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Abstract In Bayesian analysis, empirical and hierarchical methods are two main approaches for the estimation of the
parameter(s) involved in the prior distribution of one parameter. But in the multi-parameter model, e.g., Gamma(α, p),
where both the parameters are unknown, idea of the ‘Partial Bayes (PB) Estimation’ is introduced. When we do not have
proper belief regarding the joint parameters of the distribution of the variable and when we are estimating one parameter
in presence of others, such method may be used. Partial Bayes estimation of the scale parameter p is done by putting the
estimate of the another parameter α obtained by some other classical method in case of two parameter Gamma distribution.
Using non-informative prior and computing the risk, it is found that the Partial Bayes estimator has less risk than the Bayes
estimator. For this, simulation studies for some choices of shape parameter values have been done. In case of the shape
parameter, posterior mean and posterior variance are evaluated through simulations to obtain the risk values for estimator of
α with known scale parameter. Finally after fitting this distribution, two real datasets are illustrated to see the performance
of the Partial Bayes estimator.
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1. Introduction

In Classical and Bayesian inference Gamma distribution has been quite extensively used for modeling positive data.
It offers better fit in several applied fields, like reliability, life testing experiments and climatology, e.g., [1, 2, 3]
and many others in real life situations.

A random variable X is said to follow Gamma distribution and written as G(α, p), if it has the following
probability density function:

f(x|α, p) =
pα

Γ(α)
xα−1e−px; x > 0 (1)

with the shape and scale parameters α > 0 and p > 0 respectively.
In literature, there are many papers on Bayesian inference of Gamma parameters. Under vague priors, Son

and Oh [4] computed the Bayes estimates of the unknown parameters using Gibbs sampling procedure and the
results were compared with the maximum likelihood estimators (MLE’s) and modified moment estimators. For
generalized Gamma distribution, Tsionas [5] obtained the Bayes estimates for a specific non-informative prior
using Gibbs sampling techniques. In 2009, Apolloni and Bassis [6] developed an estimation procedure for two
parameter Gamma distribution based on the algorithmic inference approach, without assuming any prior for
these parameters involved in joint probability distribution. In the cases where the prior information regarding the
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parameters are available, estimation in Bayesian context for transition probability matrix has been done by Seal
and Hossain [20, 21]. Pradhan and Kundu [7] assumed Gamma prior for the scale parameter and log-concave prior
for the shape parameter and assumed independence between them. Using these priors they computed the Bayes
estimates of the unknown Gamma parameter(s) and also constructed highest posterior density credible intervals.
Moala et al. [8] assumed different non-informative prior to derive the Bayesian estimates and credible intervals for
the two parameters of Gamma distribution.

Apart from these type of various works, a new approach is addressed in this paper for estimating the parameter
and it is named as ‘Partial Bayes (PB) Estimation’. Suppose we have a distribution which has two unknown
parameters and our interest is to estimate one of this only. Then according to the present proposed procedure,
we choose the prior of that parameter of interest and find the Bayes estimate, which is not fully known due to the
presence of another unknown parameter in that estimate and then we estimate that unknown parameter by some
other classical method e.g., by method of maximum likelihood, method of moments etc and plug that for unknown
part. As we estimate our target parameter partially by mixing Bayesian idea and other classical ideas it may be
called as ‘Partial Bayes Estimation’ and this is clearly different from Empirical Bayes method.

In this paper, the Partial Bayes procedure is described for Gamma distribution where p is the parameter of interest
in presence of the nuisance parameter α. Prior for the scale parameter p is assumed and the Bayes estimator involves
the unknown shape parameter α. Then we put α̂ obtained by the method of MLE. Of course, some other estimates
may be attempted. Thus, the Partial Bayes estimator of p is obtained. We investigate risk for both the estimators
i.e. Bayes and Partial Bayes estimators of p through simulations and then compare them. To derive the risk for
the shape parameter, posterior mean and posterior variance of α are obtained by extensive simulation works. To
demonstrate the performance of the proposed estimate in real-life situation, two datasets namely rainfall data [8]
and bladder cancer patient’s data [18] are considered also. For these two sets of data, two parameter Gamma family
fits well compared to different competitors. Thus this method is employed for two parameter Gamma distribution
to these datasets in good manner.

The materials of the article are arranged in following sequence. In Section 2, we derive estimates using the
likelihood equation after being approximated. Jeffrey’s non-informative prior for Gamma family is described in
Section 3. Bayes and Partial Bayes estimators for scale parameter p under non-informative prior are obtained in
Section 4. For comparison, numerical results of Bayes and Partial Bayes risk are shown in Section 5. In Section
6, posterior mean and posterior variance for shape parameter are calculated along with the risk values through
extensive simulation works when scale parameter is known. Two real datasets have been used in Section 7, to
understand clearly the behavior of the estimator in real situations. Finally, the paper is accomplished in Section 8,
with the expectation of better performance of Partial Bayes estimator.

2. Maximum likelihood estimation from approximated likelihood equation

For estimating the parameters in classical paradigm, maximum likelihood method is most frequently used as it has
several desirable properties like consistency, efficiency, asymptotic normality and invariance. Let x1, x2, ..., xn be
a random sample from Gamma distribution. Then the likelihood function becomes

L(x|α, p) =

(
pα

Γ(α)

)n n∏
i=1

xα−1
i e−p

∑n
i=1 xi (2)

for α > 0 and p > 0.
Taking logarithm on both sides of the equation (2), we get

ln L = n α ln(p)− n lnΓ(α) + (α− 1)

n∑
i=1

ln(xi)− p
n∑
i=1

xi. (3)

Now differentiating (3) w.r.t. the parameters p and α respectively, estimate of p becomes

p̂MLE =
α

x̄
if α is known. (4)
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Due to the complexity in likelihood function, closed form solution for estimating α is difficult to find. So it is
approximated for large α, as in the following.

After differentiating we get

nlnp− n ∂

∂α
lnΓ(α) +

n∑
i=1

lnxi = 0,

and using di-gamma approximation from Beal [19] i.e. ∂
∂α (lnΓ(α)) ≈ lnα− 1

2α , it is enough to solve the
following approximate equation as,

nlnp̂− n(lnα− 1

2α
) +

n∑
i=1

ln xi = 0.

After some algebraic manipulations and using (4), we get approximate MLE of α given by

α̂MLE =
1

2
[
lnx̄− lnx

] . (5)

3. Jeffrey’s prior for Gamma family

The proper selection of prior(s) for the parameters is an important step in Bayesian estimation. From Bayesian
perspective, Arnold et al. [9] pointed out that there is no clearly mentioned way to conclude the superiority of one
prior over other. It is widely known that the conjugate prior do not exist when both the parameters in the baseline
distribution are unknown Singh et al. [10]. However, if sufficient information about the parameter(s) are available,
use of informative prior is reasonable otherwise it is better to use non-informative prior.

In this study, we prefer to use a well known non-informative prior proposed by Jeffreys [11]. Although there is
a controversy regarding the use of Jeffrey’s prior for models with multidimensional parameters, it is widely used
in Bayesian analysis due to its invariance property under one-to-one transformations of parameters, e.g., Link and
Barker [12]. The prior Π(p) for scale parameter p is derived by constructing the Fisher information matrix as in the
following.

Π(p) ∝
√
detI(α, p),

where the Fisher information matrix is given by, I(α, p) =

[ α
p2 − 1

p

− 1
p

1+2α
2α2

]
,

and determinant of the information matrix is ,

det[I(α, p)] =
1

2αp2
.

Therefore, the Jeffrey’s prior for the Gamma parameters is given by,

Π(p) =

√
1

2αp2
=

1

p
√

2α
. (6)

4. Bayes and Partial Bayes estimates of the scale parameter

In this section, we discuss the derivation of the Bayes estimate (BE) and the Partial Bayes estimate (PBE) under
squared error loss function (SELF). In Bayesian inference the posterior distribution, which is useful for future
inferences and prediction, contains all the information from sample and prior knowledge about the unknown
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parameter. For this prior selection, the posterior distribution becomes,

h(p|x
¯
) =

f(x
¯
|p)Π(p)∫∞

0
f(x

¯
|p)Π(p) dp

=

(
pα

Γ(α)

)n
e−p

∑n
i=1 xi 1

p
√

2α∫∞
0

(
pα

Γ(α)

)n
e−p

∑n
i=1 xi 1

p
√

2α
dp
.

By looking at the form of above, the posterior density becomes proportional to Gamma and to make this as density
we get

h(p|x
¯
) =

(∑n
i=1 xi

)αn
Γ(αn)

e−p
∑n
i=1 xipαn−1. (7)

Therefore, p|x
¯
∼ Gamma

(
αn,

∑n
i=1 xi

)
.

Hence, under the squared error loss function, Bayes estimator of the parameter p is the posterior mean i.e.

pBayes =
αn∑n
i=1 xi

=
α

x̄
. (8)

If in the expression (8), α is unknown then we put the maximum likelihood estimator of α derived in (5) and
finally the ‘Partial Bayes Estimator’ of scale parameter p is obtained as

pPB =
1

2
[
ln x̄− ln x

]
x̄
. (9)

5. Computation of risk functions of the Bayes and Partial Bayes estimators using simulation

In decision theory, quality of an estimator is quantified in its risk function. The estimators developed in Section 4,
are studied on the basis of their risks obtained under SELF. Being an estimator of θ, δ(X) attains the following risk

R(θ, δ) = EθL(θ, δ(X)).

Now to study the performance of the two estimators i.e. Bayes in (8) and PB estimate in (9), their risk functions
are calculated as in the following.

Risk of Bayes estimator = E
[α
x̄
− p
]2

and (10)

Risk of Partial Bayes estimator = E

[
1

2
[
ln x̄− ln x

]
x̄
− p

]2

. (11)

In the above equations (10) and (11), we have the risk functions for Bayes and PB estimator respectively. But due
to complexity in mathematical calculation, we prefer to proceed further calculation numerically.

The simulation study is performed for different choices of the shape and scale parameters of Gamma distribution
and we want to obtain the risks for the Bayes and Partial Bayes estimators of scale parameter p. We take
different samples of sizes n = 100, 500, 800, 1000 from Gamma distribution with the parameters choice α =
(0.05, 1, 5, 10, 15, 20, 25, 30) and p = (0.05, 0.10, 0.25, 0.50, 0.75). We are to take moderately large α as we use the
di-gamma approximation to calculate the PB estimate in (9). As it is the beginning, we start with the small values
of the scale parameter and comparison of both the risk functions for all the combination of (α, p) is performed by
using the following steps:

• Step 1 : Consider (α1, p1) as the first choice of parameter.
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Table 1. Comparison of risks for Bayes and Partial Bayes (PB) estimators for different choices of parametric values when
sample size n = 100.

p
y α −→ 0.50 1 5 10 15 20 25 30

0.05 Bayes Risk 423.446 409.954 400.222 399.127 398.925 398.502 398.371 398.421
PB Risk 281.634 332.226 407.313 417.909 423.202 426.023 427.064 428.005

0.10 Bayes Risk 104.356 100.952 98.579 98.339 98.235 98.161 98.125 98.111
PB Risk 69.209 81.606 100.024 103.294 104.519 104.760 105.069 105.588

0.25 Bayes Risk 15.015 14.547 14.165 14.106 14.093 14.085 14.078 14.078
PB Risk 9.717 11.636 14.424 14.886 15.040 15.090 15.217 15.142

0.50 Bayes Risk 2.461 2.350 2.272 2.260 2.256 2.255 2.256 2.254
PB Risk 1.434 1.787 2.340 2.431 2.469 2.485 2.486 2.498

0.75 Bayes Risk 0.414 0.374 0.346 0.344 0.343 0.342 0.342 0.342
PB Risk 0.172 0.244 0.381 0.404 0.410 0.416 0.417 0.424

Table 2. Comparison of risks for Bayes and Partial Bayes (PB) estimators for different choices of parametric values when
sample size n = 500.

p
y α −→ 0.50 1 5 10 15 20 25 30

0.05 Bayes Risk 402.051 400.408 398.520 398.256 398.078 398.197 398.120 398.130
PB Risk 252.335 304.965 379.465 391.816 395.291 397.908 399.077 399.862

0.10 Bayes Risk 99.230 98.537 98.139 98.071 98.032 98.039 98.032 98.013
PB Risk 61.999 74.916 93.372 96.534 97.351 98.032 98.212 98.602

0.25 Bayes Risk 14.256 14.143 14.085 14.069 14.067 14.067 14.064 14.066
PB Risk 8.653 10.565 13.360 13.819 13.978 14.068 14.126 14.147

0.50 Bayes Risk 2.294 2.270 2.253 2.251 2.252 2.250 2.251 2.251
PB Risk 1.205 1.568 2.114 2.204 2.240 2.253 2.264 2.269

0.75 Bayes Risk 0.353 0.346 0.341 0.341 0.341 0.341 0.340 0.340
PB Risk 0.104 0.178 0.307 0.332 0.341 0.344 0.347 0.349

• Step 2 : Generate sample of sizes n = 100, 500, 800, 1000 from Gamma distribution.
• Step 3 : Calculate the Bayes Risk and Partial Bayes Risk using (10) and (11) simultaneously.
• Step 4 : Repeat above Step 2 and Step 3 for K = 30000 times.
• Step 5 : Compute the average of the above Bayes and Partial Bayes risk to get the overall risks for p of both

the estimators.
• Step 6 : Repeat Step 1 – Step 5 for the remaining combinations of (α, p).

In Table 1–4, a clear comparison is done for the different combination of the shape and scale parameters. Tables
are constructed for small, moderate and large sample values. When the sample sizes are small the Bayes risk is
relatively small compared to Partial Bayes risk for the large combinations of parameter values. But as the sample
size increases the PB risk is comparatively small for the maximum number of parameter combinations. For large
sample sizes, when both the parameters are small, the risk for the proposed estimator, i.e. PB estimate is better than
the Bayes estimate with respect to the risk value. Whereas, for large values of the shape parameter α and relatively

Stat., Optim. Inf. Comput. Vol. 10, September 2022



P. BANERJEE AND B. SEAL 1115

Table 3. Comparison of risks for Bayes and Partial Bayes (PB) estimators for different choices of parametric values when
sample size n = 800.

p
y α −→ 0.50 1 5 10 15 20 25 30

0.05 Bayes Risk 400.689 399.439 398.251 398.183 398.126 398.017 398.025 398.038
PB Risk 250.169 302.347 376.483 388.952 393.009 395.329 396.683 398.023

0.10 Bayes Risk 98.753 98.384 98.092 98.065 98.022 98.021 98.023 98.020
PB Risk 61.360 74.349 92.663 95.804 96.780 97.419 97.800 97.821

0.25 Bayes Risk 14.176 14.117 14.071 14.069 14.067 14.063 14.064 14.064
PB Risk 8.556 10.498 13.271 13.732 13.870 13.949 14.028 14.052

0.50 Bayes Risk 2.273 2.261 2.253 2.251 2.250 2.250 2.251 2.250
PB Risk 1.185 1.547 2.092 2.187 2.214 2.234 2.242 2.247

0.75 Bayes Risk 0.349 0.345 0.341 0.341 0.341 0.341 0.341 0.340
PB Risk 0.099 0.174 0.303 0.326 0.333 0.338 0.340 0.342

Table 4. Comparison of risks for Bayes and Partial Bayes (PB) estimators for different choices of parametric values when
sample size n = 1000.

p
y α −→ 0.50 1 5 10 15 20 25 30

0.05 Bayes Risk 400.238 399.185 398.251 398.121 398.022 398.068 398.031 398.005
PB Risk 249.327 301.468 375.891 388.041 392.188 394.982 395.883 396.747

0.10 Bayes Risk 98.660 98.327 98.055 98.046 98.032 98.012 98.018 98.016
PB Risk 61.203 74.139 92.546 95.606 96.608 97.157 97.554 97.728

0.25 Bayes Risk 14.152 14.107 14.069 14.069 14.065 14.065 14.063 14.063
PB Risk 8.523 10.454 13.242 13.712 13.857 13.933 13.976 14.024

0.50 Bayes Risk 2.268 2.259 2.252 2.251 2.250 2.251 2.251 2.250
PB Risk 1.179 1.542 2.087 2.180 2.211 2.227 2.236 2.242

0.75 Bayes Risk 0.347 0.344 0.341 0.341 0.341 0.340 0.340 0.340
PB Risk 0.097 0.172 0.300 0.323 0.331 0.335 0.338 0.339

large value of p, risks of both the estimator are almost equal. Although, for small values of α, the Partial Bayes risk
is always small irrespective of the sample sizes.

6. Evaluation of posterior mean and variance of the estimator for shape parameter

For the Gamma distribution, there is a problem in finding Bayes estimator for shape parameter α. In the past
years, Damsleth [13], Miller [14] attempted this problem and developed conjugate distributions for the model
but it is difficult to handle these analytically. In recent time, some works have been done numerically to find the
Bayes estimate for the shape parameter (e.g., Son and Oh [4], Apolloni and Bassis [6], Pradhan and Kundu [7]
etc). Importing two extra parameters, namely location and another shape parameter in Gamma density and setting
these to 0 and 1 respectively, is also an idea applied by Tsionas [5] for Bayes estimation using Gibbs sampling.
Miller [15] has shown that the full conditional distribution of the Gamma shape parameter is well approximated
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by a Gamma distribution, even for small sample sizes, when the prior on the shape parameter is also a Gamma
distribution.

But in this paper, we consider Jeffrey’s non-informative prior as a prior information for the shape parameter
α and squared error loss function is chosen to obtain the Bayes estimate from posterior distribution. Our goal
is to compute the risk values for shape parameter which is quite difficult to achieve analytically. So instead of
doing integration over the prior distribution, here we obtain the posterior mean and posterior variance of the shape
parameter. With the help of these, we find out the Bayes estimate as well as the risk functions for this Bayes
estimator of shape parameter of the Gamma distribution through some extensive numerical integration.

Under the Jeffrey’s prior (6), posterior density becomes,

h(α|x
¯
) =

(
pα

Γ(α)

)n∏n
i=1 x

α−1
i

1
p
√

2α∫∞
0

(
pα

Γ(α)

)n∏n
i=1 x

α−1
i

1
p
√

2α
dα
. (12)

Now, we first derive the denominator part of (12)

∫ ∞
0

(
pα

Γ(α)

)n n∏
i=1

xα−1
i

1

p
√

2α
dα

=
1

p
√

2(
∏n
i=1 xi)

∫ ∞
0

(pn
∏n
i=1 xi)

α

√
α(Γ(α))n

dα

=
1

p
√

2(
∏n
i=1 xi)

∫ ∞
0

uα√
α(Γ(α))n

dα where, u =

(
pn

n∏
i=1

xi

)

=
pn

u p
√

2

∫ ∞
0

uα

(Γ(α))n
√
α
dα

=
pn−1

u
√

2
I(u).

Hence, after putting the value of the integral in denominator, (12) becomes

h(α|x
¯
) =

(
pα

Γ(α)

)n∏n
i=1 x

α−1
i

1
p
√

2α

pn−1

u
√

2
I(u)

.

Under SELF, the posterior mean is nothing but the Bayes estimator of α. Therefore the posterior mean becomes,

E(α|x
¯
) =

∫∞
0
α
(

pα

Γ(α)

)n∏n
i=1 x

α−1
i

1
p
√

2α
dα

pn−1

u
√

2
I(u)

=

pn−1

√
2
I ′(u)

pn−1

u
√

2
I(u)

=
u I ′(u)

I(u)
= Bayes estimate of α. (13)

We calculate the posterior variance using the following expression,

V (α|x
¯
) = E

(
α2|x

¯

)
− (E (α|x

¯
))

2
,

where, E(α2|x
¯
) =

∫ ∞
0

α2
(

pα

Γ(α)

)n∏n
i=1 x

α−1
i

1
p
√

2α
dα

pn−1

u
√

2
I(u)

. (14)
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In (14), denominator part is constant, so the numerator part is to be simplified.

Now,
∫ ∞

0

α2

(
pα

Γ(α)

)n n∏
i=1

xα−1
i

1

p
√

2α
dα

=
pn−1

u
√

2

∫ ∞
0

α2uα

(Γ(α))n
√
α
dα. (15)

Putting, I(u) =

∫ ∞
0

uα

(Γ(α))n
√
α
dα, it follows that

I ′(u) =

∫ ∞
0

α uα−1

(Γ(α))n
√
α
dα and

I ′′(u) =

∫ ∞
0

α(α− 1) uα−2

(Γ(α))n
√
α

dα.

Thus I ′′(u) =

∫ ∞
0

α2uα−2

(Γ(α))n
√
α
dα−

∫ ∞
0

α uα−2

(Γ(α))n
√
α
dα.

=⇒ u2I ′′(u) =

∫ ∞
0

α2 uα

(Γ(α))n
√
α
dα−

∫ ∞
0

α uα

(Γ(α))n
√
α
dα

=⇒ u2I ′′(u) + u

∫ ∞
0

α uα−1

(Γ(α))n
√
α
dα =

∫ ∞
0

α2 uα

(Γ(α))n
√
α
dα

=⇒
[
u2I ′′(u) + uI ′(u)

]
=

∫ ∞
0

α2 uα

(Γ(α))n
√
α
dα. (16)

Now using the expression (16) in (15), the value of the integral becomes

pn−1

u
√

2

[
u2I ′′(u) + u I ′(u)

]
=

pn−1

√
2

[u I ′′(u) + I ′(u)] . (17)

Again, substituting the expression (17) in (14), we get

E(α2|x
¯
) =

pn−1

√
2

[u I ′′(u) + I ′(u)]

pn−1

u
√

2
I(u)

=

[
u2I ′′(u) + uI ′(u)

]
I(u)

. (18)

Finally, the posterior variance becomes,

V ar(α|x
¯
) =

[
u2I ′′(u) + uI ′(u)

I(u)

]
−
[
u I ′(u)

I(u)

]2

. (19)

Now it will be difficult to obtain the risk of α analytically. So we proceed the further calculation numerically
using the following steps.

• Step 1 : Initialize the parameters α = 5.5, 6.5, 7, 7.5, 8 and p = 0.2, 0.3.
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Table 5. Average Bayes estimate and corresponding Bayes risk (in parenthesis) for the shape parameter.

p Sample
sizes (n) α = 5.5 α = 6.5 α = 7 α = 7.5 α = 8

25 0.587074
(0.010433)

0.638052
(0.011993)

0.662800
(0.012758)

0.687120
(0.01352)

0.711188
(0.014285)

30 0.585804
(0.00866)

0.636770
(0.009984)

0.661598
(0.010623)

0.685952
(0.01126)

0.710086
(0.011901)

p = 0.2 50 0.584160
(0.005383)

0.635868
(0.005803)

0.660472
(0.006378)

0.684672
(0.006886)

0.708787
(0.007244)

75 0.583393
(0.003264)

0.636296
(0.002687)

0.657151
(0.005488)

0.680799
(0.006175)

0.70698
(0.005046)

80 0.583952
(0.002661)

0.636719
(0.002151)

0.655930
(0.005958)

0.679960
(0.00645)

0.707072
(0.004651)

100 0.588964
(-0.001282)

0.637604
(0.00059)

0.648305
(0.009769)

0.674608
(0.008793)

0.708693
(0.002184)

25 0.883195
(0.019841)

0.981651
(0.023442)

1.030223
(0.025163)

1.078385
(0.026873)

1.126429
(0.028594)

30 0.882036
(0.01603)

0.980087
(0.019519)

1.028815
(0.020979)

1.077052
(0.022419)

1.125278
(0.023814)

p = 0.3 50 0.881307
(0.009081)

0.979623
(0.011735)

1.028686
(0.012487)

1.077008
(0.013384)

1.124631
(0.014799)

75 0.879196
(0.006551)

0.977713
(0.00799)

1.026446
(0.008684)

1.075502
(0.008254)

1.124583
(0.007876)

80 0.879287
(0.006047)

0.977760
(0.007497)

1.026217
(0.00834)

1.075540
(0.00779)

1.125248
(0.006599)

100 0.879777
(0.004201)

0.977597
(0.005826)

1.025489
(0.007051)

1.073526
(0.007656)

1.126718
(0.002292)

• Step 2 : For each combination of (α, p) generate sample of sizes n = 25, 30, 50, 75, 80, 100 from Gamma
distribution and then calculate Bayes estimate for each.

• Step 3 : Repeat Step 2 forK = 1000 times. For e.g., if we use n = 25 samples and calculate posterior variance
and then such average of 1000 posterior risks will give Bayes risk by strong law of large number i.e. that will
be equivalent to finding integration over sample space.

• Step 4 : Calculate u = (pn
∏n
i=1 xi), K times considering each of the sample size.

• Step 5 : Posterior mean and posterior variance are obtained from (13) and (19) respectively.
• Step 6 : Take the average of the posterior variance to obtain the risk values.

At present, the idea behind the simulation study is to produce low value of posterior variance so that we can
obtain the minimum risk value of α. To attain this target, it is preferable to multiply small quantity of u in (19), so
that the variance can not be large. As u incorporates the scale parameter and the generated sample in a multiplicative
form, both should be small in quantity. With the choices of shape parameter as mentioned in step 1, we are able
to generate small value of X ′is as much as possible so that the values of u becomes small for most of the samples.
The sample sizes are chosen in an increasing order to represent small, moderate and large sample performances.
All the numerical results are tabulated in Table 5 from R Core Team software [16].
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Figure 1. Pictorial representations of above tabular calculation. From upper-left to lower-right: When sample size n = 25,
When sample size n = 50, When sample size n = 75 and When sample size n = 100.

To study the risk functions graphically, the risk values are plotted vertically while the initial values of the shape
parameter are in the horizontal axis. In Figure 1 it has been observed that, for the small size i.e., when n = 25, the
risk values are gradually increasing with the increment of shape parameter α. For large size of sample (n = 100),
the risk of α̂ corresponding to p = 0.2 and p = 0.3 converge to the almost same point 0.002 . All the risk values are
very small in quantity. So it is expected that risk function values are small. Thus we get an algorithm for calculating
Bayes estimate for the shape parameter.

7. Real data demonstrations

In this section, we analyze two datasets to illustrate the methodology mentioned in this article. In first example
we consider average monthly rainfall data while in the second scenario the remission times (in months) of bladder
cancer patient’s data are used. One natural concern about these datasets is whether or not they fit the Gamma
distribution. Goodness-of-fit testing is a crucial part of any statistical studies, since it reveals the gap between
a considered statistical model and the available data Ali et al. [24]. There are several approaches available
in literature for determining a model’s goodness of fit to a specific dataset. Among them, Pearson’s χ2 and
Kolmogorov–Smirnov tests are widely used. Here we only focus on Kolmogorov–Smirnov (K-S) distances between
empirical and fitted distributions as it is well known that for limited sample observations Pearson’s χ2 test may
not perform well. The K-S distance values are derived for the Rainfall dataset and Bladder cancer dataset and
it has been found that they are 0.0978 and 0.0683 respectively. The fitting of these two real datasets are also
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verified through some diagnostics plots. We compare the fits of the Gamma distribution (G) with some other well-
known two parameter models like Weibull (W), Logistic (L), Inverse Gamma (InvG), Exponential power (EP) [22],
Marshall-Olkin Exponential (MOE) [23], the Burr X Exponential (BrXE) [33] and Burr-Hatke Logarithmic BXII
(BH-BXII) [31] distributions. In order to compare the fits of the distributions, we consider Cramèr-Von-Mises
(CVM) and Anderson-Darling (AD) goodness of fit statistics. These two statistics are essentially modifications
of the K-S test statistic and are usually thought to be more powerful than the original K-S test, which are also
favoured by many researchers (for example Yousof et al. [32], Ibrahim et al. [30], Khalil et al. [26], Lak et al.
[27], Elgohari [29], Mohamed et al. [28]). Moreover for more accuracy, we consider another five goodness of fit
measures based on the log-likelihood functions namely, -2× log-likelihood (-2logL), Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC), Hannan-Quinn Information Criterion (HQIC), Bayesian
Information Criterion (BIC). The smaller values of these statistics are indication of the better fitting. Table 7 and
10, have come with a summary of the fitted information criteria and estimated MLE’s for both the datasets with
different models. Thus it is appropriate to use two parameter Gamma distributions.

7.1. Rainfall data application

Table 6. Historical rainfall averages over last 56 years in State of São Paulo.

0.2 3.5 2.8 3.7 8.7 6.9 7.4 0.8 4.8 2.5 2.9 3.1 4.0 5.0 3.8 3.5 5.4 3.3
2.9 1.7 7.3 2.9 4.6 1.1 1.4 3.9 6.2 4.1 10.8 3.8 7.3 1.8 6.7 3.5 3.2 5.2
2.8 5.2 5.4 2.2 9.9 2.1 4.7 5.5 2.6 4.1 5.4 5.5 2.1 1.9 8.8 1.3 24.1 5.4
6.2 2.9

Table 7. Parameter estimate and Information criteria for Rainfall data.

Model MLE -2logL AIC CAIC HQIC BIC CVM AD

G (α, p) α̂=2.3962
p̂=0.5185

264.159 268.1579 268.3843 269.7284 272.2086 0.06992 0.50617

W (θ, λ) θ̂=1.5028
λ̂=0.1941

268.6427 272.6427 272.8691 274.2131 276.6934 0.15167 1.0343

InvG (α, p) α̂=1.4834
p̂=3.7758

295.5672 299.5672 299.7936 301.1376 303.6179 0.56990 3.23680

EP (α, β) α̂=8.5345
β̂=0.8683

285.8483 289.8483 290.0747 291.4187 293.899 0.50788 3.14460

L (µ, s) µ̂=4.1907
ŝ=1.5171

275.8025 279.8025 280.0289 281.3730 283.8532 0.08714 0.83050

MOE (α, λ) α̂=7.6916
λ̂=0.5285

266.1421 270.1421 270.3685 271.7125 274.1928 0.07459 0.59099

BrXE (θ, λ) θ̂=0.3588
λ̂=0.0612

305.8106 309.8106 310.0370 311.3810 313.8613 1.30572 6.67065

BH-BXII (a1, a2) â1=3.3113
â2=0.1199

317.6960 321.6960 321.9224 323.2664 325.7467 1.62932 8.11363
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Figure 2. Diagnostic plots of fitted Gamma distribution for Rainfall data. From upper-left to lower-right: Histogram, Q-Q
plot, Empirical VS Theoretical CDF and P-P plot.

The dataset in Table 6 represents the average monthly rainfall obtained from the Information System for
Management of Water Resources of the State of São Paulo, including a period of 56 years from 1947 to 2003,
by considering the month of November reported by Moala et al. [8]. The sample mean and sample variance for
the rainfall data are 4.621 and 12.217 respectively. The maximum likelihood estimate of the parameters α and p
obtained as α̂MLE = 2.396 and p̂MLE = 0.518 for the dataset. We further calculate the PB estimate and Bayes
estimate from (9) and (8) for the complete sample and splitting the original datasets in two groups.

Table 8. Partial Bayes and Bayes estimates for the Rainfall data.

Group Partial Bayes estimate (PB) Bayes estimate (BE)
when α = 2.396

Total 0.4853 0.5185
Group 1 0.6344 0.6189
Group 2 0.4317 0.4461

From Table 7, we conclude that the Gamma distribution provides better fit for Rainfall data compared to other
comparative models with CVMstatistic = 0.06992 and ADstatistic = 0.50617. Also it has lowest value regarding
-2logL = 264.1579, AIC =268.1579, CAIC = 268.3843, HQIC = 269.7284 and BIC = 272.2086.

In Table 8, we divide the rainfall data equally in two groups consisting of sample sizes n = 28 for both the
groups and for each of these groups, the Bayes estimate and the PB estimate are given. The idea is to study how the
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proposed Partial Bayes estimate performs in real situations. As the Bayes estimate involves the shape parameter
α, we use MLE α̂ to calculate the Bayes estimate of p. From Table 8, it is observed that PB estimate of the total
dataset is 0.4853 which does not differ too much from p̂MLE as well as the Bayes estimate of p. Also after splitting
the dataset into two groups, the PB estimators for group 1 and group 2 are very close to original Bayes estimators.
So, we can say that the performance of the PB estimate is as stable as the Bayes estimate. Moreover, it is to be
noted that the Bayes estimate depends on the shape parameter while the PB estimate is fully dependent on the
data. Therefore, we can calculate the Partial Bayes estimate directly from the data without any prior knowledge of
parameters. So, our proposed estimate behaves logically sound and not too much different from Bayes estimate.

7.2. Bladder cancer data application

Table 9. Remission times (in months) of a random sample of 128 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97 9.02
13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26
9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 2.62 3.82
5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69
4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14
79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 1.46 18.10
11.79 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02 13.31
4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07 6.76 21.73 2.07 3.36 6.93 8.65
12.63 22.69

Table 10. Parameter estimate and Information criteria for Bladder cancer patient’s data.

Model MLE -2logL AIC CAIC HQIC BIC CVM AD

G (α, p) α̂=1.1781
p̂=0.1247

828.7471 832.7471 832.8431 835.0646 838.4511 0.11784 0.68492

W (θ, λ) θ̂=1.0528
λ̂=0.1035

830.1968 834.1968 834.2928 836.5144 839.9009 0.13804 0.87435

InvG (α, p) α̂=0.7098
p̂=1.7715

913.8213 917.8213 917.9173 920.1389 923.5254 1.5969 8.5313

EP (α, β) α̂=18.8723
β̂=0.6599

854.9746 858.9746 859.0706 861.2922 864.6787 0.57446 3.5541

L (µ, s) µ̂=7.6863
ŝ=4.4958

913.6324 917.6324 917.7284 919.9500 923.3364 0.5841 4.7896

MOE (α, λ) α̂=1.0924
λ̂=0.1109

830.7273 834.7273 834.8233 837.0049 840.4314 0.15363 1.02399

BrXE (θ, λ) θ̂=0.2389
λ̂=0.0198

911.5886 915.5886 915.6846 917.9061 921.2926 2.64599 13.19588

BH-BXII(a1, a2) â1=2.3622
â2=0.1247

927.1633 931.1633 931.2593 933.4809 936.8674 2.86226 14.32391
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Figure 3. Diagnostic plots of fitted Gamma distribution for Rainfall data. From upper-left to lower-right: Histogram, Q-Q
plot, Empirical VS Theoretical CDF and P-P plot.

Now, let us consider a survival dataset taken from Elgohari and Yousof [17]. This dataset is originally reported
by Lee and Wang [18] and represents the remission times (in months) of 128 bladder cancer patients. Respective
sample mean and variance for the considered dataset are 9.444 and 110.253. The maximum likelihood estimates of
the parameters computed using the dataset given as α̂MLE = 1.178 and p̂MLE = 0.125.

Similarly, as mentioned in previous Subsection 7.1, here also from Table 10 we see that Gamma distribution
provides much better fit than the other comparative model for Bladder cancer patient’s data with CVMstatistic =
0.11784 and ADstatistic = 0.68492. Also by considering other Information Criteria, i.e., -2logL = 828.7471, AIC
= 832.7471 , CAIC = 832.8431, HQIC = 835.0646 and BIC = 838.4511 the Gamma model is selected better
alternative for modeling this data. For this dataset, we also compute the PB estimate and Bayes estimate for

Table 11. Partial Bayes and Bayes estimates for the Bladder cancer patient’s data.

Group Partial Bayes estimate (PB) Bayes estimate (BE)
when α = 1.178

Total 0.1101 0.1247
Group 1 0.1088 0.1366
Group 2 0.1156 0.1148

complete sample and consequently splitting this dataset into two groups. The results are tabulated in Table 11
when the size of the each group is n = 64. Here, we also try to understand the consistency of the PB estimate
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compared to the MLE and the Bayes estimate for the large as well as for small sample groups. It has been clearly
verified from Table 11 that the proposed PB estimate does not differ too much from the p̂MLE as well as Bayes
estimate of the scale parameter p. However, it may also be noticeable that the Partial Bayes estimate is directly
computed from the available sample whereas the Bayes estimate depends on the another parameter of the baseline
distribution.

8. Conclusion

In this article, a new variant of Bayes estimate is introduced and we call it as Partial Bayes (PB) estimate. The
main idea behind the PB estimation is that, in multi-parameter model when we do not have any knowledge about
the joint prior but we know it partially. This means that one of the parameter of the model is unknown, then that
unknown parameter is replaced by the estimated value obtained from any of the classical method (i.e. maximum
likelihood estimator, method of moments estimator etc). But it is clear that it is neither empirical nor hierarchical
method. Here, in the Gamma model, the parameter of interest is the scale parameter p only which is estimated
by using Partial Bayes approach by putting the MLE of the another parameter α involved in the Bayes estimate
of p. We compare the newly obtained PB estimate with the conventional Bayes estimate of the scale parameter in
terms of risks for different choices of the parameter values. It is seen that the risk values are smaller for the PB
estimator than the Bayes estimator for maximum combinations of the parameter choices. Also, it is observed that
for higher choice of parameter values risks are quite same for both the estimators but for small values of parameter
PB estimator performs very well.

In case of the shape parameter, Bayes estimation of α is performed through numerical evaluation with the help
of the posterior mean and the posterior variance. Also from Table 5, risks for the shape parameter becomes small.

To associate the theoretical concepts with the real life situation, we have considered two real data sets and
have demonstrated the performance of PB estimate along with the traditional Bayes estimate. From these, we
can proceed with the PB estimation method to estimate our parameter of interest in spite of the absence of prior
knowledge of the other parameter in a multi-parameter model. There are enough scopes for doing this type of
works for some other distributions also.
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