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Abstract In this paper, we consider Chen distribution and derive UMVUEs and MLEs of the parameter λ, hazard rate h(t)
and the two measures of reliability, namely R(t) = P (X > t), where X denotes the lifetime of an item and P = P (X > Y ),
which represents the reliability of an item or system of random strength X subject to random stress Y , under type II censoring
scheme and the sampling scheme of Bartholomew. We also develop interval estimates of the reliability measures. Testing
procedures for the hypotheses related to different parametric functions have also been developed. A comparative study of
different methods of point estimation and average confiddence length has been done through simulation studies. The analysis
of a real data set is presented for illustration purpose.
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1. Introduction

In the reliability literature, we have many such distributions (e.g. generalized exponential, gamma, Weibull and
lognormal) whose hazard rate functions are constant, increasing or decreasing in nature. These are the most
commonly used models and we analyze various real life phenomenon using them. However, these models are
not suitable if the data sets exhibit bathtub-shaped hazard rate. Authors have introduced some probability models
to analyze real data with bathtub-shaped failure, for instance, modified Weibull [13] and extended Weibull [16],
but still they are not suitable to produce a good bathtub shape of the failure rates.

[5] introduced a two-parameter lifetime distribution with bathtub shape or increasing failure rate function. The
hazard rate of this distribution first decreases, then remains constant and then increases. Chen distribution is an
appropriate model for analysis of electronic and mechanical products and lifetime of humans. Further, it can be
used for modelling positively skewed data, apart from the well known models such as lognormal and gamma. This
distribution is flexible in nature in the sense that it has two parameters and the confidence intervals for the shape
parameter as well as the joint confidence regions have the closed form.

A random variable (rv) X is said to follow the Chen distribution, if its probability density function (pdf) is of the
form:

f(x;λ, β) = λβex
β

xβ−1eλ(1−ex
β
), (1)
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100 ESTIMATION AND TESTING PROCEDURES UNDER THE CHEN DISTRIBUTION

and cumulative distribution function (cdf) is of the form:

F (x) = 1− exp[λ(1− ex
β

)];x > 0. (2)

Moreover, the hazard rate h(t) of the distribution (1) corresponding to time ‘t’ is given by:

h(t) = λβtβ−1et
β

; t > 0. (3)

[21] obtained MLEs of the unknown parameters β and λ of the distribution (1) based on progressive censoring
and also discussed the problem of interval estimation. [18] considered the Bayesian estimation for different
symmetric and asymmetric loss functions. [1] proposed Bayes estimates of unknown parameters β and λ under
balanced squared-error loss function. Bayesian estimation for the discrete Chen distribution was discussed by [12].
The recurrence relations for single and product moments of generalized order statistics from Chen distribution was
established by [11]. [10] have obtained one-sample and two-sample Bayes predictive estimates and also constructed
prediction intervals of censored observations under progressive censoring. Moreover, [9] have considered the
estimation of unknown parameters β and λ using both classical and Bayesian approaches under type I progressive
hybrid censoring scheme. They have considered the problem of optimal censoring as well. [8] have considered
the problem of estimating the reliability in a multicomponent stress-strength model based on Chen distribution.
[2] obtained Empirical Bayes estimators of the scale parameter, reliability and hazard rate functions of Chen
distribution under the condition when a sample is obtained from a type-I censoring scheme.

The literature on estimation procedures for Chen distribution discussed above mostly focuses on maximum
likelihood or Bayesian/empirical Bayesian procedures. However, developing and investigating properties of
UMVU estimators for the parameters of Chen distribution under various sampling schemes is an area which still
remain unexplored. The present work is an attempt to fill this gap. The objective is to develop point estimation
procedures for R(t) and P based on type II censoring and the sampling scheme of Bartholomew [3] with the help
of a technique proposed by [4] which is simpler and not time consuming. In this technique we first obtain the
estimator of the powers of parameter λ and then with the help of this estimator we obtain estimator of the pdf. The
estimator of the pdf is further used to obtain estimator of R(t) and P . The paper is organized as follows: In Section
2, we provide MLEs and UMVUEs of parameter λq, hazard rate h(t) and the reliability functions R(t) and P based
on type II censoring scheme assuming β to be known. We also provide exact confidence intervals for λ,R(t) and
P . Further, we develop testing procedures for λ, when β is known. In Section 3, we obtain MLEs and UMVUEs
of λq, hazard rate h(t) and the reliability functions R(t) and P based on the censoring scheme of Bartholomew
assuming β to be known. We also provide testing procedures for λ based on this censoring scheme for known β
case. In Section 4, we provide extensive sets of simulation studies followed by a real data example in Section 5. We
end with a brief set of conclusions in Section 6. Proofs of some important results can be found in the Appendix.

2. Estimation and Testing Procedures Based on Type II Censoring Scheme

Suppose n items are put on a test and the test is terminated after the first r ordered observations are recorded. Let
us denote by 0 < X(1) ≤ X(2) ≤ ... ≤ X(r) , 0 < r < n, the lifetimes of first r failures. Obviously, (n− r) items
survived until X(r).

2.1. UMVUE’s and MLE’s of λq, R(t), P and h(t)

In this section, we obtain the UMVUE’s and MLE’s of λq, R(t), P and h(t) under the assumption that β is known.
We first provide an important lemma, which will be useful in proving the main results of this section.

Lemma 1
Let

S(r) =

r∑
i=1

(e
xβ
(i) − 1) + (n− r)(e

xβ
(r) − 1).
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A. CHATURVEDI AND S. KUMAR 101

Then, S(r) is complete and sufficient for the distribution given at (1). Moreover, the pdf of Sr is given by

gS(r)
(s;λ) =

sr−1λre−λs

Γ(r)
, s > 0, α > 0, r > 0, (4)

where, Γ(·) denotes the Gamma function.

Proof The proof of Lemma 1 can be found in the Appendix.

The pdf of S(r) given in (4) can be used to obtain the UMVUE of λq. In this direction, we have from (4)

E
(
S−q
(r)

)
=

λr

Γ(r)

∫ ∞

0

e−λssr−q−1ds

=
Γ(r − q)

Γ(r)
λq, r > q.

Now using the Lehmann-Scheffe theorem (see, [19]), for q ∈ (−∞,∞), the UMVUE of λq is given by

λ̃q
II =

{
Γ(r)

Γ(r−q)S
−q
(r) : r − q > 0

0 : otherwise
(5)

Further, we can write the pdf given in (1) as

f(x;λ, β) = λβex
β

xβ−1
∞∑
i=0

(−1)i

i!

{
λ(ex

β

− 1)
}i

Making use of the UMVUE of λq given in (5), the UMVUE of the sampled pdf at a specified point ‘x’ is given
by

f̃II(x;λ, β) = βex
β

xβ−1
∞∑
i=0

(−1)i

i!
(ex

β

− 1)iλ̃i+1

= βex
β

xβ−1
∞∑
i=0

(−1)i

i!
(ex

β

− 1)i
Γ(r)

Γ(r − i− 1)
S
−(i−1)
(r)

which can further be written as

f̃II(x;λ, β) =

(r − 1) e
xβ

βxβ−1

S(r)

(
1− ex

β
−1

S(r)

)r−2

: x <
{
ln(1 + S(r))

}1/β
0 : otherwise

(6)

Using the result given in (6), we can obtain the UMVUE of R(t) as

R̃(t)II =

∫ ∞

t

f̃(x;λ, β)dx

=

∫ (ln(1+S(r)))
1/β

t

(r − 1)
ex

β

βxβ−1

S(r)

(
1− ex

β − 1

S(r)

)r−2

dx

Substituting (ex
β − 1)/S(r) = y in the above expression, the UMVUE of R(t) at a specified point ‘t’ is given by

R̃(t)II =


(
1− et

β
−1

S(r)

)r−1

: et
β − 1 < S(r)

0 : otherwise
(7)
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Let X and Y be two independent random variables following the classes of distributions f1(x;λ1, β1) and
f2(y;λ2, β2), respectively, where

f1(x;λ1, β1) = λ1β1e
xβ1

xβ1−1eλ1(1−ex
β1

);x > 0, λ1, β1 > 0, (8)

f2(y;λ2, β2) = λ2β2e
yβ2

yβ2−1eλ2(1−ey
β2

); y > 0, λ2, β2 > 0. (9)

Let n items on X and m items on Y are put on a life test and the termination numbers for X and Y are r and r′,
respectively. Let us define

S(r) =

r∑
i=1

(e
x
β1
(i) − 1) + (n− r)(e

x
β1
(r) − 1),

T(r′) =

r′∑
j=1

(e
y
β2
(j) − 1) + (m− r′)(e

y
β2
(r′) − 1).

It follows from (6) that, the UMVUE’s of f1(x;λ1, β1) and f2(y;λ2, β2) based on Type II censoring at specified
points x and y, respectively, are given by

f̃1II(x;λ1, β1) = (r − 1)
ex

β1
β1x

β1−1

S(r)

(
1− ex

β1 − 1

S(r)

)r−2

;x <
{
ln(1 + S(r))

}1/β1
, (10)

f̃2II(y;λ2, β2) = (r′ − 1)
ey

β2
β2y

β2−1

T(r′)

(
1− ey

β2 − 1

T(r′)

)r′−2

; y <
{
ln(1 + T(r′))

}1/β2
. (11)

The UMVUE of P can be written in terms of R̃(y;λ1, β1)II as follows:

P̃II =

∫ ∞

y=0

∫ ∞

x=y

f̃II(x;λ1, β1)f̃II(y;λ2, β2)dxdy

=

∫ ∞

y=0

R̃II(y;λ1, β1)f̃II(y;λ2, β2)dy

which on using (7) and (11) gives that

P̃II =

∫ ∞

y=0

(
1− ey

β1 − 1

S(r)

)r−1

(r′ − 1)
ey

β2
β2y

β2−1

T(r′)

(
1− ey

β2 − 1

T(r′)

)r′−2

dy,

where y <
{
ln(1 + S(r))

}1/β1
, y <

{
ln(1 + T(r′))

}1/β2
,

=

∫ c
′

y=0

(
1− ey

β1 − 1

S(r)

)r−1

(r′ − 1)
ey

β2
β2y

β2−1

T(r′)

(
1− ey

β2 − 1

T(r′)

)r′−2

dy, (12)

where c
′
= min

[{
ln(1 + S(r))

}1/β1
,
{
ln(1 + T(r′))

}1/β2
]
.

From (12), for
{
ln(1 + S(r))

}1/β1
<
{
ln(1 + T(r′))

}1/β2 , we have

P̃II =

∫ {ln(1+S(r))}1/β1

y=0

(
1− ey

β1 − 1

S(r)

)r−1

(r′ − 1)
ey

β2
β2y

β2−1

T(r′)

(
1− ey

β2 − 1

T(r′)

)r′−2

dy (13)
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and for
{
ln(1 + S(r))

}1/β1 ≥
{
ln(1 + T(r′))

}1/β2 , we have

P̃II =

∫ {ln(1+T(r′))}1/β2

y=0

(
1− ey

β1 − 1

S(r)

)r−1

(r′ − 1)
ey

β2
β2y

β2−1

T(r′)

(
1− ey

β2 − 1

T(r′)

)r′−2

dy (14)

Substituting (ey
β2 − 1)/T(r′) = z in (13) and (ey

β2 − 1)/T(r′) = z in (14), we obtain the UMVUE of P as

P̃II =



∫ c

z=0

1

B(1, r′ − 1)

[
1−

exp(ln(zT(r′) + 1))β1/β2

Sr

]r−1

(1− z)r
′−2dz

If (ln(1 + S(r)))
1/β1 < (ln(1 + T(r′)))

1/β2

∫ 1

z=0

1

B(1, r′ − 1)

[
1−

exp(ln(zT(r′) + 1))β1/β2

Sr

]r−1

(1− z)r
′−2dz

If (ln(1 + S(r)))
1/β1 ≥ (ln(1 + T(r′)))

1/β2 [16pt]

(15)

where c = [exp(ln(1 + S(r)))
β2/β1 − 1]/T(r′).

Obviously when β1 = β2, the UMVUE of P reduces to

P̃II =


1

B(1,r′−1)

∑r′−2
i=0 (−1)i

(
r′−2

i

) ( S(r)

T(r′)

)i+1

B(i+ 1, r); S(r) < T(r′)

1
B(1,r′−1)

∑r−1
j=0(−1)j

(
r−1
j

) (T(r′)
S(r)

)j
B(j + 1, r′ − 1); S(r) ≥ T(r′)

(16)

Using (3), we can write the UMVUE of h(t) at a specified point t as

h̃(t)II = λ̃et
β

βtβ−1

Substituting the UMVUE of λ in above equation, we obtain

h̃(t)II =
r − 1

S(r)
et

β

βtβ−1 (17)

Furthermore, it can be easily seen from (A.2) (see proof of Lemma 1 in appendix) that, the MLE of λ based on
Type II censoring is

λ̂q
II =

(
r

S(r)

)q

. (18)

From (1) and one-to-one property of MLE’s, the MLE of f(x) is given by

f̂(x)II = λ̂βex
β

xβ−1eλ̂(1−ex
β
).

Thus the MLE of f(x;λ, β) at a specified point x is given by

f̂(x)II =
r

S(r)
ex

β

βxβ−1exp

{
r

S(r)
(1− ex

β

)

}
. (19)
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104 ESTIMATION AND TESTING PROCEDURES UNDER THE CHEN DISTRIBUTION

Using (19), the MLE of R(t) is given by

R̂(t)II =

∫ ∞

x=t

f̂(x;λ, β)IIdx

=

∫ ∞

x=t

r

S(r)
ex

β

βxβ−1exp

{
r

S(r)
(1− ex

β

)

}
dx

which on substituting r
S(r)

(1− ex
β

) = y can be written as

R̂(t)II = exp

{
−r

S(r)
(et

β

− 1)

}
. (20)

Now to obtain the MLE of P , we proceed as follows:
We have

P̂II =

∫ ∞

y=0

∫ ∞

x=y

f̂II(x;λ1, β1)f̂II(y;λ2, β2)dxdy

=

∫ ∞

y=0

R̂(y;λ1, β1)II f̂II(y;λ2, β2)dy

which on using (19) and (20) gives

P̂II =

∫ ∞

y=0

exp

{
−r

S(r)
(ey

β1 − 1)

}
r′

T(r′)
ey

β2
β2y

β2−1exp

{
−r′

T(r′)
(ey

β2 − 1)

}
dy

Substituting r′(ey
β2 − 1)/T(r′) = z in the above expression, we obtain the MLE of P as

P̂II =

∫ ∞

z=0

exp

[
r

S(r)

{
1− exp

(
ln

(
zT(r′)

r′
+ 1

))β1/β2
}]

e−zdz (21)

Moreover, the MLE of P when β1 = β2 is given by

P̂II =
r′S(r)

r′S(r) + rT(r′)
(22)

Using (3) the MLE of h(t) is given by

ĥ(t)II = λ̂et
β

βtβ−1

and using (18), we obtain the MLE of h(t) at a specified point t as

ĥ(t)II =
r

S(r)
et

β

βtβ−1 (23)

2.2. Exact Confidence Intervals for λ, R(t) and P

Now we consider the problem of constructing two-sided confidence interval for λ (β known). The confidence
interval is obtained by using pivotal quantity 2λS(r). If we define χ2(ν) as the value of χ2 such that

P (χ2 > χ2(ν)) =

∫ ∞

χ2(ν)

P (χ2)dχ2 = ν (24)
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where, P (χ2) is the pdf of χ2 distribution with 2r degrees of freedom, then by using the fact that 2λS(r) ∼ χ2
2r,

the confidence interval is given by

P

(
χ2
(
1− ν

2

)
2S(r)

≤ λ ≤
χ2
(
ν
2

)
2S(r)

)
= 1− ν (25)

whereχ2
(
ν
2

)
and χ2

(
1− ν

2

)
are obtained by using (24). Thus for known β, 100(1− ν)% confidence interval for

λ is given by (
χ2
(
1− ν

2

)
2S(r)

,
χ2
(
ν
2

)
2S(r)

)
.

The problem of obtaining the confidence interval for the reliability function R(t) = exp
{
−λ
(
et

β − 1
)}

can

be solved by noting that R(t◦;λ) is a decreasing function of λ. Thus Ψ1(x1, x2, ..., xn) ≤ exp
{
−λ
(
et

β − 1
)}

is equivalent to λ ≤ Ψ1(x1, x2, ..., xn)/1− et
β

and Ψ2(x1, x2, ..., xn) ≥ exp
{
−λ
(
et

β − 1
)}

is equivalent to

lnλ ≥ Ψ2(x1, x2, ..., xn)/1− et
β

.
Therefore, the expression

P
(
Ψ1(x1, x2, ..., xn) ≤ exp

{
−λ
(
et

β
◦ − 1

)}
≤ Ψ2(x1, x2, ..., xn)

)
= 1− δ

is equivalent to

P

(
lnΨ2(x1, x2, ..., xn)

1− et
β
◦

≤ λ ≤ lnΨ1(x1, x2, ..., xn)

1− et
β
◦

)
= 1− δ (26)

Comparing (25) and (26), it immediately follows that

χ2

(
1− δ

2

)
/2S(r) = lnΨ2(x1, x2, ..., xn)/1− et

β
◦

and

χ2

(
δ

2

)
/2S(r) = lnΨ1(x1, x2, ..., xn)/1− et

β
◦ .

Therefore

Ψ1 = exp

[
(1− et

β
◦ )χ2

(
δ
2

)
2S(r)

]
and Ψ2 = exp

[
(1− et

β
◦ )χ2

(
1− δ

2

)
2S(r)

]
.

Thus, (1− ν)100% confidence interval for R(t◦, λ) is given by(
exp

[
(1− et

β
◦ )χ2

(
δ
2

)
2S(r)

]
, exp

[
(1− et

β
◦ )χ2

(
1− δ

2

)
2S(r)

])
(27)

In order to obtain the confidence interval for P , we utilize the fact that

2λ1S(r)/2r

2λ2T(r′)/2r′
∼ F2r,2r′ .

Thus, the confidence interval for P is given by

P
(
F
(
1− ν

2

)
≤ F ≤ F

(ν
2

))
= 1− ν
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106 ESTIMATION AND TESTING PROCEDURES UNDER THE CHEN DISTRIBUTION

which can further be written as

P

[(
rT(r′)F (ν2 )

r′S(r)
+ 1

)−1

≤ λ2

λ1 + λ2
≤
(
rT(r′)F (1− ν

2 )

r′S(r)
+ 1

)−1
]
= 1− ν

Therefore, (1− ν)100% confidence interval for P is given by[(
rT(r′)F (ν2 )

r′S(r)
+ 1

)−1

,

(
rT(r′)F (1− ν

2 )

r′S(r)
+ 1

)−1
]

(28)

2.3. Hypothesis Testing

Under this section, hypothesis testing of the following three cases are considered:

1. Testing of H◦ : λ = λ◦ against H1 : λ ̸= λ◦ ,when β is known
2. Testing of H◦ : λ ≤ λ◦ against H1 : λ > λ◦ ,when β is known
3. Testing of H◦ : P = P◦ against H1 : P ̸= P◦ when β1 = β2 = β is known

An important hypothesis in life-testing experiments is H◦ : λ = λ◦ against H1 : λ ̸= λ◦ . It follows from (A.2),
that the likelihood function for observing λ is given by

L(λ;x, β) =
n!

(n− r)!
λrβre

∑r
i=1 xβ−1

(i)

r∏
i=1

xβ−1
(i) e−λS(r) (29)

Now,

sup
Θ◦

L(λ;x, β) =
n!

(n− r)!
λr
◦β

re
∑r

i=1 xβ−1
(i)

r∏
i=1

xβ−1
(i) e−λ◦S(r) ; Θ◦ = {λ : λ = λ◦} , (30)

sup
Θ

L(λ;x, β) =
n!

(n− r)!

(
r

S(r)

)r

exp {−r} (31)

Therefore, the likelihood ratio is given by

Φ(x) = sup
Θ◦

L(λ;x, β)/sup
Θ

L(λ;x, β)

=

(
λ◦S(r)

r

)r

e−(r+λ◦S(r)) (32)

We note that the first term on the right hand side of (32) is an increasing function of S(r) and the second term is
monotonically decreasing in S(r). Denoting by χ2

2r, the Chi-square statistics with 2r degrees of freedom and using
the fact that 2λ◦S(r) ∼ χ2

2r, the critical region is given by{
0 < S(r) < k◦

}
∪
{
k

′

◦ < S(r) < ∞
}
,

where k◦ and k
′

◦ are obtained such that P
[
χ2
2r < 2λ◦k◦ or 2λ◦k

′

◦ < χ2
2r

]
= ν.

Thus,

k◦ =
1

2λ◦
χ2
2r

(
1− ν

2

)
and k

′

◦ =
1

2λ◦
χ2
2r

(ν
2

)
.

Another important hypothesis in life testing experiments is H◦ : λ ≤ λ◦ against H1 : λ > λ◦. It follows from
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(29) that, for λ1 < λ2,

h(x(1), x(2), ..., x(r), β, λ2)

h(x(1), x(2), ..., x(r), β, λ1)
=

(
λ2

λ1

)r

exp(−(λ2 − λ1)S(r)) (33)

It follows from (33) that h(x(1), x(2), ..., x(r), λ, β) has MLR in Sr. Thus, the uniformly most powerful critical
region (UMPCR) for testing H◦ : λ ≤ λ◦ against H1 : λ > λ◦ (see [15], pp. 88) is given by

ϕ(x(1), x(2), ..., x(r)) =

{
1, Sr ≤ k

′′

◦

0, otherwise

where k
′′

◦ is obtained such that P [χ2
2r < 2λ◦k

′′

◦ ] = ν.
Therefore,

k
′′

◦ =
1

2λ◦
χ2
2r(1− ν).

Suppose, we want to test H◦ : P = P◦ against H1 : P ̸= P◦ based on Type II censoring. It follows that H◦ is
equivalent to λ1 = kλ2. It can be shown that, under H◦

λ̂1 =
k(r + r′)

kS(r) + T(r′)
,

λ̂2 =
r + r′

kS(r) + T(r′)

For a generic constant K, the likelihood of observing λ1 and λ2, based on x(1), x(2), ..., x(r) and y(1), y(2), ..., y(r′)
is given by

L(λ1, λ2|x(1), x(2), ..., x(r), y(1), y(2), ..., y(r′)) = Kλr
1λ

r′

2 exp[−(λ1S(r) + λ2T(r′))] (34)

Thus,

supL(λ1, λ2|x(1), x(2), ..., x(r), y(1), y(2), ..., y(r′))
Θ◦

=
Kkre−(r+r′)

(kS(r) + T(r′))(r+r′)
, (35)

supL(λ1, λ2|x(1), x(2), ..., x(r), y(1), y(2), ..., y(s))
Θ

=
Ke−(r+r′)

Sr
(r)T

r′

(r′)

. (36)

From (35) and (36), the likelihood ratio criterion is

λ∗(λ1, λ2|x(1), x(2), ..., x(r), y(1), y(2), ..., y(r′)) = K

(
kS(r)

T(r′)

)r
[
1 +

kS(r)

T(r′)

]r+r′
(37)

Denoting by Fa,b(·), the F -statistic with (a; b) degrees of freedom and using the fact that Sr

Tr′
∼ rλ2

r′λ1
F2r,2r′(·),

the critical region is given by {
S(r)

T(r′)
< k2 and

S(r)

T(r′)
> k

′

2

}
,

where k2 and k
′

2 are obtained such that

P

{
r′kS(r)

rT(r′)
< F2r,2r′ ∪

r′kS(r)

rT(r′)
> F2r,2r′

}
= ν.

Thus,
k2 =

r

r′k
F2r,2r′

(
1− ν

2

)
and k

′

2 =
r

r′k
F2r,2r′

(ν
2

)
.
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3. Estimation and Testing Procedures Based on the Sampling Scheme of Bartholomew

Throughout this section, we assume that n items are put on a test and we terminate the life testing experiment at a
preassigned time t◦. Suppose we carry out time-censored test where the items that fail are immediately replaced.
Denoting X(1) ≤ X(2) ≤ ... ≤ X(n) be the failure times of n items under a test from (1), the test begins at time
X(0) = 0 and the system operates till X(1) = x1, when the first failure occurs. The failed item is replaced by a
new one and the system operates till the second failure occurs at time X(2) = x2 and so on. The experiment is
terminated at time t◦. Here, X(i) is the time until ith failure measured from time 0.

Now we provide an important lemma, which will be useful in deducing the main results of this section.

Lemma 2
If N(t◦) be the number of failures during the interval [0, t◦], then

P [N(t◦) = r|t◦] =
exp

{
−nλ

(
et

β
◦ − 1

)}{
nλ
(
et

β
◦ − 1

)}r

r!
. (38)

Proof The proof of Lemma 2 can be found in the Appendix.

3.1. UMVUE’s and MLE’s of λq, R(t), P and h(t)

It follows from Lemma 2 and Fisher-Neyman factorization theorem (see [19], pp. 347) that N(t◦) is sufficient
for λ. Moreover, since the distribution of N(t◦) belongs to exponential family, it is also complete. Thus the qth

factorial moment of the distribution of N(t◦) is given by

E[N(t◦)(N(t◦)− 1)(N(t◦)− 2)...(N(t◦)− q + 1)] =
[
nλ
(
et

β
◦ − 1

)]q
.

Hence for any positive integer q and N(t◦) = r, the UMVUE of λq is given by

λ̃q
I =

 r!
(r−q)!

[
n
(
et

β
◦ − 1

)]−q

: r − q > 0

0 : otherwise
(39)

Further, if we write the pdf (1) as,

f(x;λ, β) = λβex
β

xβ−1eλ(1−ex
β
),

= λβex
β

xβ−1
∞∑
i=0

(−1)i

i!

(
ex

β

− 1
)i

λi.

then with the help of (39), the UMVUE of f(x;λ, β) at a specified point x is found to be

f̃I(x;λ, β) =


rβex

β
xβ−1

n(et
β
◦ −1)

(
1− ex

β
−1

n(et
β
◦ −1)

)r−1

: ex
β − 1 < n(et

β
◦ − 1)

0 : otherwise
(40)

Using (40), the UMVUE of R(t) is given by

R̃(t)I =

∫ ∞

t

f̃I(x;λ, β)dx,

=

∫ ∞

t

rβex
β

xβ−1

n(et
β
◦ − 1)

(
1− ex

β − 1

n(et
β
◦ − 1)

)r−1

dx.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



A. CHATURVEDI AND S. KUMAR 109

Substituting ex
β
−1

n(et
β
◦ −1)

= z in the above expression, we obtain the UMVUE of R(t) as

R̃(t)I =


[
1− et

β
−1

n(et
β
◦ −1)

]r
: et

β − 1 < n(et
β
◦ − 1)

0 : otherwise
(41)

Let n items on X and m on Y be put on a life test, where X and Y follow distribution with pdf (8) and (9)
respectively. Let t◦ and r be the termination times and number of failures before the termination time for X and t◦◦
and r′ be the corresponding figures for Y . Obviously, using (40), the UMVUE’s of f1(x;λ1, β1) and f2(y;λ2, β2)
based on the sampling scheme of Bartholomew are given by

f̃1I(x;λ1, β1) =
rβ1e

xβ1
xβ1−1

n(et
β1
◦ − 1)

(
1− ex

β1 − 1

n(et
β1
◦ − 1)

)r−1

; ex
β1 − 1 < n(et

β1
◦ − 1), (42)

f̃2I(y;λ2, β2) =
r′β2e

yβ2
yβ2−1

m(et
β2
◦◦ − 1)

(
1− ey

β2 − 1

m(et
β2
◦◦ − 1)

)r′−1

; ey
β2 − 1 < m(et

β2
◦◦ − 1). (43)

Then the UMVUE of P is obtained by solving

P̃I =

∫ ∞

y=0

∫ ∞

x=y

f̃1I(x;λ1, β1)f̃2I(y;λ2, β2)dxdy

=

∫ ∞

y=0

R̃I(y;λ1, β1)f̃2I(y;λ2, β2)dy

which on using (41) and (43) leads to

P̃I =

∫ ∞

y=0

[
1− ey

β1 − 1

n(et
β1
◦ − 1)

]r
r′β2e

yβ2
yβ2−1

m(et
β2
◦◦ − 1)

(
1− ey

β2 − 1

m(et
β2
◦◦ − 1)

)r′−1

dy;

ey
β1 − 1 < n(et

β1
◦ − 1), ey

β2 − 1 < m(et
β2
◦◦ − 1)

(44)

=

∫ min

[
ln

{
n(et

β1
◦ −1)+1

}]1/β1

,

[
ln

{
m(et

β2
◦◦−1)+1

}]1/β2

y=0

[
1− ey

β1 − 1

n(et
β1
◦ − 1)

]r

×r′β2e
yβ2

yβ2−1

m(et
β2
◦◦ − 1)

(
1− ey

β2 − 1

m(et
β2
◦◦ − 1)

)r′−1

dy

(45)
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Considering (45) and substituting ey
β2−1

m(et
β2
◦◦−1)

= z, we obtain the UMVUE of P as

P̃I =



∫ c

z=0

[
1− exp{ln(m(et◦◦−1)z+1)}β2/β1−1

n(et
β1
◦ −1)

]r
r′(1− z)r

′−1dz;

[
ln
{
n(et

β1
◦ − 1) + 1

}]1/β1

≤
[
ln
{
m(et

β2
◦◦ − 1) + 1

}]1/β2

∫ 1

z=0

[
1− exp{ln(m(et◦◦−1)z+1)}β2/β1−1

n(et
β1
◦ −1)

]r
r′(1− z)r

′−1dz;

[
ln
{
n(et

β1
◦ − 1) + 1

}]1/β1

>
[
ln
{
m(et

β2
◦◦ − 1) + 1

}]1/β2

(46)

where c =

(
exp

[
ln
{
n(et

β1
◦ − 1) + 1

}]β2/β1

− 1

)
/
(
m(et

β2
◦◦ − 1)

)
.

As a special case if β1 = β2, the UMVUE of P is given by

P̃I =


s
∑s−1

i=0 (−1)i
(
r′−1

i

) (
n
m

)i+1
B(i+ 1, r + 1) : n ≤ m

s
∑r

j=0(−1)j
(
r
j

) (
m
n

)j
B(j + 1, r′) : n > m

(47)

Further, using (3), the UMVUE of h(t) at a specified point t is given by

h̃(t)I = λ̃et
β

βtβ−1

which on using (39) gives that

h̃(t)I =
r

n(et
β
◦ − 1)

et
β

βtβ−1. (48)

Moreover, it can be easily seen from Lemma 2 that the MLE of λq based on the sampling scheme of Bartholomew
is given by

λ̂q
I =

(
r

n(et
β
◦ − 1)

)q

(49)

Using (2), the expression of R(t) at a point t is given by

R(t) = exp
{
λ(1− et

β

)
}

(50)

Now from (49)-(50) and one-to-one property of MLEs, we obtain the MLE of R(t), based on the sampling
scheme of Bartholomew as

R̂(t)I = exp

{
r(1− et

β

)

n(et
β
◦ − 1)

}
(51)

Further the MLE of f(x;λ, β) at a specified point x is

f̂I(x;λ, β) = exp

{
r(1− ex

β

)

n(et
β
◦ − 1)

}
rβex

β

xβ−1

n(et
β
◦ − 1)

(52)
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To obtain the MLE of P , we proceed as follows:
The expression of the MLE of P is given by

P̂I =

∫ ∞

y=0

∫ ∞

x=y

f̂I(x;λ1, β1)f̂I(y;λ2, β2)dxdy

=

∫ ∞

y=0

R̂I(y;λ1, β1)f̂I(y;λ2, β2)dy

which on using (51) and (52) gives that

P̂ =

∫ ∞

y=0

exp

{
r(1− ey

β1
)

n(et
β1
◦ − 1)

}
exp

{
r′(1− ey

β2
)

m(et
β2
◦◦ − 1)

}
r′β2e

yβ2
yβ2−1

m(et
β2
◦◦ − 1)

dy

Substituting [r′(ey
β2 − 1]/[m(et

β2
◦◦ − 1)] = z in above expression, we obtain the MLE of P as:

P̂I =

∫ ∞

z=0

exp


−r

{
exp

(
ln

(
m(et

β2
◦◦−1)z+1

s

)
+ 1

)β1/β2

− 1

}
n(et

β1
◦ − 1)

 e−zdz (53)

Further, the MLE of P when β1 = β2 and t◦ = t◦◦, is given by:

P̂ =
r′n

r′n+ rm
(54)

Using (3), the MLE of h(t) is given by

ĥ(t)I = λ̂et
β

βtβ−1

Using (49) and one-to-one property of MLE’s, the MLE of h(t), based on the sampling scheme of Bartholomew
is now given by

ĥ(t)I =
r

n(et
β
◦ − 1)

et
β

βtβ−1 (55)

3.2. Hypothesis Testing

Under this section, we consider the hypothesis testing based on the sampling scheme of Bartholomew, for the
following two cases:

1. Testing of H◦ : λ = λ· against H1 : λ ̸= λ◦, when β is known
2. Testing of H◦ : λ ≤ λ· against H1 : λ > λ◦, when β is known

Proceeding in a similar manner as in Section 2.3 and using Lemma 2, it can be shown that, based on the sampling
scheme of Bartholomew, the critical region for testing H◦ : λ = λ· against H1 : λ ̸= λ◦ is given by:{

r < k1 or r > k
′

1

}
where r ∼ Poisson

(
nλ(et

β
◦ − 1)

)
On the similar lines as in Section 2.3 and using Lemma 2, it can be shown that, based on the sampling scheme of

Bartholomew, the uniformly most powerful critical region for testing H◦ : λ ≤ λ· against H1 : λ > λ◦ is given by:

ϕ(r) =

{
1 ; r ≥ K

′

1

0 ; otherwise

Stat., Optim. Inf. Comput. Vol. 9, March 2021



112 ESTIMATION AND TESTING PROCEDURES UNDER THE CHEN DISTRIBUTION

4. Simulation Study

In this section, we study the performance of our estimation and testing procedures through simulations. Throughout
this section, comparisons are made on the basis of MSEs of estimators and simulation experiments are conducted
using Monte Carlo simulation technique.

4.1. Simulation based on Estimation Procedures

First we compare the performance of estimators of λq, R(t), P and h(t) based on Type II censoring scheme. For
this purpose, we have generated 1000 random samples from (1) each of size n = 50 for (λ, β)=(0.5,0,5), (0.5,1),
(0.5,2), (0.5,4). For each sample, we arranged the data in ascending order and considered a sample of first ’r’
(r ≤ n) observations.

For different values of r =10, 20, 30 and 50, we have computed average values of λ̃II and λ̂II and their
corresponding MSE’s and results are reported in Table 1. Similiarly, we obtain average length and coverage
probability of interval estimates which are reported in Table 2.

Table 1. Average values of point estimates of λ and their MSEs/Variances, when β is known

r− > 10 20 30 50
β λ̃ λ̂ λ̃ λ̂ λ̃ λ̂ λ̃ λ̂

0.5 0.4987 0.5541 0.4978 0.524 0.5033 0.5207 0.4993 0.5095
0.0265 0.0357 0.0142 0.0163 0.0094 0.0105 0.0052 0.0055

1 0.5065 0.5627 0.5015 0.5279 0.5044 0.5218 0.4992 0.5094
0.0367 0.0492 0.0133 0.0155 0.0092 0.0103 0.0051 0.0054

2 0.5062 0.5624 0.5047 0.5313 0.4968 0.5139 0.5 0.5102
0.0333 0.045 0.0147 0.0172 0.009 0.0099 0.0048 0.0051

4 0.4973 0.5526 0.5 0.5263 0.5033 0.5207 0.4981 0.5083
0.0281 0.0375 0.0128 0.0149 0.009 0.01 0.0053 0.0056

Note: 1st and 2nd rows represent the average estimates and MSE’s of λ.

Table 2. Average length and coverage probability of interval estimates

r− > 10 20 30 50
β A.L. C.P. A.L. C.P. A.L. C.P. A.L. C.P.

0.5 0.6801 95.05 0.4562 95.2 0.3706 95.75 0.2817 95.05
1 0.6841 95 0.4555 95.7 0.3705 95.05 0.2825 95.7
2 0.6860 94.98 0.4621 95.06 0.3692 95.16 0.2832 95.15
4 0.6842 94.88 0.4575 95.32 0.3691 95.18 0.2822 95.6

Note: A.L.: Average Length, C.P.: Coverage Probability

From Table 1, it is observed that, the MSE corresponding to UMVUE is much lower than the MLE. Thus, we
can say that the performance of UMVUE of λ based on Type II censoring is much better than MLE. It can also
be seen from Table 1 that, as r increases, performance of both the estimators improve (as MSE is decreasing) and
estimates come closer to each other. Also from Table 2, we observe that, as the truncation number r increases,
the length of confidence intervals decrease. This justifies the fact that as r moves closer to n, the precision of our
estimate will increase .

Again for r = 10, 20, 30 and 50, we have computed the average values of R̃(t), R̂(t) and their corresponding
MSE’s and the results are reported in Table 3. Similiarly, we obtain average length and coverage probability of
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interval estimates which are reported in Table 4.

Table 3. Average values of point estimates of R(t) and their MSEs/Variances,when β is known

r− > 10 20 30 50
t ↓ R(t) ↓ R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t)

0.2 0.9798 0.9795 0.9772 0.9798 0.97880 0.9797 0.97899 0.9799 0.9794
5.3e-05 7.1e-05 2.1e-05 2.4e-05 1.5e-05 1.7e-05 8e-06 9e-06

0.5 0.8676 0.8681 0.8558 0.8688 0.8629 0.8683 0.8644 0.8667 0.8644
0.0016 0.002 8e-04 9e-04 5e-04 5e-04 3e-04 3e-04

0.8 0.6388 0.6453 0.6231 0.639 0.6279 0.6401 0.6327 0.64 0.6355
0.0089 0.0093 0.0044 0.0045 0.0025 0.0026 0.0016 0.0016

0.9 0.5358 0.5356 0.5132 0.5361 0.524705 0.5349 0.5272 0.5357 0.5311
0.0125 0.0125 0.00575 0.0058 0.0038 0.0038 0.0023 0.0023

1 0.4235 0.4246 0.4052 0.4239 0.4138 0.4237 0.4169 0.4241 0.4199
0.0141 0.0132 0.0068 0.0067 0.0045 0.0044 0.0027 0.0026

1.5 0.1998 0.201 0.196 0.2008 0.198 0.201 0.1991 0.1996 0.1984
0.0108 0.0091 0.0051 0.0047 0.0035 0.0033 0.0021 0.002
Note: 1st and 2nd rows represent the average estimates and MSE of R(t).

Table 4. Average length and coverage probability of interval estimates

r− > 10 20 30 50
t A.L. C.P. A.L. C.P. A.L. C.P. A.L. C.P.

0.2 0.027 95 0.0183 94.8 0.0148 94.6 0.0113 95.6
0.5 0.1608 95.1 0.111 95.04 0.0895 95.02 0.0689 94.76
0.8 0.3466 94.68 0.2483 095.07 0.2034 94.59 0.1582 094.98
0.9 0.4176 95 0.3068 94.98 0.2537 94.91 0.1987 95.26
1 0.4176 95 0.3068 94.98 0.2537 94.91 0.1987 95.26

1.5 0.1303 94.99 0.0748 95.22 0.0559 95.05 0.0396 95.03
Note: A.L.: Average Length, C.P.: Coverage Probability

Comparing the estimates on the basis of MSE’s, obtained in Table 3, it can be seen that, based on Type II
censoring, for different values of t, the performance of UMVUE of R(t) is better than the performance of MLE
of R(t). However, for t = 1 and beyond, the performance of MLE is better than UMVUE. Performance of both
the estimators is quite similar in case of large values of r. From Table 3, it is also clear that, as r increases, the
MSE corresponding to both the estimators decrease. Also from Table 4, we observe that as the truncation number
r increases, the length of confidence intervals decreases. It establishes the improvement in estimate of R(t) for
increasing values of r.

In order to investigate the performance of the estimators of P , we have generated 1000 random samples from
each of the populations X and Y with sizes (n,m) from (1.1) with β1 = β2 = 2 and (λ1, λ2) = (0.5,0.5), (0.5,1),
(0.5, 1.5) and (0.5,2). The samples corresponding to both the populations are arranged in ascending order and first
(r, r′) observations are considered. For (r, r′)=(10,10),(20,20),(30,25) and (40,40), we have computed average
values of P̃ and P̂ and their corresponding MSE’s and the results are presented in Table 5. Similiarly, we obtain
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average length and coverage probability of interval estimates which are reported in Table 6.

Table 5. UMVUE’s and MLE’s of P

λ1− > 0.5 0.5 0.5 0.5
λ2− > 0.5 1 1.5 2
P− > 0.5 0.6666667 0.75 0.8

(r, r′) ↓ P̃ P̂ P̃ P̂ P̃ P̂ P̃ P̂

(10,10) 0.5029 0.5028 0.6614 0.6545 0.7461 0.737 0.8039 0.7943
0.013 0.0118 0.0112 0.0105 0.0084 0.0082 0.0055 0.0055

(20,20) 0.4994 0.4994 0.6688 0.6652 0.7506 0.7459 0.801 0.7961
0.0063 0.006 0.0054 0.0052 0.0034 0.0034 0.0024 0.0024

(30,25) 0.6242 0.6229 0.6655 0.6635 0.7502 0.7474 0.8004 0.7971
0.0042 0.0041 0.0036 0.0035 0.0027 0.0026 0.0018 0.0018

(40,40) 0.4991 0.4991 0.6666 0.6647 0.7511 0.7488 0.7998 0.7974
0.0032 0.0032 0.0024 0.0024 0.0017 0.0017 0.0014 0.0014

Note: 1st and 2nd rows represent the average estimates and MSE’s.

Table 6. Average length and coverage probability of interval estimates

λ1− > 0.5 0.5 0.5 0.5
λ2− > 0.5 1 1.5 2
P− > 0.5 0.6666667 0.75 0.8

(r, r′) ↓ A.L. C.P. A.L. C.P. A.L. C.P. A.L. C.P.

(10,10) 0.4054 94.64 0.3716 94.63 0.3267 94.96 0.2879 94.78
(20,20) 0.2977 95.15 0.2687 94.95 0.232 95.09 0.2015 95.08
(30,25) 0.2575 94.75 0.232 94.76 0.1991 94.67 0.1723 95.11
(40,40) 0.2147 94.91 0.1927 94.82 0.1642 95.11 0.1415 95.07

Note: A.L.: Average Length, C.P.: Coverage Probability

From Table 5, it is clear that based on Type II censoring, for all values of (r, r′), MLE of P gives better results
than UMVUE of P . Also from Table 6, we observe that, as truncation number (r, r′) increases, the length of
confidence intervals decrease. It establishes the improvement in estimate of P for increasing values of (r, r′).

To compare the estimates of h(t), we have plotted the hazard rates and their estimates against time t for λ = 2,
β = 0.8, n = 50 and r = 10, 20, 30 and 40. In Figure 1, we have plotted the hazard rate and it’s MLE and UMVUE
for different values of r.

We observe that, as r increases, the estimates come closer to the true values. For r = 40, the estimated values of
hazard rate overlaps the plot. It establishes the consistency properties of estimators.

Now we compare the performance of estimators of λq, R(t), P and h(t) based on the sampling scheme of
Bartholomew.

In order to obtain the point estimates of R(t) based on the sampling scheme of Bartholomew, we have generated
1000 random samples each of size 100 from (1) with λ = 0.5 and β = 2. By fixing the termination time at t◦, and
replacing the failure by operating one, values of r (number of failures before time t◦) are computed. For different
termination times t◦=0.20, 0.45, 0.50, 0.65 and 0.80, we have computed average values of R̃(t) and R̂(t), their
corresponding MSE’s. For different values of t, results are presented in Table 7.
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(a) n=50, r=10 (b) n=50, r=20

(c) n=50, r=30 (d) n=50, r=40

Figure 1. Plots of h(t) and it’s estimates against time t

Table 7. UMVUE’s and MLE’s of R(t) based on the Sampling Scheme of Bartholomew

t◦− > 0.20 0.45 0.50 0.65 0.80
t ↓ R(t) ↓ R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t)

0.25 0.9683 0.9704 0.9709 0.9693 0.9694 0.9699 0.9699 0.9717 0.9717 0.9735 0.9735
9e-04 9e-04 2e-04 2e-04 0.00012 0.00012 7e-05 7e-05 5e-05 5e-05

0.45 0.8938 0.8945 0.8998 0.8974 0.8984 0.8991 0.8999 0.9031 0.9035 0.9107 0.9109
0.0102 0.0093 0.0017 0.0017 0.0012 0.0012 6e-04 6e-04 6e-04 6e-04

0.8 0.6388 0.6428 0.6991 0.6499 0.6609 0.6597 0.6682 0.6678 0.6724 0.6843 0.6869
0.0905 0.0713 0.0132 0.0129 0.0107 0.0107 0.0058 0.006 0.0047 0.0049

0.9 0.5358 0.5485 0.6382 0.5532 0.571 0.5504 0.5647 0.5685 0.5761 0.5924 0.5967
0.1322 0.1028 0.0209 0.0209 0.0149 0.0149 0.0086 0.0089 0.0068 0.0072

Note: 1st and 2nd rows represent the average estimates and MSE’s.
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From Table 7, it is observed that based on the sampling scheme of Bartholomew, for small values of t and all
values of t◦, UMVUE and MLE of R(t) are equally efficient. For large values of t and small values of t◦, MLE is
more efficient than UMVUE of R(t). However, for large values of t◦, UMVUE becomes more efficient than MLE
of R(t). This result shows the importance of termination time t◦ in the sampling scheme of Bartholomew.

In order to investigate the performance of estimators of P based on the sampling scheme of Bartholomew,
we have generated 1000 random samples from each of the populations X and Y with sizes (n,m) from (1) with
β1 = β2 = 2 and (λ1, λ2) = (0.5,0.5), (0.5,1), (0.5,1.5) and (0.5,2). For each sample corresponding to both the
populations by fixing the termination time at t◦ = t◦◦ and replacing the failure by operating one, values of r
(number of failures before time t◦ in X) and values of s (number of failures before time t◦◦ in Y) are computed.
For t◦ = t◦◦=0.80, 1 and 1.5, we have computed average values of P̃I and P̂I and their corresponding MSE’s for
n > m and n < m and the results are presented in Tables 8 and 9 respectively.

Table 8. UMVUE’s and MLE’s of P based on the Sampling Scheme of Bartholomew

λ1− > 0.5 0.5 0.5 0.5
λ2− > 0.5 1 1.5 2
P− > 0.5 0.6666667 0.75 0.8

t◦ = t◦◦ ↓ P̃ P̂ P̃ P̂ P̃ P̂ P̃ P̂

(n = 50) > (m = 35)

0.80 0.506 0.5031 0.6357 0.6337 0.689 0.6874 0.7219 0.7206
0.0062 0.0062 0.0043 0.0045 0.0061 0.0064 0.008 0.0082

1 0.5043 0.5025 0.6035 0.6021 0.6447 0.6435 0.6681 0.6671
0.0024 0.0024 0.0055 0.0057 0.0125 0.0127 0.0186 0.0189

1.5 0.5009 0.5 0.5389 0.5381 0.5734 0.5726 0.6081 0.6074
4e-04 4e-04 0.017 0.0172 0.0319 0.0322 0.0377 0.038

(n = 50) > (m = 45)

0.80 0.5022 0.5015 0.632 0.6315 0.6869 0.6865 0.7209 0.7206
0.0052 0.0052 0.0043 0.0043 0.0062 0.0063 0.0079 0.008

1 0.5019 0.5014 0.6037 0.6034 0.6441 0.6438 0.6682 0.6679
0.0021 0.0021 0.0055 0.0055 0.0124 0.0125 0.0185 0.0186

1.5 0.5006 0.5004 0.5374 0.5372 0.5742 0.574 0.6069 0.6067
4e-04 4e-04 0.0172 0.0173 0.0315 0.0316 0.038 0.0381

Note: 1st and 2nd rows represent the average estimates and MSE’s.

From Table 8, for n > m, it is observed that for small m when n = 50, UMVUE of P gives better results than
MLE of P. As m increases both the estimators are equally efficient. From Table 9, for n < m, it is observed that
for small n when m = 50, MLE of P gives better result than UMVUE of P. As m increases both the estimators
are equally efficient.

To compare the estimates of h(t) with the true value of h(t), we have plotted h(t) and its estimates for β = 0.5,
λ = 0.8 and t◦ = 0.15 (Figure 2). From theory we observe that both UMVUE and MLE of h(t) are same and
hence we have plotted only one to represent both.

Since the plot of estimate of h(t) almost overlaps the plot of hazard rate, it establishes the consistency property
of estimators.

4.2. Simulation based on Hypothesis Testing

In this section, we check the validity of hypotheses developed in Sections 2.3 and 3.2, respectively. For this
purpose, we first test the hypothesis, H◦ : λ = λ◦ against H1 : λ ̸= λ◦ based on Type II censoring. We generate a
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Table 9. UMVUE’s and MLE’s of P based on the Sampling Scheme of Bartholomew

λ1− > 0.5 0.5 0.5 0.5
λ2− > 0.5 1 1.5 2
P− > 0.5 0.6666667 0.75 0.8

t◦ = t◦◦ ↓ P̃ P̂ P̃ P̂ P̃ P̂ P̃ P̂

(n = 35) < (m = 50)

0.80 0.4971 0.5001 0.6273 0.6293 0.6891 0.6906 0.7217 0.723
0.0063 0.0063 0.0052 0.0051 0.0067 0.0065 0.0088 0.0086

1 0.5015 0.5033 0.6024 0.6037 0.6438 0.645 0.6651 0.6662
0.0025 0.0025 0.0061 0.0059 0.0129 0.0126 0.0196 0.0193

1.5 0.499 0.5 0.538 0.5389 0.5715 0.5723 0.6066 0.6073
4e-04 4e-04 0.0171 0.0168 0.0325 0.0322 0.0381 0.0378

(n = 45) < (m = 50)

0.80 0.506 0.5031 0.6357 0.6337 0.689 0.6874 0.7219 0.7206
0.0062 0.0062 0.0043 0.0045 0.0061 0.0064 0.008 0.0082

1 0.5043 0.5025 0.6035 0.6021 0.6447 0.6435 0.6681 0.6671
0.0024 0.0024 0.0055 0.0057 0.0125 0.0127 0.0186 0.0189

1.5 0.5009 0.5 0.5389 0.5381 0.5734 0.5726 0.6081 0.6074
4e-04 4e-04 0.017 0.0172 0.0319 0.0322 0.0377 0.038

Note: 1st and 2nd rows represent the average estimates and MSE’s.

Figure 2. Plots of h(t) and its estimates under Type I censoring

sample of size n = 50 from (1) with (λ1 = 0.5, β1 = 2). The sample is provided below:

Sample 1: 0.0252, 0.1352, 0.1791, 0.2778, 0.4252, 0.4334, 0.4802, 0.5379, 0.6750, 0.6770, 0.7204, 0.7637,
0.7894, 0.7997, 0.8187, 0.8498, 0.8920, 0.8930, 0.9050, 0.9191, 0.9201, 0.9414, 0.9881, 1.0000, 1.0028, 1.0196,
1.0255,1.0271, 1.0573, 1.0882, 1.1042, 1.1252, 1.1408, 1.1433, 1.1563, 1.1610, 1.1752, 1.1827, 1.1901, 1.2021,
1.2043, 1.2151, 1.2552, 1.3069, 1.3483, 1.3501, 1.3513, 1.3518, 1.3994, 1.5697.
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Now with the help of chi-square table at ν = 5% level of significance, for Sample 1 we obtained k◦ = 48.75756
and k

′

◦ = 95.02318. As for r = 35, the value of S35 = 85.5457 is not lying in the critical region, thus we do not
reject H◦ at 5% level of significance. Again considering Sample 1, for testing H◦ : λ ≤ λ◦ against H1 : λ > λ◦ at
5% level of significance, we obtained k

′′

◦ = 51.1393. As for r = 35, the value of S(35) = 85.5457 is not lying in
the critical region, thus we do not reject H◦ at 5% level of significance.

In order to test H◦ : P = 0.6667(P◦) against H1 : P ̸= 0.6667(P◦) based on Type II censoring scheme, we
generated another sample of size m = 60 from (1.1) with (λ2 = 1, β2 = 2). The sample is given below:

Sample 2: 0.1625, 0.1935, 0.1989, 0.2128, 0.2164, 0.2725, 0.3750, 0.3927, 0.3931, 0.4140, 0.4240, 0.4243,
0.4369, 0.4657, 0.4705, 0.4727, 0.5214, 0.5269, 0.5308, 0.5543, 0.5777, 0.5853, 0.5861, 0.6032, 0.6107, 0.6109,
0.6221, 0.6359, 0.6404, 0.6540, 0.6665, 0.6773, 0.6824, 0.7097, 0.7152, 0.7162, 0.7746, 0.7791, 0.7963, 0.8003,
0.8109, 0.8297, 0.8338, 0.8483, 0.8772, 0.8823, 0.8829, 0.8947, 0.9100, 0.9357, 0.9944, 0.9952, 1.0122, 1.0257,
1.0288, 1.1054, 1.1166, 1.1461, 1.1486, 1.1805.

For r′ = 40, we get T(40) = 33.2952. From these samples we get S(35)/T(40) = 2.569314. Now with the help of
F-table at 5% level of significance, we obtained k2 = 1.4183 and k

′

2 = 3.5386. Hence, in this case we may accept
H◦ at 5% level of significance.

The similar calculations may be done for testing the above hypotheses under the sampling scheme of
Bartholomew.

5. Real Data Analysis

Now we provide real data analysis based on Type II censoring, when all the parameters of the distribution are
unknown, to see how the model works in practice.

We consider the first real data set which was used by [22] (initially taken from [14]) to illustrate the proposed
methodology. The data comprise of 50 observations, which represents the quantity of 1000s of cycles to failure for
electrical appliances in a life test. The data is presented below:

First data set: x = (0.014, 0.034, 0.059, 0.061, 0.069, 0.08, 0.123, 0.142, 0.165, 0.21, 0.381, 0.464,0.479, 0.556,
0.574, 0.839, 0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.27, 1.275, 1.355, 1.397, 1.477, 1.578, 1.649,
1.702, 1.893, 1.932, 2.001, 2.161, 2.292, 2.326, 2.337, 2.628, 2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715,
3.79, 3.857,3.912, 4.1)

The second data set was used by [20] (initially taken by [6]). It represents the failure data of a 180 ton rear dump
truck. The data shows the number of hours between 128 failures. The data is presented below:

Second data set: y = (0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.1, 0.12,
0.12, 0.12, 0.13, 0.14, 0.15, 0.15, 0.15, 0.16, 0.16, 0.17, 0.18, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.25, 0.26, 0.28,
0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.39, 0.41, 0.41, 0.42, 0.43, 0.44, 0.44, 0.45, 0.45, 0.5, 0.53, 0.56, 0.58, 0.58, 0.61,
0.62, 0.62, 0.62, 0.64, 0.66, 0.7, 0.7, 0.7, 0.72, 0.77, 0.78, 0.78, 0.8, 0.82, 0.83, 0.85, 0.86, 0.96, 0.97, 0.98, 0.99,
1.05, 1.06, 1.07, 1.18, 1.35, 1.36, 1.42, 1.55, 1.59, 1.65, 1.73, 1.77, 1.79, 1.8, 1.91, 2.09, 2.14, 2.15, 2.15, 2.31,
2.33, 2.36, 2.43, 2.45, 2.5, 2.51, 2.58, 2.64, 2.68, 3.08, 3.94, 4.12, 4.33, 4.42, 4.53, 4.88, 4.97, 5.11, 5.32, 5.55,
6.63, 6.89, 7.62, 11.41, 11.76, 11.85, 12.36, 13.22)

We first apply the KS test to check whether the distribution given at (1) fits the given X and Y populations.
Fitting the distribution given in (1) to the data x and y, we obtain the following MLE’s of (λ1, β1) and (λ2, β2)
based on complete data sets.

(λ1, β1) = (2.3651, 0.9371)
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and
(λ2, β2) = (3.5242, 0.6072)

With the help of these Maximum Likelihood Estimators of parameters we apply KS test and conclude that both
the data observed for X (KS = 0.0881; p = 0.7993) and the data observed for Y (KS = 0.0857; p = 0.3119) are
drawn from (1). Figure 3 and 4 confirms the good fit of (1), for these two data sets.

Figure 3. The empirical and theoretical cdf of
first data set

Figure 4. The empirical and theoretical cdf of
second data set

In order to obtain the MLE of R(t) and P based on Type II censoring, we first consider r = 30 lifetimes from
X population and rest 20 observations are considered as censored. Similarly, we consider first r′ = 90 lifetimes
from Y population and rest 38 observations are considered as censored. Considering Chen distribution as a lifetime
model for X-population, for the first r observations, the MLE’s of λ1II and β1II comes out to be λ̂1II = 2.0992

and β̂1II = 0.8702. The MLE of R(t) at time point t = 0.15 is given by R̂(t)1II = 0.6414.
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Similarly, by considering Chen distribution as a lifetime model for Y-population, for the first r′ observations,
the MLE’s of λ2II and β2II comes out to be λ̂2II = 4.1559 and β̂2II = 0.6560. The MLE of R(t) at time point
t = 0.15 is given by R̂(t)2II = 0.2497

To evaluate MLE of PII , we have considered first data set as X Population and second data set as Y population
and obtain P̂II = 0.4331. For X and Y populations and corresponding to different values of t, we have evaluated
MLE of h(t). Results are plotted in Figure 5.
In particular, for t = 0.15,

(a) The plot of h(t) against time t for
first data set

(b) The plot of h(t) against time t for
second data set

Figure 5. Plots of h(t) for real life data sets

ĥ1II(t) = 2.8311

and
ĥ2II(t) = 6.1841, 6.6871.

From Figure 5, it is clear that the plot of h(t) for both data sets have the bathtub shape.

6. Concluding Remarks

In this article, we have developed the estimation procedures for the Chen distribution based on Type II Censoring
and Sampling scheme of Bartholomew. Considerations are given to both point and interval estimations. Hypotheses
were developed for various parametric functions. The finite sample performance of the UMVUEs and MLEs of
reliability functions and other parameters are investigated using extensive Monte Carlo simlation. For Type II
censoring, the performance of UMVUE of λq is better than MLE. Also for different values of t, the performance of
UMVUE of R(t) is better than the performance of MLE of R(t). However, for t = 1 and beyond, the performance
of MLE is better than UMVUE. Moreover, for all values of (r, r′), MLE of P gives better result than the UMVUE
of P . In case of Sampling scheme of Bartholomew, for small values of t and all values of t◦, UMVUE and MLE
of R(t) are equally efficient. But for large values of t and small values of t◦, MLE is more efficient than UMVUE
of R(t). However for large values of t◦, UMVUE becomes more efficient than MLE of R(t), thus depicting the
importance of termination time t◦ in this scheme. From the study of performance of P it has been observed that
for small m when n = 50, UMVUE of P gives better result than MLE of P . On the other hand, for n < m, it is
observed that for small n when m = 50, MLE of P gives better result than UMVUE of P . As n and m increases
both estimators become equally efficient. With the help of Figures 1 and 2 we have established the consistency
of estimators of h(t) under both censoring schemes. The real life data examples demonstrate how the proposed
estimators of two measures of reliability and confidence ellipsoids can be implemented in practice.
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Appendix

Proof of Lemma 1 Using (1) the joint pdf of 0 < X(1) ≤ X(2) ≤ ... ≤ X(n) < ∞ is given by

f(x(1), x(2), ..., x(n);α, β) = n!λnβne
∑n

i=1 xβ
(i)

n∏
i=1

xβ−1
(i) exp(−λ

n∑
i=1

(e
xβ
(i) − 1)) (A.1)

Integrating out x(r+1), x(r+2), ..., x(n) from (A.1) over the region x(r) ≤ x(r+1) ≤ ... ≤ x(n) < ∞ the joint pdf
of x(1) ≤ x(2) ≤ ... ≤ x(r) comes out to be

h(x(1), x(2), ..., x(r);λ, β) =
n!

(n− r)!
λrβre

∑r
i=1 xβ−1

(i)

r∏
i=1

xβ−1
(i) e−λsr (A.2)

It follows from (A.2) and Fisher-Neyman factorization theorem (see [19], pp. 347) that, Sr is sufficient for
the distribution given in (1). Moreover, if we consider the transformation Zi = (n− i+ 1)

{
U(i) − U(i−1)

}
, i =

1, 2, ...r;Uo = 0, where U(i) = e
xβ
(i) − 1 then Z ′

is are independent and identically distributed (i.i.d.) rv’s, each
having exponential distribution with mean life 1/α. It is easy to see that

∑r
i=1 Zi = Sr. Lemma 1 now follows

from the additive property of gamma distribution (see [6], pp. 170). Since the distribution of Sr belongs to one
parameter exponential family of distributions for known β, it is also complete (see [19], pp. 347).

Proof of Lemma 2 Let us make the transformations
W1 = ex

β
1 − 1,

W2 = ex
β
2 − ex

β
1 ,

...
Wn = ex

β
n − ex

β
n−1

(A.3)

The pdf of W1 is

h(w1) = nλe−nλw1 .

Moreover, W2,W3, ...,Wn are i.i.d. as W1. Using the monotonicity property of ex
β − 1, we get

P {N(t◦ = r|t◦)} = P [X(r) ≤ t◦]− P [X(r+1) ≤ t◦],

= P
[(

e
xβ
(r) − 1

)
≤
(
et

β
◦ − 1

)]
− P

[(
e
xβ
(r−1) − 1

)
≤
(
et

β
◦ − 1

)]
. (A.4)

Using (A.3) and (A.4), we get

P {N(t◦ = r|t◦)} = P
[
W1 +W2 + ...+Wr ≤

(
et

β
◦ − 1

)]
− P

[
W1 +W2 + ...+Wr−1 ≤

(
et

β
◦ − 1

)]
. (A.5)

From the additive property of exponentially distributed rvs (see [7], pp. 170), U = nλ
∑r

i=1 Wi follows gamma
distribution with pdf:

h(u) =
1

Γ(r)
ur−1e−u, u > 0. (A.6)
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Using (A.5) and a result of ([17], pp. 244) we obtain from (A.4) that

P {N(t◦ = r|t◦)} =
1

Γ(r + 1)

∫ ∞

et
β
◦ −1

e−uurdu− 1

Γ(r)

∫ ∞

et
β
◦ −1

e−uur−1du,

= exp
(
−nλ

(
et

β
◦ − 1

))
r∑

j=0

[
nλ
(
et

β
◦ − 1

)]j
j!


− exp

(
−nλ

(
et

β
◦ − 1

))
r−1∑
j=0

[
nλ
(
et

β
◦ − 1

)]j
j!

 . (A.7)

and the lemma follows.
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