nodes with high capacities of
nodes.
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3.2. Energy model

The constrained nodes are constrained in terms of energy consumption, which is a principal evaluated parameter
for the proposed solutions in IoT.

A radio model[40] used to analyze the parametric effect during the design and operation of a protocol. A
sensor node in this model is made up of seven components: transmission and reception electronic equipment, a
transmission and reception antenna, a transmission amplifier, and a data processor. The energy is consumed in the
operations of data transmission, data reception, and data compression.

We adopted the simplified energy model introduced in[45]. Depending on the distance between the source and
the destination, their model employs free space and multi-path fading channels.

The transmission phase consumes energy in radio electronics and amplifier electronics, it is given as follows:

ET (L,D) =

{
L ∗ Eelec + L ∗ Efs ∗D2; ifD < D0

L ∗ Eelec + L ∗ Eamp ∗D4; ifD ≥ D0
(1)

where,
• L is number of bits (data) transmitted over a distance D
• Eelec(nJ/bit) is the total amount of electrical energy needed by modulator, digital coding, and other electronic
circuits to transmit or receive one bit of data.
• Efs(nJ/bit/m

2) is the amount of power needed by the amplifier to transmit data directly to the receiver.
• Eamp(nJ/bit/m

4) is the amount of energy needed by the amplifier to send data using other nodes in a multi hop
manner.
• D0 is the threshold distance computed as :

Efs ∗D2
0 = Efs ∗D4

0 ⇒

√
Efs

Eamp
(2)

The reception phase consumes to receive data is given as follows:

ET (L,D) = L ∗ Eelec (3)

4. Our proposal

This section presents a new contribution for efficient data flow in a constrained Internet of Things network.
As stated above, several factors may impact this task, such as the density wobbling, the required time, the
energy consumption, and the network lifetime. The main novelty of our contribution is to address these criteria
simultaneously.

4.1. System overview

The data is generated from different nodes and transmitted to BSs; end-users or nodes exploit it to produce the
services and applications. As the network can be composed of many nodes, the inefficient path plan from where
data is transmitted leads to consuming more energy, decreasing the network lifetime, and increasing the data delay.

Some assumptions for the proposed model are adopted as follows:
• Nodes are homogeneous and static with different initial energy and capacities.
• Nodes are distributed randomly in the network to monitor (sensors) environmental parameters or execute
instructions (actuators).
• The nodes have a diverse communication range.
• The network is composed of a set of fixed BSs/Sinks that are randomly distributed.
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Figure 2. System overview of the proposed solution.

To optimize the data flow in a constrained IoT network, Figure 2 shows different phases of the proposed solution.
The first phase is a clustering mechanism of nodes using the DP clustering based on their locations. Then the
assignment of nodes to BSs is adopted to determine the efficient positions to BSs. Thirdly, a dynamic path plan
method to determine the efficient nodes in real-time data transmission.

4.2. Nodes clustering using DP

The nodes are distributed randomly in the network, such that the nodes have diverse communication range. The
first phase of the solution is to cluster the nodes into a set of clusters. The clustering is based on the location of
nodes.

DP clustering [42] is a new clustering algorithm recently proposed by Rodriguez and Laio, which is designed
for a large data set. The DP algorithm is capable of detecting non-sphere clusters and needs no iteration. The flow
chart of DP algorithm is shown in Figure 3. The algorithm is based on two information: (i) cluster centers (CHs)
(Have higher local densities) are frequently surrounded by neighbors that have lower local densities, and (ii) there
is a large distance between cluster centers. For that, DP calculates two metrics for each node: its local density ρ
and its distance δ from other nodes with higher density.
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Figure 3. A flowchart of DP algorithm (adapted from [43]) for the proposed contribution.

The local density of the node i is the number of nodes neighboring of i, it is computed as:

ρi =
∑

j∈1,j 6=i

χ(rij − r) (4)

Where χ is a function defined as follows:
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χ(x) =

{
1;x < 1
0;x ≥ 1

(5)

S is set of all nodes, rij is the Euclidean distance between two different nodes i and j, and ρi is the average
communication range of all nodes (a cut-off distance), which is a threshold determined as an input of algorithm,
such that is equal to the number of nodes within the communication range r.

The distance δ of node i is computed as:

δi = minj|pj>pi
(rij) (6)

It is the minimum distance from node i to any other node whose local density is higher than that of node i.
Furthermore, the node i that has the highest density among all nodes is defined as follows:

δi = max
ı

(rij) if ρi = max(ρ) (7)

The DP clustering algorithm draws a decision graph. In this graph, the abscissa is ρ and the ordinate is δ, where
large values of ρ and δ of nodes are chosen as cluster centers. Then, after selecting the centers, the nodes are
arranged in descending order of local density, and the rest nodes are assigned to the cluster of the nearest high local
density nodes. In the next step, the nodes (the noise nodes) that are not in the communication range with centers
will choose the nearest center that is linked by a neighbor (or neighbor of neighbor, etc.).

Using this DP algorithm, the nodes are clustered, where the cluster centers are the nodes with high density (a
high number of connected nodes) than others. The nodes that are indirectly linked to the cluster achieve the cluster
center via multi-path, but all nodes related to a cluster share the same identifier ID.

4.3. Assignment of nodes to BSs

As the first phase is considered the clustering of nodes using the DP clustering, the second phase considers the
assignment of nodes to BSs.

In the network, the nodes and BSs are deployed randomly with different communication range. Some nodes can
communicate directly to BSs, and others connected indirectly to BSs via multi-hop communication. For that, it is
essential to assign the correct nodes for each BS. The objective is to semi-balanced the number of nodes assigned
to each BS.

Base station density: The network is constructed by N nodes and M BSs, the density factor of the BS (named
N

(BS)
i )

N
(BS)
i =

Ni

Nr
(8)

Where Ni is the number nodes that are in communication with the BS i ( the adjacent nodes) and Nr is the total
number of nodes that are in communication with BSs. More the value of d(BS)

i is higher, more the density of the
BS i is higher. We assigned a node that exist in communication with two BSs to just one BS, where this case is
rarely happen, which is expressed in the following:

M∑
i=1

N
(BS)
i = 1 (9)

Clusters assignment: The network is constructed by Nc clusters; we assign all nodes of clusters that contain the
nodes with communication range to BS i.

d
(BS)
i,c =

∑Ni,c

j=1,j∈BS(i) |Ni,j |
N

(10)
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Where Ni,c is the number of clusters that are connected to the BS i via adjacent nodes and |Ni,j | is the number of
nodes in the cluster j.

Each BS i will be assigned by d(BS)
i *%of nodes, the rest of nodes Nrest that are not assigned yet to BSs is

defined as below.

Nrest = N −
M∑
i=1

d
(BS)
i,c ∗ 100 (11)

The objective is to distribute theNrest nodes among BSs, such that the clusters that are not connected to adjacent
nodes of a given BS are not assigned yet. So, the objective is to assign these nodes to BSs. The mechanism is given
as follows:
• Each cluster from the unassigned list can select assigned neighboring clusters as candidate intermediate clusters
to reach a given BS.
• The assigned cluster that has the center node near to BS is selected as an intermediate cluster by unassigned
clusters, and an unassigned cluster will be assigned with the same BS of the first one.
• The number of nodes assigned to each BS i should be in the range[d(BS)

i − threshold; d(BS)
i + threshold] ; more

the threshold fewer, more the assigned nodes is balanced.

4.4. Dynamic path plan for real-time data transmission

As noted above, the nodes are assigned to all BSs, such that the distribution of nodes is semi-balanced among BSs,
and the clusters determine the intermediate sets that can reach the assigned BSs.

After that, the objective is to make nodes selecting an optimized path that can minimize the data flow in real-
time in the network. Each node has the identifier (ID) of the assigned BS and the IDs of intermediate surrounding
clusters assigned to BS i. To transmit the data from sensors/actuators to BS, the center nodes are not considered as
aggregators of data in our contribution, all the nodes are responsible to transmit data from source to destination.
The aggregator nodes lose more energy than others, which makes the network lifetime decreased rapidly.

A node k can decide by itself the receiver of its data using the sorting factor of each neighboring node j as
follows:

Sj(t) =
α

Lj
+ β ∗ (1− 1

Tj(t)
) +

γ

dBS
i

; ifEexpected
j ≥ q (12)

Where Lj is minimal number of hops to achieve its BS i from the node j, Tj(t) is the amount of data received
from beginning to instant t from the node k, Eexpected

j is residual energy of node j normalized in range 0 and 1,
and q is the average residual energy of all neighboring nodes of k, and α ,β , and γ are the influence parameters in
range [0; 1], such that α+ β + γ = 1 .

Each node k calculates the sorting factor of its neighboring nodes, the one with a high value of the sorting factor
in instant t is considered as the receiver of the data; its value is adjusted during the time. The node k can expect the
residual energy of the neighboring node from the data that can be received.

5. Simulation and evaluation

5.1. Simulation setup

In this simulation, we used Python language (version 3) to implement our mechanism on a Dell Inspiron 155567
computer with an Intel i7 CPU running at 2.4 GHz, Windows 7 (64-bit), and 8 GB of RAM.

To implement our contribution, we extracted data from the location-based online social network Brightkite
dataset, which was obtained from the Stanford Large Network Dataset Collection [44]. The extracted dataset
includes 5000 nodes with their location coordinates. We deployed 25 of BSs into the network. The nodes are
initialized with different residual energies between 0.3 and 0.9.

Stat., Optim. Inf. Comput. Vol. 10, February 2022



102 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

For the energy consumption during the data flow, according to [45, 46] , we consider the energy for reception
and transmission is 0.001J and 0.004J, respectively, for each packet. Also, the energy of the processing information
(by an intermediate node) is 0.0015J. The size packet is not considered; it is considered as one packet (one data).
Also, we send 10000 packets to the network generated from random nodes, where each packet should achieve the
BS. The packets consume 1ms at each node. The influence parameters are α = 0.25 ,β = 0.5 , and γ = 0.25.

For the purpose of performance with other approaches, we compared two algorithms as reviewed above: LEACH
algorithm [27] and OPEN algorithm [28]. In the LEACH algorithm, the CHs are selected randomly and updated at
a fixed period of time, and the data is transmitted randomly from CH to a given BS. In the OPEN algorithm, the
CHs are selected based on the residual energy, density, and average distance to neighbors. The data is transmitted
from CH to a given BS via the shortest path.

5.2. Simulation results

To measure the efficiency of the DP clustering compared to LEACH and OPEN clustering algorithms, Table 2
shows the main differences in terms of the number of clusters and the number of hops to reach the CHs. As
illustrated, the number of clusters and the number of nodes with more than one-hop in our approach are lesser than
other algorithms. Furthermore, the maximal number of hops to achieve CH is 3 in our approach. However, it is
4 and 5 for LEACH and OPEN algorithms, respectively. This is because the applied DP clustering algorithm is
efficient on a large scale than other clustering algorithms.

Table 2. The accuracy of the different algorithms of clustering

Number of
nodes

Number of
nodes with
1-hop(%)

Number of
nodes with
2-hop(%)

Number of
nodes with
3-hop(%)

Number of
nodes with
4-hop(%)

Number of
nodes with
5-hop(%)

LEACH clustering 62 92 4 2 1.5 0.5

OPEN clustering 55 94 4 1 1 0

DP clustering 44 97 24 0.6 0 0

As we send 10000 packets to the network, the total execution time is measured for our approach and others, as
shown in Figure 4. The consumed time for our approach and the OPEN algorithm is less than the LEACH algorithm
because the packets are transmitted via the shortest path, which leads to a minimal number of hops to the BS. The
clustering mechanism and the assigned nodes to BSs boost finding the shortest path to BS, which decreases the
data delay in the network.
The energy consumption is measured during the packet transmission for each approach, as shown in Figure 5. As

demonstrated, the total energy consumption for our solution and the OPEN algorithm are semi-equal and lesser
than the LEACH algorithm. This is a consequence of the mechanism based on residual energy to send data packets
for our approach and OPEN algorithm.
To study the behavior energy consumption of nodes in the network, we measure the deviation of residual energies
of all nodes during the data transmission, as shown in Figure 6. As illustrated, during the first transmissions of
data, the deviation of residual energies for our approach is higher, but after then the deviation is converged to
zero. However, the deviation of residual energies of other algorithms is wobbling; it does not converge to zero.
Consequently, the network lifetime is decreased for others, especially the OPEN algorithm, which has semi-equal
energy consumption, where the same energy consumption does not mean the increased network lifetime.
To examine the consequence of the network lifetime, we determine the number of alive nodes during the data

sending from sources to BSs, as shown in Figure 7. The number of alive nodes for our approach is still at 100%
during an increased number of packets and decreased to 97% after a higher number of packets; this is a result of an
extended network lifetime. However, the number of alive nodes is decreased rapidly to 89% and 92% for LEACH
algorithm and OPEN algorithm, respectively.
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Figure 4. The total execution time according to the number of packets.

Figure 5. The total energy consumption according to the number of packets.

6. Conclusion

In this paper, to optimize the data flow in a constrained IoT network, where the devices are constrained in terms of
the power energy, the capacity of storage, and the capacity of processing, we proposed a new approach that allows
these devices to make self- decisions based on the state of data flow in the network. The mechanism of grouped
nodes is applied using the DP clustering algorithm designed for a large scale. The nodes are then assigned to BSs
based on the centrality and the distance. After that, a path plan in real-time is performed by nodes to determine
the optimized path to transmit data from source nodes to the BSs. The results show the efficiency of our approach
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Figure 6. The network lifetime according to the number of packets.

Figure 7. The network lifetime according to the number of packets.

compared to other approaches in terms of the number of hops to CH nodes, the execution time, the network lifetime,
and the number of alive nodes.

The current work can benefit researchers and practitioners from developing and creating applications designed
for lossy networks. Furthermore, the systems of smart agriculture, smart industry, smart city, and so on can exploit
the data generated from the deployed sensors to create new services for end-users and applications.

In the future, we plan to incorporate the caching system in the constrained network of IoT, where the nodes can
store the data of sources nodes without sending it to the BSs, to be exploited by the nodes without requesting the
central entities.
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