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Abstract In this paper, we proposed a quantile version of cumulative Rényi entropy for residual and past lifetimes and
study their properties. We also study quantile-based cumulative Rényi entropy for extreme order statistic when random
variable untruncated or truncated in nature. Some characterization results are studied using the relationship between proposed
information measure and reliability measure. We also examine it in relation to some applied problems such as weighted and
equilibrium models.
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1. Introduction

LetX be a random variable with distribution function F (x) and quantile functionQ(u). Then, the quantile function
of X is defined by

Q(u) = F−1(u) = inf{x | F (x) ≥ u}, 0 ≤ u ≤ 1. (1)

Here and throughout the article, X is absolutely continuous nonnegative random variable with probability density
function (pdf) f(x) and survival function F̄ (x). If f(.) is the pdf ofX , then f(Q(u)) and q(u) = dQ(u)

du respectively
known as the density quantile function and the quantile density function (see Parzen (1979)). Using (1.1), we have
F (Q(u)) = u and differentiating it with respect to u obtain

q(u)fQ(u) = 1. (2)

The mean of the distribution assumed to be finite, is

E(X) =

∫ 1

0

Q(p)dp =

∫ 1

0

(1− p)q(p)dp. (3)

In certain cases the approach based on quantile functions is more fruitful than the use of cumulative distribution
functions, since quantile functions are less influenced by extreme statistical observations. Also, there are certain
properties of quantile functions that are not shared by the distribution function approach. The quantile functions
used in applied works such as various forms of lambda distributions (van Standen and Loots, 2009), the
power-Pareto distribution (Hankin and Lee, 2006), Govindarajulu’s distribution do not have tractable distribution
functions. For a detailed and recent study on quantile function and its properties in modeling and analysis we refer
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to Gilchrist (2000), Nair et al. (2013), Sreelakshmi et al. (2018) and Sharma and Chakrabarty (2017).
An important quantile measure useful in reliability analysis is the hazard quantile function, defined as

K(u) = h(Q(u)) =
fQ(u)

(1− u)
=

1

(1− u)q(u)
, (4)

where h(x) = f(x)
1−F (x) is the hazard rate of X . Another useful measure closely related to hazard quantile function

is the mean residual quantile function, as given by

M(u) = m(Q(u)) = (1− u)−1

∫ 1

u

(1− p)q(p)dp , (5)

where m(t) = E(X − t|X > t) is the mean residual life function (MRLF) of X . It is well known that both hazard
quantile function and mean residual quantile function uniquely determine the quantile density function q(u).
Further the relationship between the quantile density function and mean residual quantile function is given by

q(u) =
M(u)− (1− u)M ′(u)

(1− u)
. (6)

The idea of the information theoretic entropy was introduced by Shannon ( 1948) which plays an important role in
diverse areas such as financial analysis, data compression, molecular biology, computer science and information
theory. The average amount of uncertainty associated with the nonnegative continuous random variable X can be
measured using the differential entropy function

H(X) = −
∫ ∞

0

f(x) log f(x)dx , (7)

a continuous counterpart of the Shannon (1948) entropy in the discrete case.
Rao et al. (2004) pointed out some basic shortcomings of the Shannon differential entropy measure. Rao et al.
(2004) introduced an alternative measure of uncertainty called the cumulative residual entropy (CRE) of a random
variable X with survival function F̄ , given by

ξ(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx .

Asadi and Zohrevand (2007) have considered the dynamic cumulative residual entropy (DCRE) as the cumulative
residual entropy of the residual lifetime Xt = [X − t|X > t]. This is given by

ξ(X, t) = −
∫ ∞
t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx. (8)

Di Crescenzo and Longobardi (2009) introduced a dual measure based on the cumulative distribution function
F (x), called the cumulative past entropy (CPE) and its dynamic version as

ξ̄(X) = −
∫ ∞

0

F (x) logF (x)dx, (9)

ξ̄(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx . (10)

All the theoretical investigations and applications using these information measures are based on the distribution
function. Since a probability distribution can be specified either in terms of distribution function or by the quantile
function. Although both convey the same information about the distribution, with different interpretations, the
concepts and methodologies based on distribution functions are traditionally employed in most forms of statistical
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theory and practice. The study of entropy functions using quantile functions is of recent interest. Sankaran and
Sunoj (2017) have introduced the quantile version of the dynamic cumulative residual entropy (DCRE), which is
defined by

ξ(u) = ξ(X;Q(u)) =
log(1− u)

(1− u)

∫ 1

u

(1− p)q(p)dp− (1− u)−1

∫ 1

u

log(1− p)(1− p)q(p)dp. (11)

When u −→ 0, (11) reduces to ξ = −
∫ 1

0
(log(1− p))(1− p)q(p)dp, a quantile version of CRE. New models and

characterizations that are unresolvable in the distribution function approach can be resolved with the help of
quantile functions. Quantile functions can be properly employed to formulate properties of entropy function and
other information measures for nonnegative absolutely continuous random variables refer to, Sunoj and Sankaran
(2012), Sunoj et al. (2013) and Noughabi et al. (2020).
There have been attempts by several authors for the parametric generalization of CRE. Zografos and Nadarajah
(2005) introduced the cumulative residual Rényi entropy (CRRE) of order α as

ξα(X) =
1

(1− α)
log

(∫ ∞
0

F̄α(x)dx

)
, α > 0, α 6= 1 . (12)

Further, Sunoj and Linu (2012) proposed a dynamic version of it as

ξα(X; t) =
1

(1− α)
log

(∫∞
t
F̄α(x)dx

F̄α(t)

)
. (13)

This define as the dynamic cumulative residual Rényi entropy (DCRRE) of the random variable
Xt = [X − t|X > t]. For more properties and applications of this measure, we refer to Kayal (2015) and
Minimol (2017).

This measure is much more flexible due to the parameter α enabling several measurements of uncertainty
within a given distribution and increase the scope of application. Also this forms a parametric family of entropy
measures that give weights to extremely rare and regular events completely different. Some properties and
applications of these information theoretic measure in reliability engineering, computer vision, coding Theory and
finance have been also studied by several researcher, refer to Rao (2005), Wang and Vemuri (2007) Navarro et al.
(2010), Sheraz et al. (2015), Kumar and Singh (2018) and Baratpour and Khammar (2018).
Motivated by these, in the present study we consider survival and distribution function based cumulative residual
Rényi entropy (CRRE) (residual and past) entropy measures of order α in terms of quantile functions. The present
manuscript we introduce the quantile version of GCRE of order α for residual and reversed residual (past) lifetime
and proved some characterization results of these for extreme order statistics.
The text is organized as follows. In Section 2, we introduce the quantile-based cumulative residual Rényi entropy
and its dynamic version. Section 3 proves some characterization results based on the measure considered in
Section 2. In Section 4, we extend the quantile-based cumulative residual Rényi entropy in the context of order
statistics and study its properties. In Section 5, we derive the weighted form of this measure and call it weighted
cumulative residual Rényi quantile entropy and study some characterization results.

2. Cumulative residual Rényi quantile entropy

The quantile version of cumulative residual Rényi entropy of the nonnegative random variable X corresponding to
(12) becomes

ξ̆α =
1

(1− α)
log

(∫ 1

0

(1− p)αq(p)dp
)

, (14)

and called it cumulative residual Rényi quantile entropy (CRRQE). When α→ 1, ξ̆α reduces to −
∫ 1

0
(log(1−

p))(1− p)q(p)dp, a quantile version of CRE, sugggested by Sankaran and Sunoj (2017). Equation (14) can be
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written as

ξ̆α =
1

(1− α)
log

(∫ 1

0

(1− p)α−1

K(p)
dp

)
. (15)

Equation (15) is the expressions of ξ̆α in terms of the hazard quantile function K(u) respectively. There are some
models that do not have any closed form expressions for cdf or pdf, but have simple quantile function or quantile
density functions (see Nair et al. (2011)). Accordingly in the following example, we obtain ξ̆α for which q(.) exists.

Example 1
Suppose X is distributed with quantile density function given by, q(u) = (1− u)−A (− log(1− u))

−M ; 0 < u < 1
where M and A are real constants. Further, it contains several distributions which includes Weibull when A = 1, M
= b−1

b , uniform when A = 0, M = 0, Pareto when A > 1, M = 0, and rescaled beta when A < 1, M = 0. Then the
CRRQE is obtained as

ξ̆α =
1

(1− α)
{log γ(1−M)− (1−M) log(1 + α−A)} ,

where γ(.) represents the gamma function.

Example 2
A lambda family of distribution that is of interest in reliability is the Davis distribution proposed by Hankin and
Lee (2006) with quantile function

Q(u) = Cuλ1(1− u)−λ2 ; 0 < u < 1, C, λ1, λ2 ≥ 0.

This is a flexible family for right skewed nonnegative data that provides good approximations to the exponential,
gamma, lognormal and weibull distributions. The CRRQE (14), for Davis distribution is given as

ξ̆α =
1

(1− α)
log {Cλ1β(λ1, α− λ2 + 1) + Cλ2β(λ1 + 1, α− λ2)} . (16)

As λ2 −→ 0, (16) reduces to ξ̆α = 1
(1−α) log (Cλ1β(λ1, 1 + α)) , corresponding to the Power distribution. Also as

λ1 −→ 0, (16) reduces to ξ̆α = 1
(1−α) log

(
Cλ2

α−λ2

)
, corresponding to the Pareto I distribution.

Example 3
A nonnegative random variable X is Weibull distributed with quantile function and the quantile density function

given by Q(u) =
{−1
a log(1− u)

} 1
b , q(u) =

{− 1
a log(1−u)}

1
b
−1

ab(1−u) ; 0 < u < 1. Also, the mean of the distribution is

E(X) =
∫ 1

0
Q(p)dp =

∫ 1

0
(1− p)q(p)dp, assumed to be finite then the CRRQE (14) gives

ξ̆α =
1

(1− α)
log

∫ 1

0

(1− p)α
(
− 1
a log(1− p)

)( 1
b−1)

ab(1− p)
dp


=

1

1− α
log

(
( 1
a )

1
b−1γ( 1

b )

ab(α)
1
b

)
,

and the mean of the distribution is E(X) =

(
( 1
a )

1
b
−1γ( 1

b )

ab

)
.Thus, we have e(1−α)ξ̆α

E(X) = α
−1
b . This result shows that

for Weibull family, this ratio is constant. If b = 1 , then X has exponential distribution and this ratio is equal to 1
α .

Example 4
When X is distributed with quantile density function given by q(u) = Kuδ(1− u)−(A+δ) ; 0 < u < 1 where
K, δ, and A are real constants. It contains several well known distributions which include the exponential (δ =
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0;A = 1), Pareto (δ = 0;A < 1), rescalded beta (δ = 0;A > 1), the log logestic distribution (δ = λ− 1;A = 2)
and Govindarajulu’s distribution (δ = b− 1;A = −b,K = ab(b+ 1)). Then the cumulative residual Rényi quantile
entropy (14) is obtained as

ξ̆α =
1

(1− α)
{logK + log β(1 + δ, 1 + α−A− δ)} .

In the context of reliability and survival analysis, when the current age of a component need to be taken into
account. In such cases, measuring uncertainty using ξ̆α is not appropriate and a modified version of ξ̆α is essential
for such residual random variable, Xt = (X − t|X > t). In this case, dynamic measure is useful to describe the
information carried by the random lifetime when age changes. An equivalent definition for the dynamic cumulative
residual Rényi entropy (13) in terms of quantile function is given by

ξ̆α(u) = ξ̆α(X;Q(u)) =
1

(1− α)
log

(
1

(1− u)α

∫ 1

u

(1− p)αq(p)dp
)
. (17)

The measure (17) may be considered as the dynamic cumulative residual Rényi quantile entropy (DCRRQE)
measure. Rewriting equation (17) and using (6), we come to

e(1−α)ξ̆α(u) =
1

(1− u)α

∫ 1

u

(1− p)α−1M(p)dp− 1

(1− u)α

∫ 1

u

(1− p)αM ′(p)dp.

Applying integration by parts on the last term and simplifying, we obtain

(1− u)αe(1−α)ξ̆α(u) −M(u)(1− u)α = (1− α)

∫ 1

u

(1− p)α−1M(p)dp. (18)

Differentiating (18) with respect to u both sides, and using (4), (18) reduces to

q(u) =
( α

1− u
− (1− α)ξ̆′

α
(u)
)
e(1−α)ξ̆α(u), (19)

where prime denote the derivative with respect to u. Equation (19) provides a direct relationship between quantile
density function q(u) and ξ̆α(u). Therefore ξ̆α(u) uniquely determines the underlying distribution. Table 2.1
provides quantile functions of some important models and corresponding entropies.

where γ̄x(a, b) and β̄x(a, b) known as the incomplete gamma function and incomplete beta function defined as
γ̄x(a, b) =

∫∞
x
ya−1e−bydy, a, b > 0, x > 0 and β̄x(a, b) =

∫ 1

x
ya−1(1− y)b−1dx, a, b > 0, x > 0 respectively.

The next theorem gives necessary and sufficient conditions for ξ̆α(u) to be an increasing (decreasing) function of
u.

Theorem 1
Let X be a nonnegative absolutely continuous random variable having survival function F (x), then ξ̆α(u) is
increasing (decreasing), if and only if for all u ∈ (0, 1)

ξ̆α(u) ≥ (≤)
− logK(u)− logα

1− α
.

Proof
Differentiating (17) both sides with respect to u, we obtain

(1− α)(1− u)ξ̆′
α

(u) = α− q(u)(1− u)

e(1−α)ξ̆α(u)
. (20)

Using (4), we have

(1− α)(1− u)ξ̆′
α

(u) = α− 1

K(u)e(1−α)ξ̆α(u)
.

Since ξ̆α(u) is increasing (decreasing), that is, ξ̆′
α

(u) ≥ (≤) 0 and for all u ∈ (0, 1). Hence above expression
becomes − logK(u)−logα

1−α ≥ (≤) 0. This conclude the proof.
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Table 2.1 Mean residual quantile function M(u) and DCRRQE ξ̆α(u) for various lifetime distributions

Distribution Quantile function Q(u) M(u) ξ̆α(u)

Uniform a+ (b− a)u (b−a)(1−u)
2

1
1−α log

(
(b−a)(1−u)

α+1

)
Exponential −λ−1 log(1− u) 1

λ
1

1−α log
(

1
αλ

)
Gompertz 1

log c (1−
log c log(1−u)

B ) 1
B

1
1−α log

(
1
Bα

)
Pareto I b(1− u)−

1
a

b(1−u)−
1
a

a−1
1

1−α log

(
b(1−u)−

1
a

aα−1

)
Generalized Pareto b

a

(
(1− u)−

a
a+1 − 1

)
b(1− u)−

a
a+1 1

1−α log

(
b(1−u)

− a
a+1

αa+α−a

)
Finite Range b(1− (1− u)

1
a ) b(1−u)

1
a

a+1
1

1−α log

(
b(1−u)

1
a

aα+1

)
Log logestic 1

a

(
u

1−u
) 1
b β̄u( 1

b ,1−
1
b )

ab(1−u)
1

1−α log
(
β̄u( 1

b ,α−
1
b )

ab(1−u)α

)
Power au

1
b

aβ̄u( 1
b ,2)

b(1−u)
1

1−α log
(
aβ̄( 1

b ,α+1)

b(1−u)α

)
Govindarajulu’s a{(b+ 1)ub − bub+1} ab(b+1)

(1−u) β̄u(b, 3) 1
1−α log

(
ab(b+1)β̄u(b,α+2)

(1−u)α

)
Tukey lambda uλ−(1−u)λ

λ
β̄u(λ,2)
(1−u) + (1−u)λ

λ+1
1

1−α log
(
β̄u(λ,α+1)

(1−u)α + (1−u)λ

α+λ

)
In many realistic situations, the random variable is not necessarily related to future only, but they can also refer to
the past. Suppose at time t, one has undergone a medical test to check for a certain disease. Let us assume that the
test is positive. If we denote by X the age when the patient was infected, then it is known that X < t. Now the
question is, how much time has elapsed since the patient had been infected by this disease. In this situation, the
random variable tX = [t−X|X ≤ t], which is known as inactivity time is suitable to describe the time elapsed
between the failure of a system and the time when it is found to be ’down’.
The past lifetime random variable tX is related with two relevant ageing functions, the reversed hazard rate defined
by µF (x) = f(x)

F (x) , and mean inactivity time defined by m(t) = E(t−X|X < t) = 1
F (t)

∫ t
0
F (x)dx. The quantile

versions of reversed hazard rate function and mean inactivity time are given as

K̄(u) = K̄(Q(u)) = u−1f(Q(u)) = [uq(u)]−1, (21)

and

M̄(u) = m(Q(u)) = u−1

∫ u

0

[Q(u)−Q(p)]dp =
1

u

∫ u

0

pq(p)dp, (22)

respectively. The relationship (6) for inactivity time becomes

q(u) =
M̄(u) + uM̄(u)

u
, (23)

refer to Nair and Sankaran (2009). Analogous to cumulative residual Rényi entropy (CRRE) of order α (12),
Abbasnejad (2011) proposed a cumulative entropy measure to the failure entropy and its dynamic version, which
are given as

ξ̄α(X) =
1

(1− α)
log

(∫ ∞
0

Fα(x)dx

)
, (24)

and

ξ̄α(X; t) =
1

(1− α)
log

(∫ t

0

Fα(x)dx

Fα(t)

)
, t ≥ 0 (25)
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respectively. When α −→ 1, (25) and (24) reduces to cumulative entropy (9) and past cumulative entropy (10)
respectively.
Sankaran and Sunoj (2017) have considered the quantile version of cumulative past entropy as

ξ̄(X;Q(u)) =
log u

u

∫ u

0

pq(p)dp− u−1

∫ u

0

p(log p)q(p)dp. (26)

In analogy to (12), we propose a cumulative past Rényi quantile entropy (CPRQE) that computes the uncertainty
related to past. It is defined as

˘̄ξα(u) = ˘̄ξα(X;Q(u)) =
1

(1− α)
log

(
1

uα

∫ u

0

pαq(p)dp

)
. (27)

When u −→ 1, (27) reduces to ξ̄α = 1
(1−α) log

(∫ 1

0
pαq(p)dp

)
, a quantile version of cumulative Rényi entropy.

Equation (27) can be written as, using (23)

˘̄ξα(u) =
1

(1− α)
log

(
1

uα

∫ u

0

pα−1M̄(p)dp+
1

uα

∫ u

0

pαM̄ ′(p)dp

)
.

Applying integration by parts on the last term and simplify, we obtain

uαe(1−α) ˘̄ξα(u) − M̄(u)uα = (1− α)

∫ u

0

pα−1M̄(p)dp. (28)

Differentiating (28) with respect to u both sides, and using (21) , (28) reduces to

q(u) =
{α
u

+ (1− α)
˘̄′
ξα(u)

}
e(1−α) ˘̄ξα(u), (29)

where prime denote the derivative with respect to u. Equation (29) provides a direct relationship between quantile
density function q(u) and ˘̄ξα(u). Therefore ˘̄ξα(u) uniquely determines the underlying distribution.

Example 5
IfX be a random variable having the Tukey lambda distribution with the quantile functionQ(u) = uλ−(1−u)λ

λ , 0 ≤
u ≤ 1; define for all nonzero lambda values. Then cumulative past ´Renyi quantile entropy, for Tukey lambda
distribution is given as

˘̄ξα(u) =
1

(1− α)
log

[
1

uα

∫ u

0

pα{pλ−1 + (1− p)λ−1}dp
]
,

which gives
˘̄ξα(u) =

1

(1− α)
log

(
uλ

α+ λ
+
βu(α+ 1, λ)

uα

)
, (30)

where βu(a, b) are known as the incomplete beta function defined as βu(a, b) =
∫ u

0
xa−1(1− x)b−1dx, a, b >

0, u > 0 respectively.

Example 6
When X is distributed with quantile density function given by; q(u) = Kuδ(1− u)−(A+δ), where K, δ, and
A are real constants. It contains several distribution which include the exponential when δ = 0, A = 1 , Pareto
when δ = 0, A < 1, rescaled beta when δ = 0, A > 1, log logestic distribution when δ = b− 1, A = 2 and the life
distribution proposed by Govindarajulu (1977) when δ = b− 1, A = −b, then

˘̄ξα(u) =
1

1− α
log

(
Kβu(1 + α+ δ, 1−A− δ)

uα

)
,

where βu(a, b) are known as the incomplete beta function.
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3. Characterization Results

By considering a relationship between the dynamic cumulative residual Rényi quantile entropy ξ̆α(u) and the
hazard quantile function K(u). We characterize some lifetime distributions based on the quanlile entropy measure
(17). We give the following theorem.

Theorem 2
Let X be a random varible with hazard quantile function K(u) for all u ∈ (0, 1). The relationship

ξ̆α(u) =
1

(1− α)
log c− 1

(1− α)
logK(u), (31)

where c is constant, holds if and only if X follow generalized Pareto distribution with quantile function Q(u) =
b
a

[
(1− u)−

a
a+1 − 1

]
; b > 0, a > −1.

Proof

The hazard quantile function of generalized Pareto distribution is K(u) = (a+1)(1−u)
a
a+1

b . Taking c =
(

a+1
α(a+1)−a

)
gives the if part of the theorem. To prove the only if part, consider (31) to be valid. Then∫ 1

u

(1− p)αq(p)dp =
c(1− u)α

K(u)
.

Using (4), we have ∫ 1

u

(1− p)αq(p)dp = c(1− u)1+αq(u).

Differentiating both side with respect to u and after some algebraic simplification, we have

q′(u)

q(u)
=

(
c(α+ 1)− 1

c

)
1

(1− u)
.

This gives
q(u) = A(1− u)

1
c−(α+1),

where A is the constant. Substituting the value of c, this gives

q(u) = A(1− u)−
2a
a+1 ,

which characterizes the generalized Pareto distribution. Hence proved.

Next we extend the result to more general case where c is a function of u.

Theorem 3
Let X be a nonnegative absolutely continuous random variable with hazard quantile function K(u) and the
DCRRQE ξ̆α(u) is

ξ̆α(u) =
1

(1− α)
log c(u)− 1

(1− α)
logK(u), u > 0, (32)

then

q(u) = exp

( ∫ u
0

−du
(1−u)c(u)

(1− u)α+1c(u)

)
. (33)

Proof
Let (32) be valid. Then

1

1− α
log

{
1

(1− u)α

∫ 1

u

(1− p)αq(p)dp
}

=
1

1− α
log

(
c(u)

K(u)

)
.
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Substituting the value of K(u) from (4), we have∫ 1

u

(1− p)αq(p)dp = c(u)q(u)(1− u)α+1.

Differentiating both side with respect to u and after some algebraic simplifying, we have

q′(u)

q(u)
=

(α+ 1)

(1− u)
− 1

(1− u)c(u)
− c′(u)

c(u)
,

where prime denotes derivative with respect to u. Integrating with respect to u both side between 0 to u in the
above expression and simplifying, we obtain

log
(
c(u)(1− u)α+1q(u)

)
= −

∫ u

0

1

(1− u)c(u)
.

In particular, if c(u) = au+ b and a, b ≥ 0 then above gives

q(u) =
1

(1− u)α+1(au+ b)

(
au+ b

b(1− u)

) −1
a+b

. (34)

Further we note that expression (34) for a = 0, gives the characterization result given by Theorem (31).

The following theorem gives another characterization of generalized Pareto distribution using the relationship
between ξ̆α(u) and mean residual quantile function M(u), the proof of which follow on the same line as given by
Theorem (3), hence omitted.

Theorem 4
Let X be a random varible with mean residual quantile function M(u) for all u ∈ (0, 1). The relationship

ξ̆α(u) =
1

(1− α)
log c+

1

(1− α)
logM(u), (35)

where c is constant, holds if and only if X follow generalized Pareto distribution with quantile function Q(u) =
b
a

[
(1− u)−

a
a+1 − 1

]
.

Theorem 5
For a nonnegative random variable X , the relationship

(1− α)ξ̆′
α

(u) =
−C

1− u
, (36)

where C is constant, holds for all u ∈ (0, 1) if and only if X follows
(i) uniform distribution for C = 1
(ii) exponential distribution for C = 0
(iii) Pareto I distribution for C = −1

a

Proof
The necessity part follows from Table (14). For sufficiency part, let us assume that the relationship (36) holds.
From equation (17) and (20), we have

− (1− u)αq(u)∫ 1

u
(1− p)αq(p)dp

+
α

1− u
= − C

1− u
.
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After some algebraic simplification, we obtain

q(u)(1− u)α+1 = (α+ C)

∫ 1

u

(1− p)αq(p)dp.

Differentiating both side with respect to u and after simplification, we get

− q(u)(1− u)α(α+ 1) + (1− u)α+1q′(u) = −(α+ C)(1− u)αq(u),

or equivalently
q′(u)

q(u)
=

1− C
1− u

.

This gives
q(u) = (1− u)C−1eK ,

where K is the constant of integration. Now, if C = 1 and K = log(b− a); b > a, which implies that Q(u) =
a+ (b− a)u. Thus, we have the uniform distribution. If C = 0 andK = − log λ;λ ≥ 0, which implies thatQ(u) =
−λ−1 log(1− u). Thus, we have the exponential distribution with parameter λ. If, C = −1

a and K = log( ba ), that
a and b are positive constants, we have Q(u) = b(1− u)−

1
a . This means, we have the Pareto I distribution.

In the following theorem we characterize the power distribution, when CPRQE ˘̄ξα(u) is expressed in terms of
reverse hazard quantile function K̄(u) (21).

Theorem 6
Let X be a nonnegative continuous random variable with reverse hazard quantile function K̄(u) for all u ∈ (0, 1)

and cumulative past Rényi quantile entropy ˘̄ξα(u) given by

˘̄ξα(u) =
1

(1− α)
log c− 1

(1− α)
log K̄(u). (37)

If and only if X has power distribution function.

Proof
The reverse hazard quantile function of power distribution is K̄(u) =

bu−1
b

a . Taking c = b
bα+1 gives the if part of

the theorem. To prove the only if part, consider (37) to be valid. Using (27), it gives∫ u
0
pαq(p)dp

uα
=

c

K̄(u)
.

Substituting K̄(u) = 1
uq(u) , gives ∫ u

0

pαq(p)dp = cuα+1q(u).

Differentiating both side with respect to u and simplifying, this reduces to

q′(u)

q(u)
=

(
1− c(α+ 1)

c

)
1

u
.

Which lead to
q(u) = Au

1
c−(α+1),

where A is a constant. Which characterizes the power distribution for c = b
bα+1 .

Next we characterize the lifetime models when CPRQE (27) is expressed in terms of quantile version of mean
inactivity time M̄(u). The proof follows on the same line as Theorem (3.5) , hence omitted.
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Theorem 7
Let X be a nonnegative continuous random variable with mean residual quantile function M̄(u) for all u ∈ (0, 1)

and cumulative past Rényi quantile entropy ˘̄ξα(u) given by

˘̄ξα(u) =
1

(1− α)
log c+

1

(1− α)
log M̄(u),

where c is constant. If and only if X has power distribution function.

4. DCRRQE of Order Statistics Xi:n

Suppose X1, X2, ..., Xn be a random sample from a population with probability density function f and cumulative
distribution function F (.) and let as X1:n ≤ X2:n ≤ ...Xn:n be the order statistics obtained by arranging the
preceding random sample in increasing order of magnitude. Then the pdf of ith order statistics Xi:n is given
by

fi:n(x) =
1

B(i, n− i+ 1)
(F (x))i−1(F̄ (x))n−if(x),

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx; a, b > 0, be the beta function. The corresponding quantile-based density

function of is fi:n(x) becomes

fi:n(u) = fi:n(Q(u)) =
ui−1(1− u)n−i

B(i, n− i+ 1)q(u)
.

Sunoj et al. (2017) introduced a quantile-based entropy of order statistics and studied its properties. Order statistics
play an important role in system reliability. These statistics have been used in a wide range of problems, including
robust statistical estimation, detection of outliers, characterization of the probability distribution and goodness-of-
fit tests, analysis of censored samples, reliability analysis, quality control and strength of materials, see, for details,
Arnold et al. (1992), David and Nagaraja (2003), and references therein. Fashandi and Ahmadi (2012) have derived
certain characterizations for symmetric distributions based on Rényi entropy of order statistics, k record statistics
and the FGM family of bivariate distributions. Gupta et al. (2014) proved some characterization result based on
dynamic entropy of order statistics.
Abbasnejad and Arghami (2010) defined Rényi entropy of order α of ith order statistics Xi:n as

Hα(Xi:n) =
1

(1− α)
log

{∫ ∞
0

(fi:n(x)αdx

}
, α > 0, α 6= 1. (38)

Kumar and Nirdesh (2019) proposed quantile-based Rényi entropy of Xi:n, which is given as

SαXi:n =
1

(1− α)
log

∫ 1

0

(
1

B(i, n− i+ 1)

)α
pα(i−1)(1− p)α(n−i)(q(u))1−αdp.

and studied some properties of it. Unlike (38), SαXi:n will be more useful in cases we do not have a tractable
distribution function but have a closed quantile function. In analogy with (12), the cumulative residual Rényi
entropy of ith order statistic Xi:n is defined as

ξαXi:n =
1

(1− α)
log

∫ ∞
0

F̄αi:n(x)dx

=
1

(1− α)
log

∫ ∞
0

(
β̄F (x)(i, n− i+ 1)

β(i, n− i+ 1)

)α
dx, (39)
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where F̄i:n(x) =
β̄F (x)(i,n−i+1)

β(i,n−i+1) is the survival function of the ith order statistics. The cumulative residual Rényi
quantile entropy of order statistics (39) becomes

ξ̆αXi:n =
1

(1− α)
log

∫ 1

0

(
β̄p(i, n− i+ 1)

β(i, n− i+ 1)

)α
q(p)dp, (40)

where βu(i,n−i+1)
β(i,n−i+1) is the quantile form of survival function F̄i:n(x). In system reliability, first order statistic

represents the lifetime of a series system while the nth order statistic measure the lifetime of a parallel system.
For a series system (i = 1), we have

ξ̆αX1:n
=

1

(1− α)
log

(∫ 1

0

(1− p)nαq(p)dp
)
. (41)

For the parallel system (i = n), we have

ξ̆αXn:n
=

1

(1− α)
log

(∫ 1

0

(1− pn)αq(p)dp

)
. (42)

The residual lifetime of a system when it is still operating at time t, is (Xt = X − t|X > t) which has the
probability density function f(x, t) = f(x)

¯̄F (t)
, x ≥ t > 0. Thapliyal and Taneja (2015) studied dynamic cumulative

residual Rényi entropy (DCRRE) measure for the Xi:n, which is given by

Hα(Xi:n; t) =
1

(1− α)
log

(∫ ∞
t

F̄αi:n(x)

F̄αi:n(t)
dx

)
.

For ith order statistics Xi:n, the quantile version of DCRRE is

ξ̆αXi:n(u) = ξ̆αXi:n(Q(u)) =
1

(1− α)
log

{∫ 1

u

(
β̄p(i, n− i+ 1)

β(i, n− i+ 1)

)α(
β(i, n− i+ 1)

β̄u(i, n− i+ 1)

)α
q(p)dp

)
=

1

(1− α)
log

{
1

(β̄u(i, n− i+ 1))α

∫ 1

u

((β̄p(i, n− i+ 1))α)q(p)dp

}
, (43)

where βu(i,n−i+1)
β(i,n−i+1) is the quantile form of survival function F̄i:n(x) and β̄x(a, b) =

∫ 1

x
ua−1(1− u)b−1du, 0 < x <

1, is the incomplete beta function, see David and Nagaraja (2003). An equivalent representation of (43) is of the
form

exp(1−α)ξ̆αXi:n
(u)(β̄u(i, n− i+ 1))α =

∫ 1

u

(β̄p(i, n− i+ 1))αq(p)dp.

Differentiating (43) with respect to u both sides and after some algebraic simplification,we obtain

q(u) =

{
αui−1(1− u)n−i

β̄u(i, n− i+ 1)
− (1− α)ξ̆′

α

Xi:n(u)

}
e(1−α)ξ̆αXi:n

(u). (44)

Equation (44) provide a direct relationship between quantile density function q(u) and ξ̆αXi:n(u) which show that
ξ̆αXi:n(u) uniquely determines the underlying distribution.
In system reliability, the minimum and maximum are examples of extreme order statistics and are defined
by X1:n = min{X1, X2, ..., Xn} and Xn:n = max{X1, X2, ..., Xn}. The extreme X1:n and Xn:n are of special
interest in many practical problems of distribution analysis. The extremes aries in the statistical study of floods
and droughts, as well as in problems of breaking strength and fatigue failure. Substituting (i = 1) in (43) then the
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DCRRQE of first order statistic X1:n, given as

ξ̆αXi:n(u) =
1

(1− α)
log

{
1

(β̄u(1, n))α

∫ 1

u

(β̄p(1, n))αq(p)dp

}
.

=
1

(1− α)
log

{
1

(1− u)nα

∫ 1

u

(1− p)nαq(p)dp
}
. (45)

The DCRRQE for sample maxima of order statistic Xn:n can be obtained from (43) by taking (i = n), as

ξ̆αXn:n
(u) =

1

(1− α)
log

{
1

(β̄u(n, 1))α

∫ 1

u

(β̄p(n, 1))αq(p)dp

}
=

1

(1− α)
log

{
1

(1− un)α

∫ 1

u

(1− pn)αq(p)dp

}
. (46)

For various specific univariate continuous distributions, the expression (45) is evaluated as given below in Table
38.

Table 4.1 Quantile function and ξ̆αX1:n
(u) for various lifetime distributions

Distribution Quantile function Q(u) ξ̆αX1:n
(u)

Uniform a+ (b− a)u 1
1−α log

{
(b−a)(1−u)

nα+1

}
Exponential −λ−1 log(1− u) 1

1−α log
{

1
nαλ

}
Pareto I b(1− u)−

1
a

1
1−α log

{
b(1−u)

−1
a

naα−1

}
Folded Cramer u

θ(1−u)
1

1−α log
{

1
θ(nα−1)(1−u)

}
Generalized Pareto b

a

[
(1− u)−

a
a+1 − 1

]
1

1−α log

{
b(1−u)

−a
a+1

(nαa+nα−a)

}
Finite Range b(1− (1− u)

1
a ) 1

1−α log

{
b(1−u)

1
a

(nαa+1)

}
Log logestic 1

a

(
u

1−u
) 1
b 1

1−α log
{
β̄u[b,nα− 1

b ]

ab(1−u)nα

}
Generalized lambda λ1 + 1

λ2

(
uλ3−1

λ3
− (1−u)λ4−1

λ4

)
1

1−α log
{

(λ3−1)
λ2λ3(1−u)nα β̄u(λ3 − 1, nα+ 1) + (1−u)λ4

λ2(nα+λ4)

}
Skew lambda αuλ − (1− u)λ 1

1−α log
{
αλβ̄u(λ,nα+1)

(1−u)nα + λ(1−u)
nα+λ

}
Govindarajulu’s a

(
(b+ 1)ub − bu(b+1)

)
1

1−α log
(
ab(b+1)β̄u(b,nα+2)

(1−u)nα

)
Tukey lambda uλ−(1−u)λ

λ
1

1−α log
(
β̄u(λ,nα+1)

(1−u)nα + (1−u)λ

nα+λ

)
Below we see how the monotonicity of ξ̆αX1:n

(u) is affected by increasing transformation. The following lemma
help us to prove the results on monotonicity of ξ̆αX1:n

(u).

Lemma 1
Let f(u, x) : <2

+ −→ <+ and g : <+ −→ <+ be any two functions. If
∫∞
u
f(u, x)dx is increasing and g(u) is

increasing (decreasing) in u, then
∫∞
u
f(u, x)g(x)dx is increasing (decreasing) in u, provided the integrals exist.

Theorem 8
LetX be a nonnegative and continuous random variable with quantile functionQX(.) and quantile density function
qX(.). Define Y = φ(X), where φ(.) is a nonnegative, increasing and convex (concave) function.
(i) For 0 < α < 1, ξ̆αY1:n

(u) is increasing (decreasing) in u whenever ξ̆αX1:n
(u) is increasing (decreasing) in u.

(ii)For α > 1, ξ̆αY1:n
(u) is decreasing (increasing) in u whenever ξ̆αX1:n

(u) is increasing (decreasing) in u.
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Proof
(i) The probability density function of Y = φ(X) is g(y) = f(φ−1(y))

φ ′(φ−1(y)) ; hence density quantile function is

g(QY (u)) = 1
qY (u) = f(Q(u))

φ′Q(u) = 1
qX(u)φ′(QX(u)) . Thus we have

ξ̆αY1:n
(u) =

1

(1− α)
log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqY (p)dp

)
.

=
1

(1− α)
log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqX(p)φ′(QX(p)))dp

)
. (47)

From the given condition we have

1

(1− α)
log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqX(p)dp

)
is increasing in u,

which gives that

log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqY (p)dp

)
is increasing in u.

We can rewritten as

(1− α)ξ̆αY1:n
(u) = log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqX(p)φ′(QX(p))dp

)
. (48)

Since 0 < α < 1 and φ is nonnegative, increasing convex (concave), we have [φ′(Q(p))]1−α is increasing
(decreasing) and is nonnegative. Hence by Lemma 4.1, (48) is increasing (decreasing). This prove (i). When α > 1,
[φ′(Q(p))]1−α = 1

[φ′(Q(p))]α−1 is decreasing in p, since φ is increasing and convex. Hence we have

ξ̆αY1:n
(u) =

1

(1− α)
log

(
1

(1− u)nα

∫ 1

u

(1− p)nαqY (p)dp

)
,

is decreasing (increasing) in u. Hence prove.

Remark 1
For any absolutely continuous random variable X , define Y = aX + b, a ≥ 0, b ≥ 0 then

ξ̆αY1:n
(u) =

1

(1− α)
log a+ ξ̆αX1:n

(u). (49)

Example 7
A lambda family of distribution that is of interest in reliability is the Davis Distribution proposed by Hankin and
Lee (2006) with quantile function Q(u) = Cuλ1(1− u)−λ2 , 0 < u < 1, C, λ1, λ2 ≥ 0. This is a flexible family for
right skewed on non negative data that provide good approximation to the exponential, gamma, lognormal and
weibull Distribution,. A special feature of these families is that they are expressed in terms of quantile functions for
which distribution function are not available in closed form to facilitate the conventional analysis. The DCRRQE
entropy of sample minima for Davis Distribution is given by

ξ̆αX1:n
(u) =

1

(1− α)
log

(
Cλ1

β̄u(λ1, nα− λ2 + 1)

(1− u)nα
+ Cλ2

β̄u(λ1 + 1, nα− λ2)

(1− u)nα

)
. (50)

As λ1 −→ 0 (50) reduces to ξ̆αX1:n
(u) = 1

(1−α) log
(

Cλ2

(1−u)λ(nα−λ2)

)
, corresponding to Pareto I distribution. Also,

as λ2 −→ 0, (50) reduces to ξ̆αX1:n
(u) = 1

(1−α) log
(
Cλ1β̄u(λ1,nα+1)

(1−u)nα

)
, corresponding to power distribution.
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Next, we obtain the characterization result based on first (minima) order statistic and last (maxima) order statistic
in a random sample X1, X2, ..., Xn of size n from positive and continuous random variable X .

Theorem 9
Let X1:n denote the first order statistic with survival function F̄1:n(x) and hazard quantile function KX1:n

(u). Then
the relationship

ξ̆αX1:n
(u) =

1

(1− α)
log c− 1

(1− α)
logKX1:n

(u), (51)

where c is constant, holds for all u ∈ (0, 1) if and only if X is distributed as generalized Pareto distribution with
quantile function Q(u) = b

a

[
(1− u)−

a
a+1 − 1

]
; b > 0, a > −1.

Proof
Consider (51) to be valid. Then ∫ 1

u

(1− p)nαq(p)dp =
c(1− u)nα

KX1:n(u)
.

Substituting KX1:n(u) = f1:n(Q(u))
1−F (Q(u))n = n

(1−u)q(u) and simplifying, it gives

n

∫ 1

u

(1− p)nαq(p)dp = cq(u)(1− u)nα+1.

Differentiating with respect to u both side and after some algebraic simplification, we have

q′(u)

q(u)
=

(
n− c(nα+ 1)

c

)
1

(1− u)
.

This gives
q(u) = A(1− u)

n
c−(nα+1),

where A is constant, which characterizes the generalized Pareto distribution. The only if part of the theorem is easy
to proved.

Corollary 1
Let X1:n denote the first order statistic with survival function F̄1:n(x) and hazard quantile function KX1:n

(u) for
all u ∈ (0, 1). Then the relationship

ξ̆αX1:n
(u) =

1

(1− α)
log c− 1

(1− α)
logKX1:n

(u).

holds, if and only if for (i) c = 1
α , X follows exponential distribution (ii) c < 1

α , X follows Pareto I distribution
(iii) c > 1

α , X follows finite range distribution.

Theorem 10
Let X1:n denote the first order statistic with survival function F̄1:n(x). Then the relationship

(1− α)ξ̆′
α

X1:n
(u) =

−C
1− u

, (52)

where C is constant, holds for all u ∈ (0, 1) if and only if X is distributed as
(i) uniform distribution for C = 1
(ii) exponential distribution for C = 0
(iii) Pareto I distribution for C = −1

a
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Proof
The necessity part follows from Table (38). For sufficient part, let us assume that the relationship (52) holds. From
(45) and (47), we have

− (1− u)nαq(u)∫ 1

u
(1− p)nαq(u)dp

+
nα

1− u
= − C

1− u
.

After simplifying, we have

q(u)(1− u)nα+1 = (nα+ C)

∫ 1

u

(1− p)nαq(p)dp.

Differentiating both side with respect to u and after some algebraic simplification, we get

− q(u)(1− u)nα(nα+ 1) + (1− u)nα+1q′(u) = −(nα+ C)(1− u)nαq(u),

or equivalently
q′(u)

q(u)
=

1− C
1− u

.

Which lead to
q(u) = (1− u)C−1eK ,

where K is the constant of integration. Now, if C = 1 and K = log(b− a); b > a, which implies that Q(u) =
a+ (b− a)u. Thus, we have the uniform distribution. If C = 0 andK = − log λ;λ ≥ 0, which implies thatQ(u) =
−λ−1 log(1− u). Thus, we have the exponential distribution with parameter λ. If, C = −1

a and K = log( ba ), that
a and b are positive constants, we have Q(u) = b(1− u)−

1
a . This means, we have the Pareto I distribution.

Theorem 11
Let X1:n denote the first order statistic with survival function F̄1:n(x) and hazard quantile function KX1:n

(u). Then
the relationship given by

(nα+ 1− C)e(1−α)ξ̆αX1:n
(u) =

n

KX1:n
(u)

, (53)

where C is constant, holds for all u ∈ (0, 1) if and only if X is distributed
(i) uniform distribution for C = 0
(ii) exponential distribution for C = 1
(iii) Pareto I distribution for C = 1 + 1

a

Proof
The necessity part follows from Table (38). For sufficiency part, let us assume that the relationship (53) holds.
Substituting KX1:n

(u) = n
(1−u)q(u) and equation(45), we have

(nα+ 1− C)

∫ 1

u
(1− p)nαq(u)dp

(1− u)nα
= (1− u)q(u).

Differentiating both side with respect to u and after some algebraic simplification, we get

(nα+ 1− C)(1− u)nαq(u) = (nα+ 1)(1− u)nαq(u)− (1− u)nα+1q′(u).

By the above equation, we have
q′(u)

q(u)
=

C

1− u
.

This gives
q(u) = (1− u)−CeA,

where A is the constant of integration. Now, for C = 0, C = 1 and C = 1 + 1
a and with appropriate values of A,

we obtain the desired result.
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For the sample minimaX1:n, the relationship (6) becomes (1− u)q(u) = nMX1:n
(u)− (1− u)M ′X1:n

(u). We state
a characterization result using the relationship between ξ̆αX1:n

(u) and MX1:n
(u), the proof of which follow on the

same line as given by Theorem (3.1), hence omitted.

Theorem 12
LetX1:n denote the first order statistic with survival function F̄1:n(x) and mean residual quantile functionMX1:n(u)
for all u ∈ (0, 1). Then the relationship given by

ξ̆αX1:n
(u) =

1

(1− α)
log c+

1

(1− α)
logMX1:n

(u). (54)

where c is constant, holds if and only if X has generalized Pareto distribution with quantile function Q(u) =
b
a

[
(1− u)−

a
a+1 − 1

]
; b > 0, a > −1.

Corollary 2
Let X1:n denote the first order statistic with survival function F̄1:n(x) and mean residual quantile function
MX1:n

(u). Then the relationship

ξ̆αX1:n
(u) =

1

(1− α)
log c+

1

(1− α)
logMX1:n(u). (55)

where c is constant, holds for all u ∈ (0, 1) if and only if for (i) c = 1
α , X follows exponential distribution (ii)

c < 1
α , X follows Pareto I distribution (iii) c > 1

α , X follows finite range distribution.

Let Xn:n be the largest order statistic in a random sample of size n from an absolutely continuous nonnegative
random variable X . Then the dynamic cumulative past ´Renyi entropy for sample maxima is as follow

ξ̄α(Xn:n; t) =
1

(1− α)
log

(∫ t

0

Fαn:n(x)

Fαn:n(t)
dx

)
.

The quantile-based dynamic cumulative past ´Renyi entropy for Xn:n can be expressed as

˘̄ξαXn:n
(u) = ˘̄ξαXn:n

(Q(u)) =
1

(1− α)
log

(
1

unα

∫ u

0

pnαq(p)dp

)
. (56)

For some specific univariate continuous distributions, the expression (56) is evaluated as given below in Table 4.2.

Table 4.2 Quantile function and ˘̄ξαXn:n
(u) for some lifetime distributions

Distribution Quantile function Q(u) ˘̄ξαXn:n
(u)

Uniform a+ (b− a)u 1
1−α log

{
(b−a)u
nα+1

}
Power au

1
b

1
1−α log

{
au

1
b

nbα+1

}
Generalized lambda λ1 + 1

λ2

(
uλ3−1

λ3
− (1−u)λ4−1

λ4

)
1

1−α log
{

(λ3−1)uλ3−1

λ3(nα+λ3−1) + βu(nα+1,λ4−2)
unα

}
Skew lambda αuλ − (1− u)λ 1

1−α log
{
αλuλ

nα+λ + λβu(nα+1,λ)
unα

}
In the following theorem we show that the power distribution can be characterize in terms of ˘̄ξαXn:n

(u).

Theorem 13
Let Xn:n denotes the last order statistic with survival function F̄n:n(x) and reverse hazard quantile function
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K̄Xn:n
(u), then ˘̄ξαXn:n

(u) is expressed as

˘̄ξαXn:n
(u) =

1

(1− α)
log c− 1

(1− α)
log K̄Xn:n(u), (57)

if and only if X has power distribution function.

Proof
The reverse hazard quantile function for sample maxima Xn:n of power distribution is K̄Xn:n

(u) = fn:n(Q(u))
Fn:n(Q(u)) =

nf(Q(u))
F (Q(u)) = n(uq(u))−1 = nbu

−1
b

a . Taking c = nb
nbα+1 gives the if part of the theorem. To prove the only if part,

consider (57) be valid. Using (45), it gives ∫ u
0
pnαq(p)dp

unα
=

c

K̄Xn:n
(u)

.

Substituting K̄Xn:n(u) = n
uq(u) , gives

n

∫ u

0

pnαq(p)dp = cunα+1q(u).

Differentiating both side with respect to u and simplifying, this reduces to

q′(u)

q(u)
=

(
n− c(nα+ 1)

c

)
1

u
.

Which lead to
q(u) = Au

n
c−(nα+1),

where A is a constant. Which characterizes the power distribution for c = nb
nbα+1 .

Also we have this characterization in terms of M̄Xn:n
(u). The proof follows on the same line as Theorem (4.6) ,

hence omitted.

Theorem 14
Let Xn:n denotes the last order statistic with survival function F̄n:n(x) and quantile version of mean inactivity time
for sample maxima M̄Xn:n

(u) then ˘̄ξαXn:n
(u) is expressed as

˘̄ξαXn:n
(u) =

1

(1− α)
log c+

1

(1− α)
log M̄Xn:n(u), (58)

If and only if X has power distribution function.

Remark 2
If c = n+1

nα+1 , then equation (57) is a characterization of uniform distribution.

5. Weighted Rényi Quantile Entropy

Sometimes in statistical modeling, standard distributions are not suitable for our data and we need to study weighted
distributions. This concept has been applied in many areas of statistics, such as analysis of family size, human
heredity, world life population study, renewal theory, biomedical and statistical ecology. Associated to a random
variable X with pdf f(x) and to a nonnegative real function w(x), we can define the weighted random variable Xw

with density function fw(x) = w(x)f(x)
E(w(X)) , 0 < E(w(X)) <∞. When w(x) = x, Xw is called length (size) biased
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random variable. Using fw(x), the corresponding density quantile function is given by

fw(Q(u)) =
w(Q(u))f(Q(u))

µ
,

where µ =
∫ 1

0
w(Q(p))f(Q(p))d(Q(p)) =

∫ 1

0
w(Q(p))dp. Weighted entropy has been used to balance the amount

of information and degree of homogeneity associated with a partition of data in classes. The quantile-based
weighted ´Renyi entropy is of the form

ξ̆αw(Q(u)) =
1

(1− α)
log

(
1

µα

∫ 1

0

[w(Q(p))]α(q(p))1−αdp

)
.

In case of length (size) biased random variable the above expression known as length biased weighted Rényi
quantile entropy, which is given as

ξ̆αL(Q(u)) =
1

(1− α)
log

(
1

µα

∫ 1

0

(Q(p))α(q(p))1−αdp

)
. (59)

For some specific univariate continuous distributions, the expression (59) is evaluated as given below in Table 5.1.

Table 5.1 Length biased weighted Rényi quantile entropy ξ̆αL(Q(u)) for some lifetime distributions

Distribution Quantile function Q(u) ξ̆αL(Q(u))

Uniform a+ (b− a)u 1
1−α log

{
(b1+α−a1+α)2α

(a+b)α(b−a)α(1+α)

}
Exponential −λ−1 log(1− u) 1

1−α log
{
λα−1γ(1+α)

α1+α

}
Power au

1
b

1
1−α log

{
a1−α(b+1)α

bα+1

}
Pareto I b(1− u)−

1
a

1
1−α log

{
b1−α(a−1)α

(αa−1)

}
Finite Range b

{
1− (1− u)

1
a

}
1

1−α log
{

(a+1)αβ[1+α,α(a−1)+1]
a−αbα−1

}
Log logestic 1

a

(
u

1−u
) 1
b 1

1−α log
{

aαβ(α+ 1
b ,α−

1
b )

a2αbα(β(1+ 1
b ,1−

1
b ))α

}
Weibull

{
− 1
a log(1− u)

} 1
b 1

1−α log

{
(ab)α−1( 1

a )(1−α)( 1
b
−1)γ(α+ 1

b )

αα+ 1
b (γ(1+ 1

b ))α

}
Folded Cramer u

θ(1−u)
1

1−α log
{
−θ1−αβ(α+ 1, α− 1)

}
Generalized Pareto b

a

{
(1− u)−

a
a+1 − 1

}
1

1−α log

{
(−1)1+α( b

a+1 )1−α( a
a+1 )β[1+α,(1−α)(1+ 1

a )( 2a+1
a+1 )− 1

a−1]

aα

}
Pareto II a

{
1− u)−

1
b−1
}

1
1−α log

{
bα(b−1)α(−1)α+1β[α+1,1−α(b+1)]

aα−1

}
Rayleigh

{
− 1
a log(1− u)

} 1
2 1

1−α log

{
2α( 1

a )
1
2

(α−1)γ(α+ 1
2 )

π
α
2 αα+ 1

2 (2a)1−α

}

Consider a random variable Y with density function fY (x) = F̄ (x)
µ , with µ = E(X) <∞. Then, ?Y is called the

equilibrium random variable of the original random variable X , and its distribution as equilibrium distribution of
original random variable. The equilibrium distribution arises as the limiting distribution of the forward recurrence
time in a renewal process. We have fY (Q(u)) = F̄ (Q(u))

µ = 1−u
µ . Thus quantile density function for equilibrium

distribution is given by qY (u) = 1
fY (Q(u)) = µ

1−u . From (17), the dynamic cumulative residual Rényi quantile
entropy (DCRRQE) for equilibrium distribution is given by

ξ̆α(Y ;Q(u)) =
1

(1− α)
log

(
1

(1− u)α

∫ 1

u

(1− p)αqY (p)dp

)
. (60)
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Theorem 15
Let X be a nonnegative random variable with ξ̆α(Y ;Q(u)) = 1

(1−α) log
(
µ
α

)
if and only if X follows equilibrium

distribution.

Proof
If part of the theorem is easy to prove, to prove only if part let us assume that ξ̆α(Y ;Q(u)) = 1

(1−α) log
(
µ
α

)
. From

equation (60), we have ∫ 1

u

(1− p)αqY (p)dp =
µ(1− u)α

α
.

Differentiating it with respect to u both sides, after some simplification we get qY = µ
(1−u) , the quantile density

function for equilibrium distribution. Hence proved.

Remark 3
The mean residual quantile function satisfy the relation M(Y ;Q(u)) = µ if and only if X follow equilibrium
distribution.

5.1. Weighted Cumulative Residual Rényi Entropy

Misagh et al. (2011) proposed a weighted information which is based on the CRE, called weighted cumulative
residual entropy (WCRE). This measure is defined as

ξ̄w(X) = −
∫ ∞

0

xF̄ (x) log F̄ (x)dx . (61)

Several authors studied properties of (61) and its dynamic version, refer to Kayal and Moharana (2017) and Mirali
et al. (2017). As pointed out by Misagh et al. (2011), in some practical situations of reliability and neurobiology
a shift-dependent measure of uncertainty is desirable. Also, an important feature of the human visual system is
that it can recognize objects in a scale and translation invariant manner. However, achieving this desirable behavior
using biologically realistic network is a challenge. The notion of weighted entropy addresses this requirement. In,
analogy to (61), The weighted cumulative residual Rényi entropy (WCRRE), and its residual form, defined as

Hα
w(X) =

1

1− α
log

(∫ ∞
0

xF̄α(x)dx

)
, α 6= 0, α > 1, (62)

and

Hα
w(X, t) =

1

1− α
log

(∫∞
t
xF̄α(x)dx

F̄α(t)

)
, (63)

respectively. The factor x in the integral on right-hand side yields a ”length-biased ” shift dependent information
measure assigning greater importance to larger values of the random variable X . From (1) and (63), we propose
the quantile version of WCRRE and its residual form of a nonnegative random variable X , defined as

ξ̆αw =
1

(1− α)
log

(∫ 1

0

Q(u)(1− u)αq(u)du

)
, (64)

and

ξ̆αw(u) = ξ̆αw(X;Q(u)) =
1

1− α
log

{∫ 1

u
Q(p)(1− p)αq(p)dp

(1− u)α

}
, (65)

respectively. The measure (65) may be considered as the dynamic weighted cumulative residual Rényi quantile
entropy (DWCRRQE) measure. An alternative expression for the DWCRRQE in terms of mean residual quantile
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function M(u) of random variable X is the following

ξ̆αw(u) =
1

1− α
log

{∫ 1

u
(1− p)α−1Q(p)M(p)dp

(1− u)α
−
∫ 1

u
(1− p)αQ(p)M ′(p)dp

(1− u)α

}
.

For some well-known univariate continuous families of distributions, the expression (65) is evaluated as given
below in Table 5.2.

Table 5.2 DWCRRQE for several well-known families of distributions

Distribution Quantile function Q(u) ξ̆αw(u)

Uniform a+ (b− a)u 1
(1−α) log

{
a(b−a)(1−u)

1+α + (b−a)2(1−u)
1+α − (b−a)2(1−u)2

2+α

}
Exponential −λ−1 log(1− u) 1

(1−α) log
{
γ̄− log(1−u)(2,α)

λ2(1−u)α

}
Power au

1
b

1
(1−α) log

{
a2β̄u( 2

b ,1+α)

b(1−u)α

}
Pareto I b(1− u)−

1
a

1
1−α log

{
b2(1−u)

−2
a

(αa−2)

}
Folded Cramer u

θ(1−u)
1

(1−α) log
{
β̄u(2,α−2)
θ2(1−u)α

}
Generalized Pareto b

a

[
(1− u)−

a
a+1 − 1

]
1

(1−α) log

{
b2(1−u)

−2a
a+1

a(aα+α−2a) −
b2(1−u)

−a
a+1

a(αa+α−a)

}
Finite Range b{1− (1− u)

1
a } 1

(1−α) log

{
b2(1−u)

1
a

(aα+1) −
b2(1−u)

2
a

(αa+2)

}
Log logestic 1

a

(
u

(1−u)

) 1
b 1

(1−α) log
{
β̄u( 2

b ,α−
2
b )

a2b(1−u)α

}
Weibull

{
− 1
a log(1− u)

} 1
b 1

(1−α) log

{
( 1
a )

2
b
−1γ̄− log(1−u)(

2
b ,α)

ab(1−u)α

}
Rayleigh

{
− 1
a log(1− u)

} 1
2 1

(1−α) log
{

1
2aα

}
Gompertz 1

logC

{
1− logC log(1−u)

B

}
1

(1−α) log
{

1
αB logC +

γ̄− log(1−u)(2,α)

B2(1−u)α

}
Govindarajulu’s a

{
(b+ 1)ub − bub+1

}
1

(1−α) log
{
a2b(b+1)2β̄u(2b,α+2)

(1−u)α − a2b2(b+1)β̄u(2b+1,α+2)
(1−u)α

}
Example 8
Let X follows lambda family of distribution as given in example (15), then weighted cumulative residual Rényi
quantile entropy (WCRRE)(64) is given as

ξ̆αw =
1

(1− α)
log
{
C2λ1β(2λ1, 1 + α) + C2λ2β(2λ1 + 1, α− 2λ2)

}
. (66)

As λ1 −→ 0, (66) reduces to ξ̆αw = 1
(1−α) log

(
C2λ2

α−2λ2

)
, corresponding to Pareto I distribution. Also, as λ2 −→ 0,

(66) reduces to ξ̆αw = 1
(1−α) log

(
C2λ1β(2λ1, 1 + α)

)
, corresponding to power distribution.

In order to provide some characterization results for DWCRRQE of a nonnegative random variableX . Let us define
the quantile version of weighted mean residual lifetime (WMRE), as follows

Mw(u) = mw(Q(u)) =

∫ 1

u
(1− p)Q(p)q(p)dp

1− u
, (67)

here mw(t) =
∫∞
t
xF̄ (x)dx

F̄ (t)
is the WMRE of random variable X . In the following theorem, we characterize rayleigh

distribution using a relationship between DWCRRQE and quantile-basedWMRE.
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Theorem 16
Let X be an absolutely continuous random variable. Then the relation

ξ̆αw(X;Q(u)) =
1

(1− α)
log

(
Mw(u)

α

)
, (68)

holds if and only if X follows the rayleigh distribution.

Proof
The quantile-basedWMRE (67), for rayleigh distribution is given as

Mw(u) =
1

2a(1− u)

∫ 1

u

(
−1

a
log(1− p)

) 1
2
(
−1

a
log(1− p)

)−1
2

dp =
1

2a
.

The weighted cumulative residual ´Renyi quantile entropy (65), for rayleigh distribution is

ξ̆αw(X;Q(u)) =
1

1− α
log

(
1

2aα

)
.

This prove the if part of the Theorem. To prove only if part, let (68) holds. Then

α

∫ 1

u

(1− p)αQ(p)q(p)dp = (1− u)α−1

∫ 1

u

(1− p)Q(p)q(p)dp.

Differentiating both sides with respect to u, we have

(1− u)αq(u)Q(u) = (1− u)α−2

∫ 1

u

(1− p)Q(p)q(p)dp.

Using (67), we have

Q(u)q(u) =
Mw(u)

1− u
. (69)

Differentiating (67) with respect to u both sides, we have

dMw(u)

du
− Mw(u)

1− u
= −Q(u)q(u).

Substituting in (69), gives dMw(u)
du = 0 or equivalently Mw(u) = k (constant), which characterizes the rayleigh

distribution.

Theorem 17
For a nonnegative random variable X , the relationship

ξ̆αw(X;Q(u)) = C, (70)

where C is a constant holds, then X has the rayleigh distribution.

Proof
The necessary part follows from the Table (60). For the sufficiency part, let us assume (70) holds. From (65) we
have

e(1−α)ξ̆αw(X;Q(u))(1− u)α =

∫ 1

u

Q(p)(1− p)αq(p)dp.

Taking derivative with respect to u both sides we have, after some algebraic simplification(
(1− α)ξ̆′ αw(X;Q(u))− α

(1− u)

)
e(1−α)ξ̆αw(X;Q(u)) = −q(u)Q(u).
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Using (4), this gives (
(1− α)ξ̆′

α

w(X;Q(u))− α

(1− u)

)
e(1−α)ξ̆αw(X;Q(u)) = − Q(u)

(1− u)K(u)
. (71)

From (70), we get ξ̆′
α

w(X;Q(u)) = 0. Substitute this value in the above expression we obtain

αe(1−α)ξ̆αw(X;Q(u))K(u)−Q(u) = 0,

which leads to K(u)
Q(u) = 1

αeC(1−α) = 2a (constant). Thus X follows rayleigh distribution with survival function
F̄ (x) = exp

(
− x

2a2

)
. Hence, the proof is completed.

Definition 1
The distribution function F is said to be increasing (decreasing) in dynamic weighted cumulative residual Rényi
quantile entropy IDWCRRQE (DDWCRRQE) if ξ̆αw(X;Q(u)) is increasing (decreasing) in u ≥ 0.

The following theorem gives the upper (lower) bound to the DWCRRQE, in terms of the hazard quantile function.

Theorem 18
The distribution function F is IDWCRRQE (DDWCRRQE), if and only if, for all u ≥ 0.

ξ̆αw(X;Q(u)) ≥ (≤)
1

(1− α)
log

(
Q(u)

αK(u)

)
, α > 1,

ξ̆αw(X;Q(u)) ≤ (≥)
1

(1− α)
log

(
Q(u)

αK(u)

)
, 0 ≤ α < 1.

6. Conclusion

Quantile-based study of entropy measures found greater interest among researchers as an alternative method of
measuring uncertainty of random variable. In this paper we have proposed dynamic cumulative residual Rényi
quantile entropy and studied some properties, characterizations. We have introduced the quantile-based cumulative
residual Rényi entropy of order statistics and its characterizations. We have also obtained the weighted Rényi
quantile entropy and its residual form based on cumulative function and obtain some characteristic result.

Acknowledgement

The authors would like to express their gratitude to the reviewers and the editor in chief for their valuable
comments, which have considerably improved the earlier version of the article. The corresponding author wishes
to acknowledge the Science and Engineering Research Board (SERB) New Delhi, Government of India, for the
financial assistance (Ref. No. ECR/2017/001987) for carrying out this research work.

REFERENCES

1. B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order Statistics, John Wiley and Sons, New York, 1992.
2. M. Asadi, and Y. Zohrevand, On the dynamic cumulative residual entropy, Journal of Statistical Planning and Inference, vol. 137,

pp. 1931–1941, 2007.
3. H. A. David, and H. N. Nagaraja, Order Statistics, John Wiley and Sons, New York, 2003.
4. A. Di Crescenzo, and M. Longobardi, On cumulative entropies, Journal of Statistical Planning and Inference, vol. 139, no. 12, pp.

4072–4087, 2009.
5. M.Fashandi, and J. Ahmadi, Characterizations of symmetric distributions based on Rényi entropy , Statistics and Probability
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27. R. Thapliyal, and H. C. Taneja, On Rényi entropies of order statistics, International Journal of Biomathematics, vol. 8, no. 6,

1550080, 2015.
28. F. Wang, and B. C. Vemuri, Non-Rigid multimodal image registration using cross-cumulative residual entropy, International Journal

of Computer Vision, vol. 74, no. 2, pp. 201–215, 2007.
29. P. J. Van Staden, and M. R. Loots, L-moment estimation for the generalized lambda distribution, ed., Third Annual ASEARC

Conference, New Castle, Australia, 2009.
30. K. Zografos, and S. Nadarajah, Survival exponential entropies, IEEE Transation Information Theory, vol. 51, pp. 1239–1246, 2005.
31. S. Minimol, On generalized dynamic cumulative past entropy measure, Communications in Statistics-Theory and Methods, vol.46,

no. 6, pp. 2816?2822, 2017.
32. S. Baratpour, A. H. Khammar, A quantile-based generalized dynamic cumulative measure of entropy, Communications in Statistics-

Theory and Methods, vol. 47, no. 13, pp. 3104–3117, 2018.
33. M. Sheraz, S. Dedub, V. Predaa, Entropy Measures for Assessing Volatile Markets, Procedia Economics and Finance, vol. 22, pp.

655–662, 2015.
34. W. Gilchrist, Statistical modelling with quantile functions, Chapman and Hall/CRC, Boca Raton, FL, 2000.
35. M. Abbasnejad, N. R. Arghami, ´Renyi entropy properties of order statistics, Communications in Statistics-Theory and Methods,

vol. 40, pp. 40-52, 2011.
36. V. Kumar, and N. Singh Quantile-based Generalized Entropy of order (α, β) for Order Statistics, STATISTICA, vol. 78, no. 4, pp.

299–318, 2019.
37. R. C. Gupta, H. C. Taneja, and R. Thapliyal, Stochastic comparisons of residual entropy of order statistics and some characterization

results, Journal of Statistical Theory and Applications, vol. 13, no. 1, pp. 27-37, 2014.
38. D. Sharma, and T. K. Chakrabarty, Some General Results On Quantile Functions For The Generalized Beta Family, Statistics,

Optimization and Information Computing, Vol.5, pp. 360?377, 2017.
39. H. A. Noughabi, H. A. Noughabi, J. Jarrahiferiz. Informational Energy and Entropy Applied to Testing Exponentiality, Statistics,

Optimization and Information Computing, Vol.8, no.1, pp. 220?228, 2020.

Stat., Optim. Inf. Comput. Vol. 9, December 2021


	1 Introduction
	2 Cumulative residual Rnyi quantile entropy
	3 Characterization Results
	4 DCRRQE of Order Statistics Xi:n
	5 Weighted Rnyi Quantile Entropy
	5.1 Weighted Cumulative Residual Rnyi Entropy 

	6 Conclusion

