
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, June 2023, pp 685–693.
Published online in International Academic Press (www.IAPress.org)

A Note on a Strong Persistence of Stochastic Predator-Prey Model with
Jumps

Olga Borysenko 1, Oleksandr Borysenko 2,*

1 Department of Mathematical Physics, National Technical University of Ukraine, Kyiv, Ukraine
2Department of Probability Theory, Statistics and Actuarial Mathematics, Kyiv, Ukraine

Abstract We study the non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower term and
Holling-type II functional response driven by the system of stochastic differential equations with white noise, centered and
non-centered Poisson noises. The sufficient conditions of strong persistence in the mean of the solution to the considered
system are obtained.

Keywords Non-autonomous, Stochastic Predator-Prey Model, Strong Persistence in the Mean

AMS 2010 subject classifications. Primary: 92D25, 60H10 Secondary: 60H30

DOI:10.19139/soic-2310-5070-1089

1. Introduction

Predator-prey interaction is one of a basic mechanism for two species dynamics. Let us consider a two-species
food chain model describing a prey population x which serves as food for a predator population y. Let r1 be the
growth rate of prey, b1 measures the strength of competition among individuals of species x, ϕ(x) be the functional
response of the predator to the prey density refers to the change in the density of prey attaches per unit time per
predator as the prey density changes. Then the equation for prey population dynamics has a form

dx(t)

dt
= r1x(t)− b1x

2(t)− ϕ(x(t))y(t).

Various types of functional response are used. For example, ax
b+x (Holling-type II), ax2

b+x2 (Holling-type III) (see
[1]); ax

b+cx+x2 (Holling-type IV) (see [2]).
For the predator population dynamics in [3], [4] it is introduced and discussed a predator-prey model where the

carrying capacity of the predator’s environment is proportional to the number of prey. The dynamics of predator
population is described by the equation

dy(t)

dt
= r2y(t)

(
1− y(t)

αx(t)

)
,

where r2 is the growth rate of predator, α is the conversion factor of prey into predators. The term y/αx of this
equation is called the Leslie-Gower term. It measures the loss in the predator population due to rarity (per capita
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y/x) of its favorite food. In the case of severe scarcity, predator y can switch over to other populations but its grows
will be limited by the fact that its most favorite food x is not available in abundance. So in [5] the authors suggested
using a modified Leslie-Gower term in the form y/(αx+ d). The deterministic predator-prey model with modified
version of Leslie-Gower and Holling-type II functional response (see [5]) is driven by the system of differential
equations

dx(t) = x(t)

(
a− bx(t)− cy(t)

m1 + x(t)

)
dt,

dy(t) = y(t)

(
r − fy(t)

m2 + x(t)

)
dt,

(1)

where x(t) and y(t) are the prey and predator population densities at time t, respectively. Positive constants
a, b, c, r, f,m1,m2 defined as follows: a is the growth rate of prey x; b measures the strength of competition
among individuals of species x; c is the maximum value of the per capita reduction rate of x due to y; m1 and m2

measure the extent to which the environment provides protection to prey x and to the predator y, respectively; r is
the growth rate of predator y, and f has a similar meaning to c. In [5] the authors study boundedness and global
stability of the positive equilibrium of the model (1).

The system (1) may, for example, be considered as a representation of an insect pest – spider food chain and
other population systems in nature (see [5]).

In the papers [6], [7], [8] it is considered the stochastic version of model (1) in the following form

dx(t) = x(t)

(
a− bx(t)− cy(t)

m1 + x(t)

)
dt+ αx(t)dw1(t),

dy = y

(
r − fy

m2 + x

)
dt+ βy(t)dw2(t),

(2)

where w1(t) and w2(t) are mutually independent Wiener processes in [6], [7], and processes w1(t), w2(t) are
correlated in [8]. In [6] the authors proved that there is a unique positive solution to the system (2), obtained the
sufficient conditions for extinction and persistence in the mean of predator and prey. In [7] it is shown, that under
appropriate conditions there is a stationary distribution of the solution to the system (2) which is ergodic. In [8]
the authors prove that the densities of the distributions of the solution to the system (2) can converges in L1 to an
invariant density or can converge weakly to a singular measure under appropriate conditions.

Population systems may suffer abrupt environmental perturbations, such as epidemics, fires, earthquakes, etc.
So it is natural to introduce Poisson noises into the population model for describing such discontinuous systems.
It is worth noting that the impact of centered and non-centered Poisson noises to the stochastic non-autonomous
logistic model and to the stochastic two-species mutualism model is studied in the papers [9] – [12].

In the paper [13] the authors consider the non-autonomous stochastic predator-prey model with modified version
of Leslie-Gower and Holling-type II functional response, disturbed by white noise and jumps generated by centered
and non-centered Poisson measures. This model is driven by the system of stochastic differential equations

dxi(t) = xi(t)

[
ai(t)− bi(t)xi(t)−

ci(t)x2(t)

m(t) + x1(t)

]
dt+ σi(t)xi(t)dwi(t)

+

∫
R

γi(t, z)xi(t)ν̃1(dt, dz) +

∫
R

δi(t, z)xi(t)ν2(dt, dz), xi(0) = xi0 > 0, i = 1, 2.
(3)

where x1(t) and x2(t) are the prey and predator population densities at time t, respectively, b2(t) ≡ 0, wi(t), i = 1, 2
are independent standard one-dimensional Wiener processes, νi(t, A), i = 1, 2 are independent Poisson measures,
which are independent on wi(t), i = 1, 2, ν̃1(t, A) = ν1(t, A)− tΠ1(A), E[νi(t, A)] = tΠi(A), i = 1, 2, Πi(A), i =
1, 2 are a finite measures on the Borel sets A in R.

The authors proved that system (3) has a unique, positive, global (no explosion in a finite time) solution for
any positive initial value, and that this solution is stochastically ultimate bounded. The sufficient conditions for
stochastic permanence, non-persistence in the mean, weak persistence in the mean, and extinction of solution are
derived.
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In this paper, we derive the sufficient conditions for the strong persistence in the mean of predator and prey
population densities, driven by system (3).

In the following we will use the notations X(t) = (x1(t), x2(t)), X0 = (x10, x20), |X(t)| =
√

x2
1(t) + x2

2(t),
R2

+ = {X ∈ R2 : x1 > 0, x2 > 0},

βi(t) = σ2
i (t)/2 +

∫
R

[γi(t, z)− ln(1 + γi(t, z))]Π1(dz)−
∫
R

ln(1 + δi(t, z))]Π2(dz), i = 1, 2.

f̄(t) =
1

t

∫ t

0

f(s) ds, f∗ = lim inf
t→∞

f(t), f∗ = lim sup
t→∞

f(t).

For the bounded, continuous functions fi(t), t ∈ [0,+∞), i = 1, 2, let us denote

fi sup = sup
t≥0

fi(t), fi inf = inf
t≥0

fi(t), i = 1, 2.

2. Strong persistence

Let (Ω,F ,P) be a probability space, wi(t), i = 1, 2, t ≥ 0 are independent standard one-dimensional Wiener
processes on (Ω,F ,P), and νi(t, A), i = 1, 2 are independent Poisson measures defined on (Ω,F ,P) independent
on wi(t), i = 1, 2. Here E[νi(t, A)] = tΠi(A), i = 1, 2, ν̃i(t, A) = νi(t, A)− tΠi(A), i = 1, 2, Πi(·), i = 1, 2 are
finite measures on the Borel sets in R. On the probability space (Ω,F ,P) we consider an increasing, right
continuous family of complete sub-σ-algebras {Ft}t≥0, where Ft = σ{wi(s), νi(s,A), s ≤ t, i = 1, 2}.

We need the following assumption.

Assumption 1
It is assumed, that ai(t), b1(t), ci(t), σi(t), γi(t, z), δi(t, z), i = 1, 2, m(t) are bounded, continuous on t
functions, ai(t) > 0, i = 1, 2, b1 inf > 0, ci inf > 0, i = 1, 2, minf > 0, and ln(1 + γi(t, z)), ln(1 + δi(t, z)), i = 1, 2
are bounded, Πi(R) < ∞, i = 1, 2.

In what follows we will assume that Assumption 1 holds.

Definition 1
The population density x(t), t ≥ 0 is said to be strongly persistence in the mean if for every initial data x(0) > 0,
we have x̄∗ > 0 a.s.

Theorem 1
If p̄2∗ = lim inft→∞

1
t

∫ t

0
p2(s) ds > 0, where p2(t) = a2(t)− β2(t), then for every initial data x20 > 0 we have

x̄2∗ = lim inf
t→∞

1

t

∫ t

0

x2(s)ds ≥
minf

c2 sup
p̄2∗, a.s. (4)

Therefore predator population density x2(t) will be strongly persistence in the mean.

Proof. Under Assumption 1 there exists a unique global solution X(t) to the system (3) for any initial value
X(0) = X0 > 0, and P{X(t) ∈ R2

+} = 1 (Theorem 1, [13]). Applying the Itô’s formula to the process lnx2(t), we
obtain

lnx2(t) = lnx20 +

∫ t

0

[
a2(s)−

c2(s)x2(s)

m(s) + x1(s)
− β2(s)

]
ds+M2(t)

≥ lnx20 +

∫ t

0

p2(s) ds−
c2 sup

minf

∫ t

0

x2(s) ds+M2(t),

(5)

where the martingale

M2(t) =

t∫
0

σ2(s)dw2(s) +

t∫
0

∫
R

ln(1 + γ2(s, z))ν̃1(ds, dz) +

t∫
0

∫
R

ln(1 + δ2(s, z))ν̃2(ds, dz),
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has a quadratic characteristic (Meyer’s angle bracket process)

⟨M2,M2⟩(t) =
t∫

0

σ2
2(s)ds+

t∫
0

∫
R

ln2(1 + γ2(s, z))Π1(dz)ds+

t∫
0

∫
R

ln2(1 + δ2(s, z))Π2(dz)ds ≤ Kt,

for some constant K > 0. Then the strong law of large numbers for local martingales ([14]) yields
limt→∞ M2(t)/t = 0 a.s.

From definition of p̄2∗, strong law of large numbers for M2(t) it follows that ∀ε > 0, ∃t0 ≥ 0, ∃Ωε ⊂ Ω, such
that P(Ωε) ≥ 1− ε,

1

t

∫ t

0

p2(s) ds ≥ p̄2∗ −
ε

2
,

M2(t)

t
≥ −ε

2
, ∀t ≥ t0,∀ω ∈ Ωε.

So from (5) we have

lnx2(t) ≥ lnx20 + t(p̄2∗ − ε)− ĉ

∫ t

0

x2(s) ds ∀t ≥ t0,∀ω ∈ Ωε,

where ĉ =
c2 sup

minf
. Therefore for the process y2(t) =

∫ t

0
x2(s) ds we have inequality

ln

(
dy2(t)

dt

)
≥ (p̄2∗ − ε)t− ĉy2(t) + lnx20, ∀t ≥ t0,∀ω ∈ Ωε.

Hence
eĉy2(t)

dy2(t)

dt
≥ x20e

(p̄2∗−ε)t, ∀t ≥ t0,∀ω ∈ Ωε.

Integrating the last inequality from t0 to t and using obvious calculations, yields

1

t

∫ t

0

x2(s)ds ≥
1

ĉt
ln

[
eĉy2(t0) +

ĉx20

p̄2∗ − ε

(
e(p̄2∗−ε)t − e(p̄2∗−ε)t0

)]
∀t ≥ t0,∀ω ∈ Ωε.

So

x̄2∗ = lim inf
t→∞

1

t

∫ t

0

x2(s) ds ≥
p̄2∗ − ε

ĉ
=

minf

c2 sup
(p̄2∗ − ε), ∀ω ∈ Ωε.

Using the arbitrariness of ε > 0, we get (4).

Lemma 1
If p2 inf > 0, then

lim
t→∞

lnx2(t)

t
= 0, a.s.

Proof. The density of predator population x2(t) has the property (Lemma 2, [13]):

lim sup
t→∞

lnx2(t)

t
≤ 0, a.s.

So it suffices to show
lim inf
t→∞

lnx2(t)

t
≥ 0, a.s.

For the process U(t) = 1/x2(t) by the Itô’s formula we have

U(t) = U(0) +

t∫
0

U(s)

 c2(s)x2(s)

m(s) + x1(s)
− a2(s) + σ2

2(s) +

∫
R

γ2
2(s, z)

1 + γ2(s, z)
Π1(dz)

 ds

−
t∫

0

U(s)σ2(s)dw2(s)−
t∫

0

∫
R

U(s)
γ2(s, z)

1 + γ2(s, z)
ν̃1(ds, dz)−

t∫
0

∫
R

U(s)
δ2(s, z)

1 + δ2(s, z)
ν2(ds, dz).
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Then by the Itô formula we derive for 0 < θ < 1

(1 + U(t))θ = (1 + U(0))θ +

t∫
0

θ(1 + U(s))θ−2

(1 + U(s))U(s)

[
c2(s)x2(s)

m(s) + x1(s)
− a2(s)

+σ2
2(s)+

∫
R

γ2
2(s, z)

1 + γ2(s, z)
Π1(dz)

+
θ − 1

2
U2(s)σ2

2(s)

+
1

θ

∫
R

[
(1 + U(s))2

((
1 + U(s) + γ2(s, z)

(1 + γ2(s, z))(1 + U(s))

)θ

− 1

)
+ θ(1 + U(s))

U(s)γ2(s, z)

1 + γ2(s, z)

]
Π1(dz)

+
1

θ

∫
R

(1 + U(s))2

[(
1 + U(s) + δ2(s, z)

(1 + δ2(s, z))(1 + U(s))

)θ

− 1

]
Π2(dz)

 ds

−
t∫

0

θ(1 + U(s))θ−1U(s)σ2(s)dw2(s) +

t∫
0

∫
R

[(
1 +

U(s)

1 + γ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃1(ds, dz)

+

t∫
0

∫
R

[(
1 +

U(s)

1 + δ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃2(ds, dz)

= (1 + U(0))θ +

t∫
0

θ(1 + U(s))θ−2J(s)ds− I1,stoch(t) + I2,stoch(t) + I3,stoch(t), (6)

where Ij,stoch(t), j = 1, 3 are corresponding stochastic integrals in (6). Under the Assumption 1 there exists
constants |K1(θ)| < ∞, |K2(θ)| < ∞ such, that for the process J(t) we have the estimate

J(t) ≤ (1 + U(t))U(t)

−a2(t) +
c2 supU

−1(t)

minf
+ σ2

2(t) +

∫
R

γ2
2(s, z)

1 + γ2(s, z)
Π1(dz)

+
θ − 1

2
U2(s)σ2

2(s)

+
1

θ

∫
R

[
(1 + U(s))2

((
1

1 + γ2(s, z)
+

1

1 + U(s)

)θ

− 1

)
+ θ(1 + U(s))

U(s)γ2(s, z)

1 + γ2(s, z)

]
Π1(dz)

+
1

θ

∫
R

(1 + U(s))2

[(
1

1 + δ2(s, z)
+

1

1 + U(s)

)θ

− 1

]
Π2(dz)

≤ U2(t)

−a2(t) +
σ2
2(t)

2
+

∫
R

γ2(t, z)Π1(dz) +
θ

2
σ2
2(t) +

1

θ

∫
R

[(1 + γ2(t, z))
−θ − 1]Π1(dz)

+
1

θ

∫
R

[(1 + δ2(t, z))
−θ − 1]Π2(dz)

+K1(θ)U(t) +K2(θ) = −K0(t, θ)U
2(t) +K1(θ)U(t) +K2(θ).

Here we used the inequality (x+ y)θ ≤ xθ + θxθ−1y, 0 < θ < 1, x, y > 0. Due to

lim
θ→0+

θ
2
σ2
2(t) +

1

θ

∫
R

[
(1 + γ2(t, z))

−θ − 1
]
Π1(dz) +

1

θ

∫
R

[
(1 + δ2(t, z))

−θ − 1
]
Π2(dz)

+

∫
R

ln(1 + γ2(t, z))Π1(dz) +

∫
R

ln(1 + δ2(t, z))Π2(dz)

 = lim
θ→0+

∆(θ) = 0,
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and condition p2 inf > 0 we can choose a sufficiently small 0 < θ < 1 to satisfy

K0(θ) = inf
t≥0

K0(t, θ) = inf
t≥0

[p2(t)−∆(θ)] = p2 inf −∆(θ) > 0.

So from (6) and the estimate for J(t) we derive

d
[
(1 + U(t))θ

]
≤ θ(1 + U(t))θ−2[−K0(θ)U

2(t) +K1(θ)U(t) +K2(θ)]dt

− θ(1 + U(t))θ−1U(t)σ2(t)dw2(t) +

∫
R

[(
1 +

U(t)

1 + γ2(t, z)

)θ

− (1 + U(t))θ

]
ν̃1(dt, dz)

+

∫
R

[(
1 +

U(t)

1 + δ2(t, z)

)θ

− (1 + U(t))θ

]
ν̃2(dt, dz). (7)

It is easy to see that
θ(1 + U(t))θ−2[−K0(θ)U

2(t) +K1(θ)U(t) +K2(θ)] ≤ K

on U(t) > 0 for some constant K > 0. So from (7) we observed that

E

[
sup

t≤r≤t+1
(1 + U(r))θ

]
≤ E

[
(1 + U(t))θ

]
+K + E

[
sup

t≤r≤t+1

∣∣∣∣∫ r

t

θ(1 + U(s))θ−1U(s)σ2(s)dw2(s)

∣∣∣∣]
+E

 sup
t≤r≤t+1

∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + γ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃1(ds, dz)

∣∣∣∣∣∣


+E

 sup
t≤r≤t+1

∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + δ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃2(ds, dz)

∣∣∣∣∣∣
 (8)

By the inequalities for the moments of local square integrable martingales ([15]) and the Hölder inequality we
have

E

[
sup

t≤r≤t+1

∣∣∣∣∫ r

t

θ(1 + U(s))θ−1U(s)σ2(s)dw2(s)

∣∣∣∣] ≤ 3

(
E

[∫ t+1

t

θ2(1 + U(s))2(θ−1)U2(s)σ2
2(s) ds

])1/2

≤ K1

(∫ t+1

t

E
[
(1 + U(s))2θ

]
ds

)1/2

,

E

 sup
t≤r≤t+1

∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + γ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃1(ds, dz)

∣∣∣∣∣∣


≤ 3E


∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + γ2(s, z)

)θ

− (1 + U(s))θ

]2
Π1(dz)ds

∣∣∣∣∣∣
1/2
 ≤ K2

(∫ t+1

t

E
[
(1 + U(s))2θ

]
ds

)1/2

,

E

 sup
t≤r≤t+1

∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + δ2(s, z)

)θ

− (1 + U(s))θ

]
ν̃2(ds, dz)

∣∣∣∣∣∣


≤ 3E


∣∣∣∣∣∣
∫ r

t

∫
R

[(
1 +

U(s)

1 + δ2(s, z)

)θ

− (1 + U(s))θ

]2
Π2(dz)ds

∣∣∣∣∣∣
1/2
 ≤ K3

(∫ t+1

t

E
[
(1 + U(s))2θ

]
ds

)1/2

,
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for some constants Ki > 0, i = 1, 3 due to the Assumption 1. Substituting this into (8) gives

E

[
sup

t≤r≤t+1
(1 + U(r))θ

]
≤ E

[
(1 + U(t))θ

]
+K +Kmax

(∫ t+1

t

E
[
(1 + U(s))2θ

]
ds

)1/2

, (9)

where Kmax = max{Ki, i = 1, 3}. If p2 inf > 0, then for any initial value x20 > 0, the predator population density
x2(t) has the property that

lim sup
t→∞

E

[(
1

x2(t)

)q]
≤ lim sup

t→∞
E [(1 + U(t))

q
] ≤ K(q), (10)

for arbitrary sufficiently small 0 < q < 1 (Lemma 4, [13]). Letting t → +∞ in (9) and using (10) we obtain that

lim sup
t→∞

E

[
sup

t≤r≤t+1
(1 + U(r))θ

]
≤ K̄(θ),

for some K̄(θ) > 0 and for all sufficiently small 0 < θ < 1. Therefore

lim sup
t→∞

E

[
sup

t≤r≤t+1

1

xθ
2(r)

]
≤ lim sup

t→∞
E

[
sup

t≤r≤t+1
(1 + U(r))θ

]
≤ K̄(θ).

So there is a k0 ∈ N such that ∀k ≥ k0 by the well-known Chebyshev inequality, we have

P

{
sup

k≤t≤k+1

1

xθ
2(t)

> k1+ε

}
≤ K̄(θ)

k1+ε
, ∀ε > 0.

Applying the Borel-Cantelli lemma, we obtain that for almost all ω ∈ Ω

sup
k≤t≤k+1

1

xθ
2(t)

≤ k1+ε, ∀k ≥ k0.

Hence
lnx2(t)

ln t
≥ −1 + ε

θ
, ∀k ≥ k0, k ≤ t ≤ k + 1, ∀ε > 0 a.s.

Using the arbitrariness of ε > 0, we get

lim inf
t→∞

lnx2(t)

ln t
≥ −1

θ
a.s.

for sufficiently small 0 < θ < 1. Therefore lim inft→∞
ln x2(t)

t ≥ 0, a.s. and we complete the proof.

Theorem 2
Let us denote

p̄1∗ = lim inf
t→∞

1

t

∫ t

0

p1(s) ds, p̄
∗
2 = lim sup

t→∞

1

t

∫ t

0

p2(s) ds, pi(t) = ai(t)− βi(t), i = 1, 2.

If p̄1∗ >
c1 sup

c2 inf
p̄∗2 and p2 inf > 0, then

x̄1∗ = lim inf
t→∞

1

t

∫ t

0

x1(s) ds ≥
1

b1 sup

(
p̄1∗ −

c1 sup

c2 inf
p̄∗2

)
a.s. (11)

Hence the prey population density x1(t) will be strongly persistence in the mean.
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Proof. By Itô formula we obtain

lnxi(t) = lnxi0 +

∫ t

0

pi(s) ds−
∫ t

0

bi(s)xi(s) ds−
∫ t

0

ci(s)x2(s)

m(s) + x1(s)
ds+Mi(t), i = 1, 2 (12)

where the martingale

Mi(t) =

t∫
0

σi(s)dwi(s) +

t∫
0

∫
R

ln(1 + γi(s, z))ν̃1(ds, dz) +

t∫
0

∫
R

ln(1 + δi(s, z))ν̃2(ds, dz), i = 1, 2

has a quadratic characteristic (Meyer’s angle bracket process)

⟨Mi,Mi⟩(t) =
t∫

0

σ2
i (s)ds+

t∫
0

∫
R

ln2(1 + γi(s, z))Π1(dz)ds+

t∫
0

∫
R

ln2(1 + δi(s, z))Π2(dz)ds ≤ Kt, i = 1, 2

for some constant K > 0. Then the strong law of large numbers for local martingales ([14]) yields
limt→∞ Mi(t)/t = 0, i = 1, 2 a.s.

From (12) we have

lnx1(t) ≥ lnx10 +

∫ t

0

p1(s) ds− b1 sup

∫ t

0

x1(s) ds− c1 sup

∫ t

0

x2(s)

m(s) + x1(s)
ds+M1(t) (13)

and
c2 inf

t

∫ t

0

x2(s)

m(s) + x1(s)
ds ≤ − lnx2(t)− lnx20

t
+

1

t

∫ t

0

p2(s) ds+
M2(t)

t
. (14)

From definition of p̄∗2 and p̄1∗, strong law of large numbers for Mi(t), i = 1, 2 and Lemma 1 it follows that ∀ε > 0,
∃t0 ≥ 0, ∃Ωε ⊂ Ω, such that P(Ωε) ≥ 1− ε,

1

t

∫ t

0

p2(s) ds ≤ p̄∗2 +
εc2 inf

6c1 sup
,
M2(t)

t
≤ εc2 inf

6c1 sup
, − lnx2(t)− lnx20

t
≤ εc2 inf

6c1 sup

1

t

∫ t

0

p1(s) ds ≥ p̄1∗ −
ε

4
,
M1(t)

t
≥ −ε

4
∀t ≥ t0,∀ω ∈ Ωε.

Therefore from (13), using (14), we obtain

lnx1(t) ≥ lnx10 +

(
p̄1∗ −

c1 sup

c2 inf
p̄∗2 − ε

)
t− b1 sup

∫ t

0

x1(s) ds, ∀t ≥ t0,∀ω ∈ Ωε.

Using arguments similar to those in the proof of the Theorem 1 we derive

lim inf
t→∞

1

t

∫ t

0

x1(s) ds ≥
1

b1 sup

(
p̄1∗ −

c1 sup

c2 inf
p̄∗2 − ε

)
, ∀ω ∈ Ωε.

Using the arbitrariness of ε > 0, we get (11).

3. Conclusion

In this paper we derive the sufficient conditions for the strong persistence in the mean of predator and prey
populations in the predator-prey model with a modified version of Leslie-Gower term and Holling-type II
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functional response driven by the system of stochastic differential equations with white noise, centered and non-
centered Poisson noises. In [13] it is obtained sufficient conditions for the weak persistence in the mean for
predator and prey populations in the considered predator-prey model. Under the weak persistence in the mean
lim inft→∞ x̄i(t) = 0, i = 1, 2 is allowed but is not allowed under the strong persistence in the mean, which means
that the survival in Theorem 1 and in Theorem 2 is stronger than in [13] (Theorem 8 and Theorem 9).
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